浙江省台州市高三数学期末质量评估试题 理 新人教A版
浙江省台州市2012届高三数学期末质量评估试题 文 新人教A版
1台州市 2011学年第一学期 高三年级期末质量评估试题 数 学(文) 2012.01本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.Ⅰ 选择题部分(共50分)参考公式:球的表面积公式 24S πR = 柱体的体积公式 Sh V =球的体积公式 343V πR = 其中S 表示柱体的底面积,h 表示柱体的高其中R 表示球的半径 台体的体积公式121()3V h S S =锥体的体积公式 Sh V 31= 其中1S ,2S 分别表示台体的上底、下底面积, 其中S 表示锥体的底面积,h 表示锥体的高 h 表示台体的高 如果事件A ,B 互斥,那么()()()P A B P A P B +=+一、选择题(共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项符合题目要求.) 1. 复数31ii--等于 (A )i 21+(B )12i -(C )2i +(D )2i -2. 集合12{0,log 3,3,1,2}A =-,集合{|2,}x B y R y x A =∈=∈,则A B =(A ){}1(B ){}1,2(C ){}3,1,2-(D ){}3,0,1-3.向量(1,1),(1,3a x b x =-=+,则“2x =”是“a ∥b ”的 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充要条件(D ) 既不充分也不必要条件4. 已知点)1,1(-A 及圆 044422=++-+y x y x ,则过点A ,且在圆上截得最长的弦所在的直线方程是 (A )01=-x(B )0=+y x(C )01=+y(D )02=--y x5. 设函数)(x f 为偶函数,且当)2,0[∈x 时x x f sin 2)(=,当),2[+∞∈x 时x x f 2log )(=,则=+-)4()3(f f π(A )23+-(B ) 1(C )3(D )23+6. 按照如图的程序框图执行,若输出结果为15,则M 处条件为2(第9题)(A )16k ≥? (B )8k <? (C )16k <? (D )8k ≥?7. 若函数()(1)(01)x x f x k a a a a -=-->≠且在R 上既是奇函(A (B )12 (C )2(D )139. 如图,正方体1111D C B A ABCD -中,E 是棱1DD 的中点,F 是 侧面11C CDD 上的动点,且F B 1//平面BE A 1,则F B 1与平面 11C CDD 所成角的正弦值构成的集合是(A ){}2 (B ) ⎭⎬⎫⎩⎨⎧552(C )|23t t ⎧⎪≤≤⎨⎪⎪⎩⎭(D )|t t ⎧≤⎨⎩ 10. 定义在上R 的函数()f x 满足(6)1f =,'()f x 为()f x 的导函数,已知'()y f x =的图象如图所示,若两个正数,a b 满足(32)1f a b +>,则11b a -+的取值范围是 (A )1(,2)3-(B )1(,)3-+∞(C )1(,)[0,)3-∞-⋃+∞(D )[2,)+∞Ⅱ 非选择题部分(共100分)二、填空题(本题共7道小题,每题4分,共28分;将答案直接答在答题卷上指定的位置) 11.在某次法律知识竞赛中,将来自不同学校的学生的 0.040.030.020.01(第10题)3成绩绘制成如图所示的频率分布直方图.已知成绩 在[60,70)的学生有40人,则成绩在[70,90)的 有 ▲ 人.12.一空间几何体的三视图如图所示,则该几何体的体积为 ▲ .13.若{}n b 是等比数列,,,m n p 是互不相等的正整数,则有正确的结论:1nmpp m n n p m b b b b b b ⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.类比上述性质,相应地,若{}n a 是等差数列,,,m n p 是互不相等的正整数,则有正确的结论: ▲ .14.在1,2,3,4,5这五个数中,任取两个不同的数记作,a b ,则满足2()f x x ax b =-+有两个不同零点的概率是 ▲ .15.为了测量正在海面匀速直线行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点,C D ,在某时刻观察到该航船在A 处,此时测得30ADC ∠=,3分钟后该船行驶至B 处,此时测得60ACB ∠=,45,60BCD ADB ∠=∠=,则船速为 ▲ 千米/分钟.16.已知圆22:(2)(1)5C x y -+-=及点B (0,2),设Q P ,分别是直线02:=++y x l 和圆C 上的动点,则PQ PB +的最小值为 ▲ .17.如图,扇形AOB 的弧的中点为M ,动点D C ,分别在OB OA ,上,且.BD OC =若1=OA ,120AOB ∠=,则MC MD ⋅的取值范围是 ▲ .俯视图正视图 侧视图(第12题)(第15题)C(第17题)BCDA4三、解答题(本题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 18.(本题满分14分)已知函数2()cos 2cos f x x x x a ωωω=-+(,0)x R ω∈>的最小正周期为π,最大值为3. (Ⅰ)求ω和常数a 的值; (Ⅱ)求函数()f x 的单调递增区间.19. (本题满分14分)已知数列{}n b 是首项为1,公比为2的等比数列.数列{}n a 满足2log 311n n a b n =-+,n S 是{}n a 的前n 项和.(Ⅰ)求n S(Ⅱ)设同时满足条件:①21()2n n n c c c n N *+++≤∈;②n c M ≤(n N *∈,M 是与n 无关的常数)的无穷数列{}n c 叫“特界”数列.判断(1)中的数列{}n S 是否为“特界”数列,并说明理由.20.(本题满分14分)如图,在三棱锥D ABC -中,ADC ABC ⊥平面平面,AD DCB ⊥平面,2,AD CD ==4,AB =M 为线段AB 的中点.(Ⅰ)求证:BC ACD ⊥平面;(Ⅱ)求二面角A CD M --的余弦值.21. (本题满分15分)已知函数21()ln 22f x x ax x =--. (Ⅰ)当3a =时,求函数()f x 的极大值;(Ⅱ)若函数()f x 存在单调递减区间,求实数a 的取值范围.22.(本题满分15分)已知抛物线2:4C x y =的焦点为F ,过点()0,1K -的直线l 与C 相交于,A B 两点,点A 关于y 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB ⋅=,求DBK ∠的平分线与y 轴的交点坐标. (第20题)ABCDM1台州市 2011学年第一学期 高三年级期末质量评估试题数 学(文)答题卷2012.01一、选择题:本大题共有10小题,每小题5分,共50分.二、填空题:本大题共有7小题,每小题4分,共28分.11.________________________ 12.________________________ 13. 14.________________________ 15.________________________ 16.________________________ 17.________________________三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效2请在各题目的答题区域内作答,超出边框限定区域的答案无效3请在各题目的答题区域内作答,超出边框限定区域的答案无效…………………………………………装……………………………………订……………………………………线……………………………………45台州市2011学年第一学期高三年级期末质量评估试题数学(文)参考答案及评分标准2012.1 一、选择题:1-10. C B A B D A A C D B 二、填空题:11.25 12.133π 13.()()()0p n m p n m m a a n a a p a a -+-+-= 14.920 15..31[,]82三、解答题: 18.(本小题14分)(I )解:2()cos 2cos f x x x x a ωωω=-+ ……………………………………1分2cos21x x a ωω=--+2sin(2)16x a πω=-+-, ………………………3分由22T ππω==,得1ω=. ………………………5分又当sin(2)16x πω-=时,max 213y a =+-=,得2a =. (7)分(Ⅱ)解:由(I )知()2sin(2)16f x x π=-+,由222()262k x k k πππππ-≤-≤+∈Z ,9分 得63k x k ππππ-≤≤+, ………………12分故()f x 的单调增区间为[,]63k k ππππ-+()k ∈Z . …………………14分 19.(本小题14分)(I )解:1112n n n b b q --==, …………2分122log 311log 2311102n n n a b n n n -=-+=-+=-, …………4分21(1)92n n n S na d n n +=+=-+.…………7分(Ⅱ)解:由2211211()()102222n n n n n n n n n S S S S S S a a dS ++++++++-----====-<,6得212n n n S S S +++<,故数列{}n S 适合条件①; …………………10分又229819()(*)24n S n n n n =-+=--+∈N ,故当4n =或5时,n S 有最大值20, 即n S ≤20,故数列{}n S 适合条件②. …………13分综上,数列{}n S 是“特界”数列. …………14分 20.(本小题14分)(Ⅰ)证:取AC 的中点O ,连接DO ,则DO AC ⊥, ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC ,∴DO ⊥BC . ………3分 又∵AD ⊥平面BCD ,∴AD ⊥BC . ………6分 ∵DO ∩AD =D ,∴BC ⊥平面ACD .…………………7分 (Ⅱ)解:取CD 的中点N ,连接,,MO NO MN ,则MO ∥BC ,∴MO ⊥平面ACD ,∴MO ⊥CD . …………………8分∵AD ⊥CD ,ON ∥AD ,∴ON ⊥CD . 又∵MO ∩ON =O ,∴CD ⊥平面MON , ∴CD ⊥MN ,∴∠MNO 是所求二面角的平面角. ………11分在Rt △MON中,12MO BC ==112ON AD ==, ∴MN =22NO MO +=3,∴cos ∠MNO =MN NO =33. ………………14分(其它解法相应给分) 21.(本题满分15分)(Ⅰ)解:23()ln 22f x x x x =--,2'321()(0)x x f x x x+-=->. ……………2分由'()0f x >,得103x <<,由'()0f x <,得13x >. ……………5分所以()y f x =存在极大值15()ln 336f =--. ……………7分(Ⅱ)解:2'21()(0)ax x f x x x +-=->,……………(第20题)O ACDMN7 8分依题意()0f x '<在(0,)+∞上有解,即2210ax x +->在(0,)+∞上有解. (9)分当0a ≥时,显然有解; ……………11分当0a <时,由方程2210ax x +-=至少有一个正根,得10a -<<; ……………14分所以1a >-. ……………15分另解:依题意()0f x '<在(0,)+∞上有解,即2210ax x +->在(0,)+∞上有解. ………9分 212x a x ->在(0,)+∞上有解,即2min 12x a x -⎛⎫> ⎪⎝⎭ , ………11分 由2min121x x -⎛⎫=- ⎪⎝⎭,得1a >-. ……………15分22.(本题满分15分)(Ⅰ)解:设()()1122,,,A x y B x y ,11(,)D x y -,l 的方程为1y kx =-,由21,4,y kx x y =-⎧⎨=⎩得2440x kx -+=, 从而124x x k +=,124x x =. …………2分直线BD 的方程为()211121y y y y x x x x --=++,即()2121144x x x y x x --=+, 令0x =,得1214x x y ==,所以点F 在直线BD 上. …………6分(Ⅱ)解:因为 ()()()()11221212,1,111FA FB x y x y x x y y ⋅=-⋅-=+-- 284k =-,故28849k -=,解得43k =±, …………9分8 所以l 的方程为4330,4330x y x y --=++=.又由(Ⅰ)得21x x -==,故直线BD的斜率为2143x x -=±, 因而直线BD33330y y -+=+-=. ……12分设DBK ∠的平分线与y 轴的交点为()0,M t ,则()0,M t 到l 及BD 的距离分别为315t + ,314t -, 由313154t t +-=,得19t =,或9t =(舍去),所以D B ∠的平分线与y轴的交点为10,9M ⎛⎫⎪⎝⎭. ……15分。
2022版新教材高考数学一轮复习课时质量评价60事件的独立性条件概率与全概率公式含解析新人教A版20
课时质量评价(六十)(建议用时:45分钟) A 组 全考点巩固练1.某个电路开关闭合后会出现红灯或绿灯闪烁.已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110 B .15 C .25 D .12C 解析:设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B .由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.2.(2020·某某二中高三教学质量检测)据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .0.19A 解析:设“连续熬夜48小时未诱发心脏病”记为事件A ,“继续连续熬夜24小时未诱发心脏病”记为事件B .由题意得,P (A )=1-0.055=0.945,P (AB )=1-0.19=0.81,所以他还能继续连续熬夜24小时不诱发心脏病的概率P (B |A )=P (AB )P (A )=0.810.945=67.故选A .3.(2020·某某市第四中学高三一模)两个实习生每人加工一个零件.加工为一等品的概率分别为56,34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A .12B .13C .512D .16B 解析:记“两个零件中恰有一个一等品”的事件为A ,“仅第一个实习生加工一等品”为事件A 1,“仅第二个实习生加工一等品”为事件A 2,则P (A )=P (A 1)+P (A 2)=56×14+16×34=13.故选B .4.(2020·某某市高三三模)甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5.受心理方面的影响,前一场的比赛结果会对甲的下一场比赛产生影响.如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3∶1取得胜利的概率为( )A .0.162B .0.18C .0.168D .0.174D 解析:设“甲在第一、二、三、四局比赛中获胜”分别为事件A 1,A 2,A 3,A 4. 由题意得,甲要以3∶1取得胜利可能是A 1A 2A 3A 4,A 1A 2A 3A 4,A 1A 2A 3A 4, 所以甲以3∶1取得胜利的概率p =P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)=0.5×0.6×0.3×0.6+0.5×0.4×0.5×0.6+0.5×0.4×0.5×0.6=0.174.故选D . 5.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备.他们购买该机床设备的概率分别为12,13,14,且三家企业的购买结果相互之间没有影响,则三家企业中恰有一家购买该机床设备的概率是( )A .2324B .524C .1124D .124C 解析:设“甲企业购买该机床设备”为事件A ,“乙企业购买该机床设备”为事件B ,“丙企业购买该机床设备”为事件C ,则P (A )=12,P (B )=13,P (C )=14,则P (A )=1-P (A )=1-12=12,P (B )=1-P (B )=1-13=23,P (C )=1-P (C )=1-14=34.设“三家企业中恰有一家购买该机床设备”为事件D ,则P (D )=P (A B C )+P (A B C )+P (A B C )=12×23×34+12×13×34+12×23×14=1124.6.(2020·某某市高三月考)某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别为23,34.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为( )A .12B .23C .56D .112C 解析:设A i =“第i 次通过第一关”,B i =“第i 次通过第二关”,其中i =1,2. 由题意知选手能进入第三关的事件为A 1B 1+A 1A 2B 1+A 1B 1B 2+A 1A 2B 1B 2, 所以选手能进入第三关的概率P (A 1B 1+A 1A 2B 1+A 1B 1B 2+A 1A 2B 1B 2)=23×34+13×23×34+23×14×34+13×23×14×34=56.故选C . 7.(2020·某某市高三模拟)概率论起源于博弈游戏.17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是( )A .甲48枚,乙48枚B .甲64枚,乙32枚C .甲72枚,乙24枚D .甲80枚,乙16枚 C 解析:根据题意,甲、乙两人每局获胜的概率均为12,假设两人继续进行比赛,甲获取96枚金币的概率p 1=12+12×12=34,乙获取96枚金币的概率p 2=12×12=14,则甲应该获得96×34=72(枚)金币;乙应该获得96×14=24(枚)金币.故选C .8.已知事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=________,P (A B )=________.1213解析:由题意得 ⎩⎪⎨⎪⎧P (A )·P (B )=16,①P (B )·P (C )=18,②P (A )·P (B )·P (C )=18.③由③÷①得P (C )=34,所以P (C )=1-P (C )=1-34=14.将P (C )=14代入②得P (B )=12,所以P (B )=1-P (B )=12.由①可得P (A )=13,所以P (A B )=P (A )·P (B )=23×12=13.9.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7.飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6.若三人都击中,飞机必定被击落.求飞机被击落的概率.解:设B ={飞机被击落},A i ={飞机被i 个人击中},i =1,2,3,则B =A 1B +A 2B +A 3B . 依题意得,P (B |A 1)=0.2,P (B |A 2)=0.6, P (B |A 3)=1.由全概率公式P (B )=P (A 1)P (B |A 1)+P (A 2)·P (B |A 2)+P (A 3)P (B |A 3).为求P (A i ),设H 甲={飞机被甲击中},H 乙={飞机被乙击中},H 丙={飞机被丙击中}. 可求得P (A 1)=P (H 甲H乙H 丙+H 甲H 乙H 丙+H甲H 乙H 丙),P (A 2)=P (H 甲H 乙H 丙+H 甲H 乙H 丙+H 甲H 乙H 丙),P (A 3)=P (H 甲H 乙H 丙).将数据代入计算得P (A 1)=0.36,P (A 2)=0.41,P (A 3)=0.14.于是P (B )=P (A 1)P (B |A 1)+P (A 2)·P (B |A 2)+P (A 3)P (B |A 3)=0.36×0.2+0.41×0.6+0.14×1=0.458.即飞机被击落的概率为0.458.B 组 新高考培优练10.(2020·某某五中高三月考)在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )A .13B .29C .49D .827A 解析:若顺时针方向跳的概率为p ,则逆时针方向跳的概率为2p ,可得p +2p =3p=1,解得p =13,即顺时针方向跳的概率为13,逆时针方向跳的概率为23.若青蛙在A 叶上,则跳3次之后停在A 叶上,满足3次逆时针或者3次顺时针.①若先按逆时针开始,即A →B →C →A ,则对应的概率为23×23×23=827;②若先按顺时针开始,即A →C →B →A ,则对应的概率为13×13×13=127.所以,所求概率为827+127=13.故选A .11.(多选题)下列各对事件中,M ,N 是相互独立事件的有( )A .掷1枚质地均匀的骰子一次,事件M =“出现的点数为奇数”,事件N =“出现的点数为偶数”B .袋中有5个红球、5个黄球,除颜色外完全相同,依次不放回地摸两次,事件M =“第一次摸到红球”,事件N =“第二次摸到红球”C .分别抛掷2枚相同的硬币,事件M =“第一枚为正面”,事件N =“两枚结果相同”D .一枚硬币掷两次,事件M =“第一次为正面”,事件N =“第二次为反面” CD 解析:在选项A 中,P (MN )=0,所以M ,N 不相互独立.在选项B 中,M ,N 可能同时发生,不是相互独立事件.在选项C 中,P (M )=12,P (N )=12,P (MN )=14,P (MN )=P (M )·P (N ),因此M ,N 是相互独立事件.在选项D 中,第一次是否为正面对第二次的结果不影响,因此M ,N 是相互独立事件.故选CD .12.(多选题)(2020·某某市华侨学校模拟)甲箱中有5个红球、2个白球和3个黑球,乙箱中有4个红球、3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球、白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A .P (B )=25B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3两两互斥BD 解析:因为每次取一球,所以A 1,A 2,A 3是两两互斥的事件,故D 正确; 因为P (A 1)=510,P (A 2)=210,P (A 3)=310,所以P (B |A 1)=P (BA 1)P (A 1)=510×511510=511,故B 正确; 同理,P (B |A 2)=P (BA 2)P (A 2)=210×411210=411, P (B |A 3)=P (BA 3)P (A 3)=310×411310=411, 所以P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=510×511+210×411+310×411=922,故A ,C 错误. 故选BD .13.(多选题)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12.从两袋各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12ACD 解析:设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在选项A 中,2个球都是红球为A 1A 2,其概率为13×12=16,A 正确;在选项B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B错误;在选项C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在选项D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .14.(2020·百师联盟练习五某某卷)某学校装有两套相互独立的安全系统A ,B .若系统A 和B 至少有一套能正常运行,则认为校园处于安全防卫状态.已知系统A ,B 在任意时刻发生故障的概率分别是19,m ,要求校园在任意时刻处在安全防卫状态下的概率不小于8990,则m的最大值是( )A .18B .19C .110D .111C 解析:因为系统A ,B 在任意时刻发生故障的概率分别为19,m ,所以校园处在安全防卫状态的概率为1-19m ,则有1-19m ≥8990,得m ≤110.故选C .15.质检部门对某工厂甲车间生产的8个零件质量进行检测,零件质量(单位:克)分布的茎叶图如图所示,零件质量不超过20克的为合格.质检部门从中随机抽取4件进行检测,若至少2件合格,检测即可通过;若至少3 件合格,检测即为良好,则甲车间在这次检测通过的条件下,获得检测良好的概率为( ) A.1753B.5370C.1105D.3140A解析:设事件A表示“2件合格,2件不合格”;事件B表示“3件合格,1件不合格”;事件C表示“4件全合格”,事件D表示“检测通过”,事件E表示“检测良好”,则P(D)=P(A)+P(B)+P(C)=C24C24C48+C34C14C48+C44C48=5370.所以P(E|D)=P(ED)P(D)=P(B)+P(C)P(D)=C34C14C48+C44C485370=1753.16.某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.解:(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1-P(A B C)=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3, 则P (ξ=0)=P (A B C )=13×14×25=130;P (ξ=1)=P (A B C )+P (A B C )+P (A B C )=23×14×25+13×34×25+13×14×35=1360; P (ξ=2)=P (AB C )+P (A B C )+P (A BC )=23×34×25+23×14×35+13×34×35=920; P (ξ=3)=P (ABC )=23×34×35=310.所以ξ的分布列为。
浙江省台州市2012届高三数学期末质量评估试题 理 新人教A版
1台州市 2011学年第一学期 高三年级期末质量评估试题数 学(理科)2012.01本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.Ⅰ 选择题部分(共50分)参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π=()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高一、选择题(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.) 1.若,31cos =α则=α2cos (A )31(B )31-(C )97(D )97-2.在复平面内,复数ii-1对应的点位于 (A )第一象限(B )第二象限(C )第三象限(D )第四象限3.“322<<x ”是“2<x ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件4. 已知集合⎭⎬⎫⎩⎨⎧∈=-=R y x y x y x A ,,149),(22,⎭⎬⎫⎩⎨⎧∈=-=R y x y x y x B ,,123),(,则B A 中元素个数为2(A )0(B )1(C )2(D )35. 若如图的程序框图输出的4=y ,可输入的x 的值的个数为 (A )1 (B )2 (C )3(D )46.设n m ,是不同的直线,βα,是不同的平面, 下列命题中正确的是(A )若m ∥α,β⊥n ,n m ⊥,则α⊥β (B )若m ∥α,β⊥n ,n m ⊥,则α∥β (C )若m ∥α,β⊥n ,m ∥n ,则α⊥β (D )若m ∥α,β⊥n ,m ∥n ,则α∥β7. 设实数y x ,满足⎪⎩⎪⎨⎧≤+≥-≥,4,,2x y x y x y 则||4x y -(A )[]6,8--(B )]4,8[-(C 8. 已知右图是下列四个函数之一的图象,这个函数是(A )11ln)(-+=x x x f (B )11ln )(+-=x x x f(C )1111)(-++=x x x f (D )1111)(--+=x x x f9.有9 名翻译人员,其中6人只能做英语翻译,2语翻译也可做韩语翻译. 要从中选5人分别接待5韩语翻译,三个需要英语翻译,则不同的选派方法数为(A )900(B )800 (C )600 (D )50010.已知01221212222)a x a x a x a x ab ax n n n n n+++++=+-- ((*N n ∈,常数0>>b a ).设n n a a a T 220+++= ,1231-+++=n n a a a R ,则下列关于正整数n 的不等式中,解集是无限集的是24x y =-3C(A )n n R T < (B )n n R T 1.1> (C )n n T R 9.0< (D )n n T R 99.0>Ⅱ 非选择题部分(共100分)二、填空题(本题共7小题,每小题4分,共28分. 将答案直接答在答题卷上指定的位置) 11.要得到函数πsin(2)3y x =-的图象,可将函数x y 2sin =的图象向右平移 个单位. 12. 右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是 .13.“如果数列{}n a ()0>n a 是等比数列,那么{}n a lg 必为等差数列”,类比这个结论,可猜想:如果数列{}n b 是等差数列, 那么 .14.一个袋中有大小、质地相同的标号为3,2,1的三个小球.某人做如下游戏:每次从袋中摸一个小球,记下标号然后放回,共摸球3次.若拿出球的标号是奇数,则得1分,否则得0分,则3次所得分数之和的数学期望是 .15.已知点P 是椭圆1422=+y x 与双曲线1222=-y x 的一个交点,21,F F 是椭圆的左右焦点,则=∠21cos PF F .16.已知函数⎪⎩⎪⎨⎧≥+<+-=,0),1ln(,0,21)(2x x x x x x f 若kx x f -)(有三个零点,则k 的取值范围为 .17.如图,扇形AOB 的弧的中点为M ,动点D C ,OB OA ,上,且.BD OC =若1=OA ,120AOB ︒∠=,则的取值范围是 .三、解答题(本题共5题,共72分;要求写出详细的演算或推理过程)18.(本题满分14分)已知函数()x x x x f cos cos sin 3)(-=.(Ⅰ)求)(x f 的最小正周期和最大值;(Ⅱ)在△ABC 中,c b a ,,分别为角C B A ,,的对边,S 为△ABC 的面积. 若21)(=A f ,32=a ,=S 32,求c b ,. 俯视图 (第12题) (第17题)419.(本题满分14分)已知数列}{n a ,{}n b 满足:1,2121==a a ,)2(4111≥-=-+n a a a n n n ;nn n b a 2=(*N n ∈).(Ⅰ)计算321,,b b b ,并求数列{}n b ,}{n a 的通项公式; (Ⅱ)证明:对于任意的3>n ,都有12345n a a a a a a ++>+++.20.(本题满分14分)如图,在三棱锥ABC P -中,CB CA CP ,, 两两垂直且相等,过PA 的中点D 作平面α∥BC ,且α分别交PC PB ,于N M ,,交AC AB ,的延长线于,E F .(Ⅰ)求证:⊥EF 平面PAC ;(Ⅱ)若BE AB 2=,求二面角N DM P --的余弦值.21.(本题满分15分)如图,在y 轴右侧的动圆⊙P 与⊙1O :1)1(22=+-y x 外切,并与y 轴相切. (Ⅰ)求动圆的圆心P 的轨迹Γ的方程; (Ⅱ)过点P 作⊙2O :1)1(22=++y x 的两条切线,分别交y 轴于B A ,两点,设AB 中点为()m M ,0.求m 的取值范围.22.(本题满分15分) 已知函数.)1ln()(xx x f +=(Ⅰ)证明:若,1≥x 则 ()ln 2f x ≤;(Ⅱ)如果对于任意,0>x px x f +>1)(恒成立,求p 的最大值.第20题1台州市 2011学年第一学期 高三年级期末质量评估试题 数 学(理)答题卷 2012.01一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填入下表内)二、填空题(本大题共7小题,每小题4分,共28分)11.________________________ 12.________________________ 13.14.________________________ 15. 16. 17. 三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤)2请在各题目的答题区域内作答,超出边框限定区域的答案无效3请在各题目的答题区域内作答,超出边框限定区域的答案无效45台州市 2011学年第一学期 高三年级期末质量评估试题理科数学答案及评分标准一、 选择题 DBABD CBCAD 二、 填空题 11.6π 12.316 {}13.10nb 为等比数列14. 2 15.13- 16.1,12⎛⎫ ⎪⎝⎭ 17. 31,82⎡⎤⎢⎥⎣⎦说明:第11题可填)(6N k k ∈+ππ中的任何一个值;第13题的数列可以填{}n b a )1,0(≠>a a 中的任意一个.三、 解答题18题 (Ⅰ)()x x x x f cos cos sin 3)(-=22cos 12sin 23x x +-=212cos 212sin 23--=x x 即=)(x f 21)62sin(--πx ,…………………………………………………………………4分 所以,)(x f 的最小正周期为π,最大值为.21………………………………………………6分(Ⅱ)由21)(=A f 得1)62sin(=-πA ,又,0π<<A 3π=A , ………8分由32=a ,=S 32利用余弦定理及面积公式得(2222cos ,31sin 23b c bc bc ππ⎧+-⋅=⎪⎪⎨⎪=⎪⎩……………………………………………………………12分 解之得2,4==c b 或.4,2==c b …………………………………………………………14分 19题(Ⅰ).7,4,1321===b b b …………………………………………………………3分 将n n n b a ⋅=21,11121+++⋅=n n n b a ,11121---⋅=n n n b a 代入1141-+-=n nn a a a 中化简得: n n n b b b 211=++-可见,数列{}n b 是等差数列. …………………………………………5分由4,121==b b 知其公差为3,故.23-=n b n …………………………………………………………………………………6分nn n n n a n a 223232-=⇒-=. …………………………………………………………7分6(Ⅱ)设数列}{n a 的前n 项和为.n S 则nn n S 22327242132-++++=, 132223253242121+-+-+++=n n n n n S ,……………………………9分 相减可得:23111113333222222231[1()]13242.2212n n n n n n S n +-+-=++++---=+-- nn n S 2434+-=,………………………………………………………………………12分可见,对于任意的*N n ∈,总有.4<n S 但2819321>=++a a a ,故当3>n 时 .232154a a a a a a n ++<<+++ ……………………………………………………14分20题(Ⅰ)证明:由AC BC PC BC ⊥⊥,可知: ⊥BC 平PAC ;…………………………3分 又因为平面α∥BC ,平面AEF 过BC 且与平面α交于EF ,所以EF ∥BC .……6分 故⊥EF 平面PAC . ……………………………………………………………………7分 (Ⅱ)以CP CB CA ,, 分别为z y x ,,轴建立空间直角坐标系,并设2=BC .则)0,0,2(A ,)0,2,0(B ,)2,0,0(P ;设平面PAB 的法向量),,(1111z y x n =, 由01=⋅PA n ,01=⋅PB n 可求得)1,1,1(1=n ,……………………………………………10分 )1,0,1(D ,)0,3,1(-E ,).0,0,1(-F设平面DEF 的法向量),,(2z y x n =,由02=⋅DE n ,02=⋅FE n 可得)2,0,1(2-=n ,……………………………13分 .1515==二面角N DM P --的余弦值为.1515…………………………………………14分7注:几何解法相应给分. 21题(Ⅰ)由题意,点P 到点)0,1(的距离等于它到直线1-=x 的距离,故Γ是抛物线,方程为x y 42=(0≠x ).………………………………………………………………………5分注:由1)1(22+=+-x y x 化简同样给分;不写0≠x 不扣分.(Ⅱ)设),4(2t t P (0≠t ),切线斜率为k , 则切线方程为)4(2t x k t y -=-,即042=-+-kt t y kx .…………………………6分由题意,1)1(22=++y x 的圆心)0,1(-到切线的距离11422=+-+-kkt t k ,……………………………………………………………………8分两边平方并整理得:01)4(8)8(22222=-++-+t k t t k t t .……………………9分该方程的两根21,k k 就是两条切线的斜率,由韦达定理:)8()4(822221++=+t t t t k k . ①……………………………………………………………………………………………11分另一方面,在)4(21t x k t y -=-,)4(22t x k t y -=-中令0=x 可得B A ,两点的纵坐标1214k t t y -=,2224k t t y -=,故)(8221221k k t t y y m +-=+=, ② ……………………………………………………………………………………………13分 将①代入②,得842+=t tm tt 4+= ,………………………………………………14分故m 的取值范围是.0,2222≠≤≤-m m ……………………………………15分822题(Ⅰ)函数x x x f )1ln()(+=的导函数为2/)1ln(1)(xx x xx f +-+=, …………1分在[)+∞,0上考虑函数)1ln(1)(x x x x g +-+=,由011)1(1)(2/≤+-+=xx x g , 可知)(x g 单调递减,结合0)0(=g ,当0>x 时,)(x g 0<,所以,0)(/<x f ,xx x f )1ln()(+=在()+∞,0单调递减 .…………………………………………………3分 2ln )1(=f ,∴若,1≥x 则 .2ln )(≤x f …………………………………………………………………5分(Ⅱ) 要使得对任意,0>x px x f +>1)(即px xx +>+1)1ln(恒成立,首先由熟知的不等式x x <+)1ln(知0<p …………………………………………………………………7分 令2)1ln()(px x x x h --+=,则只要0)(>x h 恒成立.………………………………8分 以下在[)+∞,0上考虑)(x h .xpp x px px xx h +++-=--+=1)212(22111)(/.………………………………………10分这里0<p ,故若012>+p ,则在区间⎪⎪⎭⎫ ⎝⎛+-p p 212,0内,0)(/<x h ,)(x h 单调递减,但,0)0(=h 所以在区间⎪⎪⎭⎫⎝⎛+-p p 212,0内,0)(<x h ,这与题意不符;…………………12分 反之,若012≤+p ,则当0>x 时恒有0)(/>x h ,)(x h 单调递增,但,0)0(=h 所以对任意,0>x 0)(>x h ,也就是px xx +>+1)1ln(恒成立. …………………………………14分 综上所述,使得对任意,0>x px x f +>1)(恒成立的最大的.21-=p …………………15分9。
高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).
第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。
(新课标)高考数学模拟系列(二)试题 理 新人教A版
12023年高考模拟系列试卷(二) 数学试题【新课标版】(理科)1.本试卷分第一卷(阅读题)和第二卷(表达题)两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
第一卷(选择题,共60分)一、此题共12小题,每题5分,共60分,在每题给出的四个选项中只有一个选项是符合题目要求的1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,那么()RM N ⋂等于( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、假设sin601233,log cos60,log tan 30a b c ===,那么( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,那么41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,那么点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否认为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤- 7、设a b <,函数()()2y x a x b =--的图象可能是( )28、程序框图如下:如果上述程序运行的结果S 的值比2023小,假设使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,那么此几何体的体积是( )A .1533π+B .21533π+C .3033π+D .43033π+ 10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A .5-1B .355 C .3515- D .523-1 12、已知椭圆C :22221(0)x ya b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,假设A 为线段PQ 的靠近P 的三等分点,那么椭圆的离心率为 ( )3A .23B .33C .53D .73第二卷(非选择题,共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。
2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册(最新整理)
2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A 版必修第二册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册的全部内容。
章末综合检测(九)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层随机抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=()A.96 B.72C.48 D.36解析:选B。
由题意得错误!n-错误!n=8,所以n=72。
故选B.2.从某一总体中抽取一个个体数为200的样本,得到分组与频数如下:[10,15),6;[15,20),8;[20,25),13;[25,30),35;[30,35),46;[35,40),34;[40,45),28;[45,50),15;[50,55),10;[55,60],5。
则样本在[35,60]上的频率是( )A.0。
69 B.0.46C.1 D.不存在解析:选B.由题可知,样本在[35,60]上的频率应为(34+28+15+10+5)÷200=0。
46.3.2019年高考某题的得分情况如下:得分(分)01234百分率(%)37.08。
期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册
模块一复习测试题二一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是46.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=7.已知cos()3παα+=为锐角),则sin (α= )A B C D8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为()A .43π B .2π C .83π D .73π 二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+-三.填空题(共4小题)13.化简32a b-= (其中0a >,0)b >.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 . 15.若1lgx lgy +=,则25x y+的最小值为 . 16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 .四.参考解答题(共8小题) 17.已知0x >,0y >,且440x y +=. (Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x=>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围; (Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围. 19.解方程 (1)231981xx-=(2)444log (3)log (21)log (3)x x x -=+++20.设函数33()sin cos 2323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示.(Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.22.已知函数2()3sin 2cos 12xf x x =-+. (Ⅰ)若()23()6f παα=+,求tan α的值;(Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围.模块一复习测试题二参考正确答案与试题详细解析一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉【详细分析】利用元素与集合的关系直接求解.【参考解答】解:集合{|15}{0A x N x =∈=,1,2,3},a =a A ∴∉.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【详细分析】根据充分必要条件的定义以及基本不等式的性质判断即可. 【参考解答】解:1a >,1b >, 2log 0a ∴>,2log 0b >,2a b ab +,4a b +,故4ab ,222222222log log log ()log 4log log ()[]()1222a b ab a b +⋅==,反之,取16a =,152b =,则1522224log log log 16log 215a b ⋅=⋅=<, 但4a b +>,故4a b +是22log log 1a b ⋅的充分不必要条件, 故选:A .【点评】本题考查了充分必要条件,考查基本不等式的性质,是一道基础题.3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞【详细分析】直接利用命题的否定和一元二次方程的解的应用求出结果.【参考解答】解:命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则命题“[0x ∃∈,3],使得220x x m --= “成立是真命题, 故222(1)1m x x x =-=--. 由于[0x ∈,3],所以[1m ∈-,3]. 故选:C .【点评】本题考查的知识要点:命题的否定的应用,一元二次方程的根的存在性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]【详细分析】判断出在区间[3,5)上单调递增,(3)0(5)0f f ⎧⎨>⎩得出即1090m m -⎧⎨->⎩即可.【参考解答】解:函数2()44f x x x m =--+,对称轴2x =,在区间[3,5)上单调递增 在区间[3,5)上有零点,∴(3)0(5)0f f ⎧⎨>⎩即1090m m -⎧⎨->⎩ 解得:19m <, 故选:C .【点评】本题考查了二次函数的单调性,零点的求解方法,属于中档题. 5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是4【详细分析】直接利用不等式的基本性质和关系式的恒等变换的应用求出结果. 【参考解答】解:已知2x >,所以20x ->,故11222(2)2422y x x x x x =+=-++-=--(当3x =时,等号成立). 故选:B .【点评】本题考查的知识要点:不等式的基本性质,关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=【详细分析】设(,)P x y 为()y f x =的反函数图象上的任意一点,则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,(,)P y x '关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,代入详细解析式变形可得.【参考解答】解:设(,)P x y 为()y f x =的反函数图象上的任意一点, 则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,又函数()y f x =的图象与函数12x y +=的图象关于直线0x y +=对称,(,)P y x ∴'关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,∴必有12x y -+-=,即12x y -+=-,()y f x ∴=的反函数为:12x y -+=-;故选:C .【点评】本题考查反函数的性质和对称性,属中档题7.已知cos()3παα+=为锐角),则sin (α= )A B C D 【详细分析】由11sin sin[()]33ααππ=+-,结合已知及两角差的正弦公式即可求解.【参考解答】解:cos()3παα+=为锐角),∴1sin()3απ+=,则11111sin sin[()]sin())33233ααππαπαπ=+-=++,1(2=-,=故选:C .【点评】本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为( )A .43π B .2π C .83π D .73π 【详细分析】把已知函数详细解析式利用辅助角公式化积,求得函数值域,再由a 的范围可知方程()f x a =有两根1x ,2x ,然后利用对称性得正确答案.【参考解答】解:1()sin 2(sin )2sin()23f x x x x x x π=+=+=+,[0x ∈,2]π,()[2f x ∴∈-,2],又01a <<,∴方程()f x a =有两根1x ,2x ,由对称性得12()()33322x x πππ+++=,解得1273x x π+=.故选:D .【点评】本题考查两角和与差的三角函数,考查函数零点的判定及应用,正确理解题意是关键,是基础题.二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆【详细分析】利用子集、并集、交集的定义直接求解. 【参考解答】解:集合M N ⊆,∴在A 中,M N M =,故A 错误;在B 中,M N N =,故B 正确;在C 中,()M M N ⊆,故C 错误;在D 中,M N N N =⊆,故D 正确.故选:BD .【点评】本题考查了子集、并集、交集定义等基础知识,考查运算求解能力,属于基础题. 10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 【详细分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【参考解答】解:不等式2a b ab +恒成立的条件是0a ,0b ,故A 不正确;当a 为负数时,不等式12a a+成立.故B 正确; 由基本不等式可知C 正确;对于212144()(2)4428y x y x x y x y x y x y x y+=++=+++=, 当且仅当4y x x y =,即12x =,14y =时取等号,故D 正确. 故选:BCD .【点评】本题考查基本不等式的应用,要注意应用条件的检验.11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根【详细分析】根据函数的奇偶性判断A ,根据函数的单调性判断B ,结合图象判断C ,D 即可.【参考解答】解:对于||:()()1x A f x f x x --=≠--+,()f x 不是奇函数,故A 错误; 对于:0B x 时,1()111x f x x x ==-++在[0,)+∞递增,故B 正确; 对于C ,D ,画出函数()f x 和21y x =-的图象,如图示:,显然函数()f x 的值域是(,1)[0-∞-,)+∞,故C 正确,()f x 和21y x =-的图象有3个交点,故D 错误;故选:BC .【点评】本题考查了函数的单调性,奇偶性问题,考查数形结合思想,转化思想,是一道中档题.12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+- 【详细分析】求出11sin()6π-的值.利用二倍角的余弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的正弦求值判断C ;利用两角和的正切求值判断D .【参考解答】解:111sin()sin(2)sin 6662ππππ-=-+==. 对于A ,22cos 1531cos30o -=︒=对于B ,1cos18cos42sin18sin 42cos(1842)cos602︒︒-︒︒=︒+︒=︒=; 对于C ,12sin15sin 752sin15cos15sin302︒︒=︒︒=︒=; 对于D ,tan30tan15tan(3015)tan 4511tan30tan15o oo o+=︒+︒=︒=-.∴与11sin()6π-的值相等的是BC . 故选:BC .【点评】本题考查三角函数的化简求值,考查诱导公式、倍角公式及两角和的三角函数,是基础题.三.填空题(共4小题)13.化简32a b -= a (其中0a >,0)b >.【详细分析】根据指数幂的运算法则即可求出.【参考解答】解1311132322()b b bb ⨯=== 原式2111()3322a b a ---==,故正确答案为:a .【点评】本题考查了指数幂的运算,属于基础题.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 {1-,0,1} .【详细分析】先利用分离常数法将函数化为92()51x f x e =-+,进而求出()f x 的值域,再根据[]x 的定义可以求出[()]f x 的所有可能的值,进而得到函数的值域.【参考解答】解:212(1)212192()215151551x x x x x x e e f x e e e e+-=-=-=--=-++++, 0x e >,11x e ∴+>,∴2021x e <<+,∴19295515x e -<-<+, 即19()55f x -<<,①当1()05f x -<<时,[()]1f x =-, ②当0()1f x <时,[()]0f x =,③当91()5f x <<时,[()]1f x =, ∴函数[()]y f x =的值域是:{1-,0,1},故正确答案为:{1-,0,1}.【点评】本题主要考查了新定义运算的求解,关键是能通过分离常数的方式求得已知函数的值域,是中档题.15.若1lgx lgy +=,则25x y+的最小值为 2 . 【详细分析】根据对数的基本运算,结合不等式的解法即可得到结论.【参考解答】解:1lgx lgy +=,1lgxy ∴=,且0x >,0y >,即10xy =, ∴25251022210x y x y +=, 当且仅当25x y =,即2x =,5y =时取等号, 故正确答案为:2【点评】本题主要考查不等式的应用,利用对数的基本运算求出10xy =是解决本题的关键,比较基础.16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 16- .【详细分析】直接利用三角函数的性质和关系式的恒等变换的应用及二次函数的性质的应用求出结果.【参考解答】解:若42x ππ<<,则tan (1,)x ∈+∞, 另22tan tan 21tan x x x=-, 设tan x t =,(1)t >, 则422222244416111111()()24t y t t t t ===-----,当且仅当t =时,等号成立.故正确答案为:16-.【点评】本题考查的知识要点:三角函数关系式的变换,关系式的变换和二次函数的性质,主要考查学生的运算能力和转换能力及思维能力,属于中档题.四.参考解答题(共8小题)17.已知0x >,0y >,且440x y +=.(Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 【详细分析】(1)由已知得,40424x y xy =+=解不等式可求,(2)由题意得,11111()(4)40x y x y x y +=++,展开后结合基本不等式可求. 【参考解答】解:(1)0x >,0y >,40424x y xy ∴=+=当且仅当4x y =且440x y +=即20x =,5y =时取等号,解得,100xy ,故xy 的最大值100.(2)因为0x >,0y >,且440x y +=.所以111111419()(4)(5)(540404040y x x y x y x y x y +=++=+++=, 当且仅当2x y =且440x y +=即403x =,203y =时取等号, 所以11x y +的最小值940. 【点评】本题考查了基本不等式在求最值中的应用,属于中档题18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x =>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围;(Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围.【详细分析】(Ⅰ)对式子变形后,利用基本不等式即可求得结果;(Ⅱ)先由题设把问题转化为:2210x ax --对于任意的[0x ∈,2]恒成立,构造函数2()21g x x ax =--,[0x ∈,2],利用其最大值求得a 的取值范围;(Ⅲ)由题设把问题转化为:方程21a x =-在[0a ∈,2]有解,解出x 的范围.【参考解答】解:(Ⅰ)当2a =时,2()41111()22212222f x x x y x x x x -+===+-⨯-=-(当且仅当1x =时取“= “),1min y ∴=-;(Ⅱ)由题意知:221x ax a a --+对于任意的[0x ∈,2]恒成立,即2210x ax --对于任意的[0x ∈,2]恒成立,令2()21g x x ax =--,[0x ∈,2],则(0)10(2)340g g a =-⎧⎨=-⎩,解得:34a , a ∴的取值范围为3[4,)+∞; (Ⅲ)由()2f x ax =-可得:210x a -+=,即21a x =-, [0a ∈,2],2012x ∴-,解得:11x -,即x 的取值范围为[1-,1].【点评】本题主要考查基本不等式的应用、函数的性质及不等式的解法,属于中档题.19.解方程 (1)231981x x -= (2)444log (3)log (21)log (3)x x x -=+++【详细分析】(1)直接利用有理指数幂的运算法则求解方程的解即可.(2)利用对数运算法则,化简求解方程的解即可.【参考解答】解:(1)231981x x -=,可得232x x -=-,(2分) 解得2x =或1x =;(4分)(2)444log (3)log (21)log (3)x x x -=+++,可得44log (3)log (21)(3)x x x -=++,3(21)(3)x x x ∴-=++,(2分)得4x =-或0x =,经检验0x =为所求.(4分)【点评】本题考查函数的零点与方程根的关系,对数方程的解法,考查计算能力.20.设函数3()cos 323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值. 【详细分析】(1)利用辅助角公式化积,再由周期公式求周期;(2)由对称性求得()g x 的详细解析式,再由x 的范围求得函数最值.【参考解答】解:(1)3()cos sin()32333x x f x x ππππ=-=-. ()f x ∴的最小正周期为263T ππ==;(2)函数()y g x =与()y f x =的图象关于x 轴对称,()()3sin()33x g x f x ππ∴=-=-. [0x ∈,3]2,∴[333x πππ-∈-,]6π, sin()[33xππ∴-∈,1]2,()[g x ∈,3]2. ∴当[0x ∈,3]2时,()y g x =的最大值为32. 【点评】本题考查sin()y A x ωϕ=+型函数的图象和性质,考查三角函数最值的求法,是中档题.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示. (Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.【详细分析】(Ⅰ)由函数的图象的顶点坐标求出A ,B ,由周期求出ω,由特殊点的坐标求出ϕ的值,可得函数的详细解析式,再根据余弦函数的图象的对称性,得出结论. (Ⅱ)由题意利用函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,得出结论.【参考解答】解:(Ⅰ)由函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象知: 1(3)22A --==,1(3)12B +-==-,72212T πππωω-==⇒=, ()2cos(2)1f x x ϕ∴=+-,把点(,1)12π代入得:cos()16πϕ+=, 即26k πϕπ+=,k Z ∈. 又||2πϕ<,∴6πϕ=-,∴()2cos(2)16f x x π=--. 由图可知(,1)3π-是其中一个对称中心, 故所求对称中心坐标为:(,1)32k ππ+-,k Z ∈. (Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,可得1cos(2)62y x π=--的图象,再向右平移6π个单位,可得11cos(2)sin 2222y x x π=--=- 的图象, 最后将图象向上平移1个单位后得到1()sin 22g x x =+的图象. 由22222k x k ππππ-++,k Z ∈,可得增区间是[4k ππ-,]4k ππ+,当3[,]124x ππ∈时,函数的增区间为[,]124ππ. 则32[,]62x ππ∈,当22x π=即,4x π=时,()g x 有最大值为32, 当322x π=,即34x π=时,()g x 有最小值为11122-+=-. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求详细解析式,由函数的图象的顶点坐标求出A 、B ,由周期求出ω,由特殊点的坐标求出ϕ的值,余弦函数的图象的对称性.函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,属于中档题.22.已知函数2()2cos 12x f x x =-+.(Ⅰ)若()()6f παα=+,求tan α的值; (Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围. 【详细分析】(Ⅰ)利用三角恒等变换,化简()f x 的详细解析式,根据条件,求得tan α的值. (Ⅱ)根据函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的详细解析式,再利用正弦函数的定义域和值域,求得()g x 的范围,可得m 的范围.【参考解答】解:(Ⅰ)2()2cos 1cos 2sin()26x f x x x x x π-+-=-,()()6f παα=+,∴sin()6παα-=,∴1cos 2ααα-=,即cos αα-=,∴tan α=(Ⅱ)把()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象, 所以函数()g x 的详细解析式为()(2)2sin(2)6g x f x x π==-, 关于x 的方程()0g x m -=在[0,]2π上有解, 等价于求()g x 在[0,]2π上的值域, 因为02x π,所以52666x πππ--, 所以1()2g x -,故m 的取值范围为[1-,2].【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.。
高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题
期末检测试卷(B)C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝ ⎛⎭⎪⎫π6B .f ⎝⎛⎭⎪⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+64D .cos π12=cos π3-cos π4 10.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值 B .f (x )在(1,+∞)上递减且无最小值 C .f (x )在定义域内是偶函数 D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( ) A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝ ⎛⎭⎪⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎪⎫2x +π4的图象12.若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎪⎨⎪⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值X 围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x>1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值X 围.18.(12分)已知sin ⎝ ⎛⎭⎪⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.19.(12分)已知f (x )=⎩⎪⎨⎪⎧2x+1,x ≤0,log 2x +1,x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,某某数m 的取值X 围.期末检测试卷(B)1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2xx -2>1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10° =sin (40°-10°)=sin 30°=12.答案:C4.解析:∵f (2)=log 32-1<0,f (3)=log 33+27-9=19>0,∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值X 围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e=1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x . 答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3, 因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝ ⎛⎭⎪⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝ ⎛⎭⎪⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎪⎫2+π4>0,所以1>sin2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确; B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝ ⎛⎭⎪⎫0,π2,∴π2-β∈⎝ ⎛⎭⎪⎫0,π2,又α∈⎝ ⎛⎭⎪⎫0,π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝ ⎛⎭⎪⎫23x -7π2=cos 2x 3,则cos2-x 3=cos 2x 3,则y =sin ⎝ ⎛⎭⎪⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC.答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞), 由函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数, 得0<a <1.当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1,∴3π8=12·α·12,∴α=3π4. 答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝ ⎛⎭⎪⎫1x +4y (x +y )=14⎝ ⎛⎭⎪⎫5+y x +4x y ,又x >0,y >0,则y x+4xy≥2y x ·4x y =4⎝ ⎛⎭⎪⎫当且仅当y x =4x y ,即x =43,y =83时取等号, 则1x +4y ≥14×(5+4)=94. 答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数, ∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点,要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎪⎨⎪⎧6+x ≥02-x >0得,-6≤x <2;由2x>1得,x >0;∴A =[-6,2),B =(0,+∞);∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎪⎨⎪⎧a ≥0a +1≤2;解得0≤a ≤1;∴a 的取值X 围是[0,1].18.解析:(1)因为sin ⎝ ⎛⎭⎪⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25, 所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝ ⎛⎭⎪⎫β-π4=15,cos(α+β)=-13, 其中0<α<π2,0<β<π2,所以cos ⎝ ⎛⎭⎪⎫β-π4=265,sin(α+β)=223, 所以cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4=⎝ ⎛⎭⎪⎫-13×265+223×15=22-615.19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增. (2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点,结合图象得1<m ≤2. 20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x +0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5=72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52,当且仅当50010+x =10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x+(k -1)·2x =2x+(k -1)·2-x即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x, 则m ≤4-2x+2-x2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12.word- 11 - / 11 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5, 则函数y =t 2+4t -1在区间⎣⎢⎡⎦⎥⎤14,12上为增函数, ∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54. 因此,实数m 的取值X 围是⎝⎛⎦⎥⎤-∞,54; (3)f 0(x )=2x -2-x ,f 2(x )=2x +2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32, 若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t, ∵函数y =t -2t 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的取值X 围是⎣⎢⎡⎭⎪⎫16,+∞.。
2025届浙江台州市书生中学高三数学第一学期期末联考试题含解析
2025届浙江台州市书生中学高三数学第一学期期末联考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若两个非零向量a 、b 满足()()0a b a b +⋅-=,且2a b a b +=-,则a 与b 夹角的余弦值为( ) A .35B .35±C .12D .12±2.设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101,B .(]099,C .(]0100,D .()0+∞,3.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥4.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-5.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .46.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a <D .b a >7.已知点P 在椭圆τ:2222x y a b+=1(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设34PD PQ =,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =( ) A .12B.2C.2D.38.若函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,则( )A .函数()y f x =的值域是[]0,2B .点,04π⎛⎫⎪⎝⎭是()y f x =的一个对称中心 C .函数()y f x =的最小正周期是2πD .直线4x π=是()y f x =的一条对称轴9.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1B .13C .23D .4310.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2B .(]1,4C .[)2,+∞D .[)4,+∞ 11.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α12.已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为θ,且cos θ=则该双曲线的离心率为( )ABC .2D .4二、填空题:本题共4小题,每小题5分,共20分。
2020_2021学年新教材高中数学第六章计数原理章末质量检测含解析新人教a版选择性必修第三册
章末质量检测(一) 计数原理一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={1,-2,3},N ={-4,5,6,-7},若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( )A .18B .16C .14D .102.有4个不同书写形式的“迎”字和3个不同书写形式的“新”字,如果一个“迎”字和一个“新”字能配成一套,则不同的配套方法共有( )A .7种B .12种C .64种D .81种3.⎝⎛⎭⎫1x +2x 6的展开式中的常数项为( ) A .120B .160C .200D .2404.4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是( ) A .72B .96 C .144D .2405.自2020年起,山东夏季高考成绩由“3+3”组成,其中第一个“3”指语文、数学、英语3科,第二个“3”指学生从物理、化学、生物、政治、历史、地理6科中任选3科作为选考科目.某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的种数为( )A .6B .7C .8D .96.若⎝⎛⎭⎫x -a x 6的展开式中含x 32项的系数为160,则实数a 的值为( )A .2B .-2C .22D .-2 27.(x +y )(2x -y )5的展开式中x 2y 4的系数为( ) A .-40B .40 C .30D .-308.“中国梦”的英文翻译为“Chinese Dream”,其中Chinese 又可以简写为CN ,从“CN Dream”中取6个不同的字母排成一排,含有“ea”字母组合(顺序不变)的不同排列共有( )A .360种B .480种C .600种D .720种二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.给出下列四个关系式,其中正确的为( )A .n !=(n +1)!n +1B .A m n =n A m -1n -1 C .A m n =n !(n -m )!D .A m -1n -1 =(n -1)!(m -n )! 10.下列有关排列数、组合数计算正确的是( )A .C mn =A m n n !B .(n +2)(n +1)A m n =A m +2n +2C .C 23 +C 24 +C 25 +…+C 2100 =C 3101D .C n -22n -1 +C 2n -1n +1 是一个常数11.二项式⎝⎛⎭⎫x 2+1x 11的展开式中,系数最大的项为( )A .第五项B .第六项C .第七项D .第八项12.关于(a -b )11的说法,正确的是( ) A .展开式中的二项式系数之和为2048 B .展开式中只有第6项的二项式系数最大 C .展开式中第6项和第7项的二项式系数最大 D .展开式中第6项的系数最大三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.(1-2x )n 的展开式中奇数项的二项式系数之和为32,则展开式中的第4项为________. 14.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有________种不同的选法.15.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.16.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我校学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中选出四位同学组成校“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同的组队方式有________种.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某校高一年级有6个班,高二年级有7个班,高三年级有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)三个年级各选1个班的学生参加社会实践活动,有多少种不同的选法?(2)选2个班的学生参加社会实践活动,要求这2个班不同年级,有多少种不同的选法?18.(本小题满分12分)已知⎝⎛⎭⎫x -2x 10的展开式. (1)求展开式中含x 4项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,求r 的值.19.(本小题满分12分)从7名男生和5名女生中选出5人,分别求符合下列条件的选法数. (1)A ,B 必须被选出;(2)至少有2名女生被选出;(3)让选出的5人分别担任体育委员、文娱委员等5种不同职务,但体育委员由男生担任,文娱委员由女生担任.20.(本小题满分12分)已知在⎝⎛⎭⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数;(3)含x的整数次幂的项的个数.21.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个,其中红球的个数不比白球少的取法有多少种?(2)如取1个红球记2分,1个白球记1分,从口袋中取5个球,总分不小于7的取法有多少种?22.(本小题满分12分)已知函数f (x )=(1+x )n ,n ∈N *.(1)当n =8时,求展开式中系数的最大项.(2)化简C 0n 2n -1+C 1n 2n -2+C 2n 2n -3+…+C n n 2-1. (3)定义:∑i =1na i =a 1+a 2+…+a n ,化简:i =1n (i +1)C i n .章末质量检测(一)1.解析:分两类:第一类,M 中取横坐标,N 中取纵坐标,共有3×2=6个第一、二象限内的点;第二类,M 中取纵坐标,N 中取横坐标,共有2×4=8个第一、二象限内的点.由分类加法计数原理,知共有6+8=14个不同的第一、二象限内的点.故选C.答案:C2.解析:要完成配套,分两步:第一步,取“迎”字,有4种不同取法;第二步,取“新”字,有3种不同取法,故有4×3=12种不同的配套方法.故选B.答案:B3.解析:⎝⎛⎭⎫1x +2x 6的展开式的通项为T k +1=C k 6 ·⎝⎛⎭⎫1x 6-k (2x )k =2k C k 6 x 2k -6,令2k -6=0,解得k =3,所以展开式中的常数项为23×C 36 =160.故选B.答案:B4.解析:从4位男生中选2位捆绑在一起,和剩余的2位男生插入到2位女生所形成的3个空隙中,所以共有A 24 A 22 A 33 =144种不同的排法.故选C.答案:C5.解析:某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的种数为C 23 C 13 =9种.故选D.答案:D6.解析:由二项式定理得展开式的通项T k +1=C k 6x6-k⎝⎛⎭⎫-a x k=C k 6 (-a )k x 6-32k ,令6-32k =32,得k =3,由C 36 (-a )3=-20a 3=160,得a =-2.故选B. 答案:B7.解析:(2x -y )5的展开式的通项为C k 5 (2x )5-k (-y )k =25-k (-1)k C k 5x 5-k y k .令5-k =1,得k =4,则x ·2·C 45 xy 4=10x 2y 4;令5-k =2,得k =3,则y ·22·(-1)·C 35 x 2y 3=-40x 2y 4.所以(x +y )(2x -y )5的展开式中x 2y 4的系数为10-40=-30.故选D. 答案:D8.解析:从其他5个字母中任取4个,然后与“ea ”进行全排列,共有C 45 A 55 =600种,故选C.答案:C9.解析:由A m n =n !(n -m )!可知:A m -1n -1=(n -1)!(n -m )!,故D 不正确.A 、B 、C 均正确.故选ABC.答案:ABC10.解析:A 错,A m n =C mn ·m !;B 正确;C 错,应为C 3101 -1;D 正确,由组合数定义可得⎩⎪⎨⎪⎧0≤n -2≤2n -1 (ⅰ)0≤2n -1≤n +1 (ⅱ)由(ⅰ)得n ≥2,由(ⅱ)得12≤n ≤2,所以n =2.所以C n -22n -1 +C 2n -1n +1 =C 03 +C 33 =2.所以B 、D 正确.答案:BD11.解析:二项式⎝⎛⎭⎫x 2+1x 11的展开式中,每项的系数与二项式系数相等,共有12项,所以系数最大的项为第六项和第七项.故选BC.答案:BC12.解析:(a -b )11的展开式中的二项式系数之和为211=2 048,所以A 正确;因为n =11为奇数,所以展开式中有12项,中间两项(第6项和第7项)的二项式系数相等且最大,所以B 不正确,C 正确;展开式中第6项的系数为负数,不是最大值,所以D 不正确.故选AC.答案:AC13.解析:∵(1-2x )n 的展开式中奇数项的二项式系数之和为32,∴2n -1=32,即n =6,∴(1-2x )6展开式中的第4项为T 4=C 36 13(-2x )3=-160x 3. 答案:-160x 314.解析:可以分为三类,第一类,让两项工作都能胜任的青年从事英语翻译工作,有C 24 C 23 种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C 34 C 13 种选法;第三类,两项工作都能胜任的青年不从事任何工作,有C 34 C 23 种选法.根据分类加法计数原理知,一共有C 24 C 23 +C 34 C 13 +C 34 C 23 =42种不同的选法.答案:4215.解析:该二项展开式的第k +1项为T k +1=C k 9 (2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.答案:162 516.解析:从五人中选四人有C 45 =5种选择方法,分类讨论:若所选四人为甲、乙、丙、丁,则有A 22 ×A 22 =4种组队方式;若所选四人为甲、乙、丙、戊,则有C 12 ×C 12 ×A 22 =8种组队方式;若所选四人为甲、乙、丁、戊,则有C 12 ×C 12 ×A 22 =8种组队方式; 若所选四人为甲、丙、丁、戊,则有A 22 =2种组队方式; 若所选四人为乙、丙、丁、戊,则有A 22 =2种组队方式.由分类加法计数原理得,不同的组队方式有4+8+8+2+2=24种. 答案:2417.解析:(1)分三步:第1步,从高一年级选1个班,有6种不同的选法;第2步,从高二年级选1个班,有7种不同的选法;第3步,从高三年级选1个班,有8种不同的选法,由分步乘法计数原理可得,不同的选法种数为6×7×8=336.(2)分三类,每类又分两步:第1类,从高一、高二两个年级各选1个班,有6×7种不同的选法;第2类,从高一、高三两个年级各选1个班,有6×8种不同的选法;第3类,从高二、高三两个年级各选1个班,有7×8种不同的选法,故不同的选法种数为6×7+6×8+7×8=146.18.解析:(1)展开式的通项为T k +1=C k 10 (-2)k x 10-32k,令10-32k =4,解得k =4,故展开式中含x 4项的系数为C 410 (-2)4=3 360.(2)第3r 项的二项式系数为C 3r -110 ,第r +2项的二项式系数为C r +110 ,∵C 3r -110 =C r +110 ,∴3r -1=r +1或3r -1+r +1=10, 解得r =1或r =2.5(不合题意,舍去),∴r =1.19.解析:(1)除选出A ,B 外,从其他10个人中再选3人,选法数为C 310 =120.(2)按女生的选取情况分为四类:选2名女生、3名男生,选3名女生、2名男生,选4名女生、1名男生,选5名女生,所有选法数为C 25 C 37 +C 35 C 27 +C 45 C 17 +C 55 =596.(3)选出1名男生担任体育委员,再选出1名女生担任文娱委员,从剩下的10人中任选3人担任其他3种职务.根据分步乘法计数原理知,所有选法数为C 17 ·C 15 ·A 310 =25 200.20.解析:二项展开式的通项为T k +1=C k n⎝⎛⎭⎫12x 2n -k⎝⎛⎭⎫-1x k=(-1)k ⎝⎛⎭⎫12n -k C k n x 2n -5k2.(1)因为第9项为常数项,所以当k =8时,2n -52k =0,解得n =10.(2)令2n -52k =5,得k =25(2n -5)=6,所以x 5的系数为(-1)6⎝⎛⎭⎫124C 610 =1058.(3)要使2n -52k ,即4n -5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.21.解析:(1)满足条件的取法情况分为以下三类: 第一类,红球取4个,白球不取,取法有C 44 种;第二类,红球取3个,白球取1个,取法有C 34 C 16 种;第三类,红球取2个,白球取2个,取法有C 24 C 26 种.所以共有取法C 44 +C 34 C 16 +C 24 C 26 =115(种).(2)设取红球x 个,白球y 个,则有⎩⎪⎨⎪⎧x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,其正整数解为⎩⎪⎨⎪⎧x =2,y =3或⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1.因此总分不小于7的取法可分为三类,不同的取法种数为C 24 C 36 +C 34 C 26 +C 44 C 16 =186.22.解析:(1)f (x )=(1+x )8,所以系数最大的项即为二项式系数最大的项T 5=C 48 x 4=70x 4.(2)f (x )=(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n -1n x n -1+C n n x n ,所以原式=12(C 0n 2n +C 1n 2n -1+C 2n 2n -2+…+C n n 20) =12(1+2)n =3n2. (3)∑i =1n(i +1)C i n =2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , ① ∑i =1n(i +1)C i n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n , ② 在①,②添加C 0n ,则得1+∑i =1n(i +1)C i n =C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , ③ 1+∑i =1n(i +1)C i n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n +1C 0n , ④ ③+④得:2(1+∑i =1n(i +1)C i n )=(n +2)(C 0n +C 1n +C 2n +…+C n -1n +C n n )=(n +2)2n ,所以∑i =1n(i +1)C i n =(n +2)2n -1-1.。
人教版数学高三期末测试精选(含答案)3
【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3
高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
新人教A版高中数学必修2期末考试试卷附参考答案
期末测试题考试时间:90分钟 试卷满分:100分、选择题点(1, - 1)到直线x — y + 1 = 0的距离是(过点(1 , 0)且与直线x — 2y — 2= 0平行的直线方程是(F 列直线中与直线 2x + y + 1 = 0垂直的一条是x — 2y + 1 = 0已知圆的方程为 x 2 + y 2 — 2x + 6y + 8 = 0,那么通过圆心的一条直线方程是(B. 2x + y + 1 = 06.直线3x + 4y — 5 = 0与圆2x 2 + 2y 2—4x —2y + 1 = 0的位置关系是 A .相离C. 相交但直线不过圆心D. 相交且直线过圆心7.过点P(a , 5)作圆(x + 2) 2+ (y — 1)2= 4的切线,切线长为2・..3,则a 等于(C .3. 21. 2. x — 2y — 1 = 0B . x — 2y + 1= 0C . 2x + y — 2 = 0 x + 2y — 1 = 03. 2x — y — 1 = 0 C . x + 2y + 1 = 0D .X + 丄 y — 1 =0 24. 2x — y — 1 = 0 C . 2x — y + 1 = 0 D . 2x + y — 1 = 05. 如图(1)、(2)、(3)、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为A .三棱台、三棱柱、 圆锥、 圆台 C .三棱柱、四棱锥、 圆锥、 圆台(2)(3)B .三棱台、三棱锥、 D .三棱柱、三棱台、 圆锥、 圆锥、 圆台 圆台B .相切).b5E2RGbCAP(4)& 圆 A : X 2 + y 2+ 4x + 2y + 1 = 0 与圆 B : x 2+ y 2— 2x — 6y + 1 = 0 的位置关系是( ).p1EanqFDPwA .相交B .相离C .相切D .内含9.已知点 A(2, 3, 5) , B( — 2, 1 , 3),则 | AB| =( ).A . ,6B . 2 . 6C .2D . 2 .. 2 10 .如果一个正四面体的体积为 9 dm 3,则其表面积S 的值为().点,则异面直线 A 1E 与GF 所成角余弦值是( ).DXDiTa9E3dD 1 _______________________13 .直角梯形的一个内角为 45 °下底长为上底长的-,此梯形绕下底所在直线旋转一周所成的旋转体15 、2 c /0A .BC .D . 0525312 .正六棱锥底面边长为 a ,体积为 a ,则侧棱与底面所成的角为2( ) A . 30 ° B45 °C . 60 °D . 75 °Fa(第11题)A . 18、3dm 22B . 18 dmC . 12 3 dm 22D . 12 dm11.如图,长方体 ABCD — A 1B 1C 1D 1 中, AA 1 = AB = 2, AD = 1 , E , F , G 分别是DD 1, AB , CC 1的中JiG C2D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30 °二、填空题15. __________________________________________________________________ 在y轴上的截距为—6,且与y轴相交成30。
高三数学人教版A版数学(理)高考一轮复习试题:8.1直线的倾斜角与斜率、直线方程Word版含答案
直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:由题图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,∴k 1<k 3<k 2. 答案:D知识点二 直线方程易误提醒 (1)利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.(2)用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为( ) A.3x -3y -6+3=0 B.3x -3y +6+3=0 C.3x +3y +6+3=0 D.3x +3y -6+3=0 解析:直线斜率k =tan 30°=33,直线的点斜式方程为y -2=33(x +1), 整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________.解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-aa +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞)3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k , 则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________.解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x -1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n =1与坐标轴所围成三角形的面积为( )A .36B .45C .50D .55解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9.∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( ) A .1 B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).答案:D3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立,∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ) A .y =3x +3或y =-3x - 3 B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y=-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D. 答案:D6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k.由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b =1≥26ab, 得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k ,即k =-23时,等号成立,即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -bx2,由题意可得⎩⎨⎧4a +b2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a +b =-3. 答案:-33.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |时取“=”).答案:5。
人教A版(2019)数学必修(第一册):期末测试卷(含答案)1
人教A版(2019)数学必修(第一册):期末测试卷(含答案)1 -CAL-FENGHAI.-(YICAI)-Company One1期末测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12,3,4,5U =,,集合{}1,2A =,则UA =( )A.{}12,B.{}3,4,5C.{}1,2,3,4,5D.∅2.已知角α的终边上有一点)5M -,则sin α等于( )A.57-B.56-C.58-D.3.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 4.函数223y x x =-+,12x -≤≤的值域是( ) A .R B .[]36,C .[]26,D .[)2+∞,5.已知tan 32α=,则cos α的值为( )A .45B .45-C .415D .35-6.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]01,上的增函数”是“()f x 为[]34,上的减函数”的( ) A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件D .充要条件7.函数()y f x =的图象如图所示,则()y f x =的解析式为( )A .sin 22y x =-B .2cos31y x =-C .πsin 215y x ⎛⎫=-- ⎪⎝⎭D .π1sin 25y x ⎛⎫=-- ⎪⎝⎭8.下列函数中,既是偶函数又在区间()0+∞,上单调递减的是( ) A .1y x= B .x y e -= C .21y x =-+D .lg y x =9.已知集合1|282x A x ⎧⎫=∈⎨⎬⎩⎭R <<,{}|11B x x m =∈-+R <<,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( ) A .2m ≥ B .2m ≤C .2m >D .22m -<<10.若函数()()()101x x f x k a a a a -=-->,≠在R 上既是奇函数,又是减函数,则()()log a g x x k =+的图象是( )ABCD11.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则这三个数的大小关系是( ) A .m n p << B .m p n << C .p m n <<D .p n m <<12.具有性质()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211xy x -=+;③010111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,,,,> 其中满足“倒负”变换的函数是( ) A .①② B .①③C .②③D .①二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知幂函数()f x 的图象过点182⎛⎫⎪⎝⎭,,则()27f =________.14.若关于x 的不等式()21230a x x -+->有解,则实数a 的取值范围是________. 15.给出下列命题:①()72cos π22f x x ⎛⎫=-- ⎪⎝⎭是奇函数;②若α,β都是第一象限角,且αβ>,则tan tan αβ>; ③直线3π8x =-是函数33sin 2π4y x ⎛⎫=- ⎪⎝⎭的图象的一条对称轴;④已知函数()2π3sin 12f x x =+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2. 其中正确命题的序号是________.16.已知函数()f x 是R 上的奇函数,且()()2f x f x +=-,当()02x ∈,时,()212f x x =,则()7f =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角α终边上一点()43P -,,求()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)已知函数()22sin cos 2cos f x x x x =+.(1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移π4个单位长度后,得到函数()y g x =的图象,求方程()1g x =在[]0πx ∈,上的解集.19.(本小题满分12分)设a 是实数,()2221x xa a f x ⋅+-=+. (1)证明:()f x 是增函数.(2)试确定a 的值,使()f x 为奇函数.20.(本小题满分12分)已知函数()2π4sin 14f x x x ⎛⎫=+-- ⎪⎝⎭,且给定条件p :“ππ42x ≤≤”.(1)求()f x 的最大值及最小值;(2)若条件q :“()2f x m -<”,且p 是q 的充分条件,求实数m 的取值范围.21.(本小题满分12分)自2018年10月1日起,《中华人民共和国个人所得税》新规定,公民月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)如果小李10月份全月的工资、薪金为7 000元,那么他应该纳税多少元?(2)如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?(3)写出工资、薪金收入()<≤(元/月)与应缴纳税金y(元)的函数关系式.014000x x22.(本小题满分12分)已知函数()22=-+的两个零点为1f x x mxx=和x n=.(1)求m,n的值;(2)若函数()()22g x x ax a =-+∈R 在(]1-∞,上单调递减,解关于x 的不等式()log 20a nx m +-<.期末测试 答案解析一、 1.【答案】B【解析】因为{}12,3,4,5U =,,集合{}12A =,,所以{}3,4,5U A =. 2.【答案】B 【解析】6OM =,5sin 6α∴=-.3.【答案】B【解析】量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B . 4.【答案】C【解析】函数()222312y x x x =-+=-+,对称轴为直线1x =.由12x -≤≤可得,当1x =时,函数取得最小值为2,当1x =-时,函数取得最大值为6,故函数的值域为[]26,,故选C . 5.【答案】B【解析】2222222222cos sin 1tan 134222cos cossin22135cos sin 1tan 222ααααααααα---=-====-+++. 6.【答案】D【解析】由已知()f x 在[]10-,上为减函数,∴当34x ≤≤时,140x --≤≤,∴函数()f x 在[]34,上是减函数,反之也成立,故选D . 7.【答案】D【解析】由函数()f x 的图象得,函数()f x 的最大值为2,最小值为0,周期7ππ4π2010T ⎛⎫=⨯-= ⎪⎝⎭,得2ω=.又函数()f x 过点π110⎛⎫ ⎪⎝⎭,和7π020⎛⎫⎪⎝⎭,,所以只有选项D 符合题意,故选D . 8.【答案】C【解析】由于1y x=为奇函数,故排除A ;由于()x y f x e -==,不满足()()f x f x -=-,也不满足()()f x f x -=,故它是非奇非偶函数,故排除B ;由于21y x =-+是偶函数,且在区间()0+∞,上单调递减,故C 满足条件;由于lg y x =是偶函数,但在区间()0+∞,上单调递增,故排除D ,故选C . 9.【答案】C【解析】{}1|28|132x A x x x ⎧⎫=∈=-⎨⎬⎩⎭R <<<<.x B ∈成立的一个充分不必要条件是x A ∈,AB ∴,13m ∴+>,即2m >.10.【答案】A【解析】函数()()(1x x f x k a a a -=-->0,)0a ≠在R 上是奇函数,()00f ∴=,2k ∴=,又()x x f x a a -=-为减函数,所以01a <<,所以()()log 2a g x x =+,定义域为()2-+∞,,且单调递减,故选A . 11.【答案】C【解析】设函数()0.9x f x =,() 5.1x g x =,()0.9log h x x =,则()f x 单调递减,()g x 单调递增,()h x 单调递减,()5.100.901f ∴=<<,即01m <<;()0.95.101g =>,即1n >;()0.90.95.1log 5.1log 10h ==<,即0p <,p m n ∴<<.故选C .12.【答案】C【解析】对于①,()1111ln ln111x x f f x x x x--⎛⎫==- ⎪+⎝⎭+≠,不满足“倒负”变换的函数; 对于②,()222222111111111x x x f f x x x x x ⎛⎫- ⎪--⎛⎫⎝⎭===-=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭,满足“倒负”变换的函数; 对于③,当01x <<时,11x >,()f x x =,()1f x f x x ⎛⎫=-=- ⎪⎝⎭;当1x >时,101x <<,()1f x x =-,()11f f x x x⎛⎫==- ⎪⎝⎭;当1x =时,11x =,()0f x =,()()110f f f x x ⎛⎫===- ⎪⎝⎭,满足“倒负”变换的函数.综上,②③是符合要求的函数.故选C . 二、13.【答案】13【解析】设幂函数()af x x =,由图象经过点182⎛⎫ ⎪⎝⎭,,得182a=,13a ∴=-,()13f x x -∴=,()13127273f -∴==. 14.【答案】23⎛⎫+∞ ⎪⎝⎭,【解析】当10a -=时,不等式化为230x ->,显然有解;当10a ->时,二次函数()()2123f x a x x =-+-开口向上,显然()0f x >有解; 当10a -<时,要使不等式有解,应为()41210a ∆=+->,23a ∴>,213a ∴<<. 综上,实数a 的取值范围是23a >. 15.【答案】①③④ 【解析】①()7π2cos 22sin 22f x x x ⎛⎫=--=⎪⎝⎭是奇函数,故①正确.②当°30α=,°300β=-时,αβ>,但tan tan αβ<,故②错误.③将3π8x =-代入3π3sin 24y x ⎛⎫=- ⎪⎝⎭后,y 取最大值3,故③正确.④()1cos π5331cos π222x f x x -=⨯+=-.()f x 的最小正周期是2,而()()f x c f x +=对任意x ∈R 都成立,则说明正整数c 是()f x 的周期,则c 的最小值是2,故④正确. 16.【答案】12-【解析】函数()f x 是R 上的奇函数,即()()f x f x -=-,()()2f x f x +=-,()()()222f x f x f x ∴++=-+=即()()4f x f x +=,可得函数周期4T =.那么()()()731f f f ==-,()()f x f x -=-,()()11f f ∴-=-.当()02x ∈,时,()212f x x =,则()112f =.()172f ∴=-. 三、17.【答案】角α的终边过点()43P -,,3tan 4y x α∴==-,(4分)()πcos sin πsin sin 32tan 11π9πsin cos 4cos sin 22ααααααααα⎛⎫+-- ⎪-⋅⎝⎭∴===--⋅⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.(10分) 18.【答案】(1)()π214f x x ⎛⎫++ ⎪⎝⎭,由()πππ2π22π242k x k k -++∈Z ≤≤,得()3ππππ88k x k k -+∈Z ≤≤,()f x ∴的单调递增区间是()3ππππ88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.(6分) (2)由已知,得()π214g x x ⎛⎫=-+ ⎪⎝⎭,由()1g x =π204x ⎛⎫-= ⎪⎝⎭,()ππ28k x k ∴=+∈Z .(9分)[]0πx ∈,,π8x ∴=或5π8x =,∴方程()1g x =的解集为π5π85⎧⎫⎨⎬⎩⎭,.(12分)19.【答案】(1)证明:()2221x x a a f x ⋅+-=+.设12x x <,则()()()()()1212121212222222221212121x x x x x x x x a a a a f x f x ⨯-⋅+-⋅+--=-=++++,又由12x x <理,得()()120f x f x -<,则()f x 在R 内为增函数.(5分)(2)根据题意,()2222121x x x a a f x a ⋅+-==-++,则()221x f x a --=-+,()221x f x a -=-++,(8分)若()f x 为奇函数,则()()f x f x -=-,即222121x x a a --=-+++,变形可得()()1210x a -+=恒成立,故1a =.(12分)20.【答案】(1)()ππ21cos 2212sin 2214sin 2123f x x x x x x ⎡⎤⎛⎫⎛⎫=-+--=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又ππ42x ≤≤, ππ2π2633x ∴-≤≤.(4分) π34sin 2153x ⎛⎫∴-+ ⎪⎝⎭≤≤, ()max 5f x ∴=,()min 3f x =.(6分)(2)由(1)得,()35f x ≤≤.()2f x m -<,()22m f x m ∴-+<<.又p 是q 的充分条件,2325m m -⎧∴⎨+⎩<,>, 解得35m <<.∴实数m 的取值范围为{}|35m m <<.(12分)21.【答案】(1)700050002000-=(元), 应交税为15003%50010%95⨯+⨯=(元).(3分)(2)小张10月份交纳税金425元,由分段累进可得15003%45⨯=;()4500150010%300-⨯=; 4254530080--=,8020%400÷=,则他10月份的工资、薪金是5000150030004009900+++=(元).(7分)(3)当014000x <≤时,可得()()()00500050000.03500065004565000.1650095004530000.195000.2950014000x x x y x x x x ⎧⎪-⨯⎪=⎨+-⨯⎪⎪+⨯+-⨯⎩,<≤,,<≤,,<≤,,<≤,即为0050000.03150500065000.1605650095000.21555950014000.x x x x x x x ⎧⎪-⎪⎨-⎪⎪-⎩,<≤,,<≤,,<≤,,<≤(12分) 22.【答案】(1)根据题意,知1x =和x n =是方程220x mx -+=的两个根, 由根和系数的关系可知112n m n +=⎧⎨⋅=⎩,, 3m ∴=,2n =.(4分) (2)函数()g x 的对称轴为直线2a x =, ()g x 在()1-∞,上单调递减,12a ∴≥,2a ∴≥.(8分) ∴由(1)知,()()log 2log 210a a nx m x +-=+<,0211x ∴+<<,102x ∴-<<,∴原不等式的解集为102⎛⎫- ⎪⎝⎭,.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 13 页台州市 2011学年第一学期 高三年级期末质量评估试题数 学(理科)本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟.Ⅰ 选择题部分(共50分)参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n k k kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π=()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高一、选择题(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.) 1.若,31cos =α则=α2cos (A )31(B )31-(C )97(D )97-2.在复平面内,复数ii-1对应的点位于 (A )第一象限(B )第二象限(C )第三象限(D )第四象限3.“322<<x ”是“2<x ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件4. 已知集合⎭⎬⎫⎩⎨⎧∈=-=R y x y x y x A ,,149),(22,⎭⎬⎫⎩⎨⎧∈=-=R y x y x y x B ,,123),(,则B A 中元素个数为(A )0(B )1(C )2(D )3第 2 页 共 13 页5. 若如图的程序框图输出的4=y ,可输入的x 的值的个数为 (A )1 (B )2 (C )3(D )46.设n m ,是不同的直线,βα,是不同的平面, 下列命题中正确的是(A )若m ∥α,β⊥n ,n m ⊥,则α⊥β (B )若m ∥α,β⊥n ,n m ⊥,则α∥β (C )若m ∥α,β⊥n ,m ∥n ,则α⊥β (D )若m ∥α,β⊥n ,m ∥n ,则α∥β7. 设实数y x ,满足⎪⎩⎪⎨⎧≤+≥-≥,4,,2x y x y x y 则||4x y -(A )[]6,8--(B )]4,8[-(C 8. 已知右图是下列四个函数之一的图象,这个函数是(A )11ln)(-+=x x x f (B )11ln )(+-=x x x f(C )1111)(-++=x x x f (D )1111)(--+=x x x f9.有9 名翻译人员,其中6人只能做英语翻译,2语翻译也可做韩语翻译. 要从中选5人分别接待5韩语翻译,三个需要英语翻译,则不同的选派方法数为(A )900(B )800 (C )600 (D )50010.已知01221212222)a x a x a x a x a b ax n n n n n+++++=+-- ((*N n ∈,常数0>>b a ).设n n a a a T 220+++= ,1231-+++=n n a a a R ,则下列关于正整数n 的不等式中,解集是无限集的是 (A )n n R T <(B )n n R T 1.1> (C )n n T R 9.0< (D )n n T R 99.0>24x y =-第 3 页 共 13 页CO Ⅱ 非选择题部分(共100分)二、填空题(本题共7小题,每小题4分,共28分. 将答案直接答在答题卷上指定的位置) 11.要得到函数πsin(2)3y x =-的图象,可将函数x y 2sin =的图象向右平移 个单位. 12. 右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是 .13.“如果数列{}n a ()0>n a 是等比数列,那么{}n a lg 必为等差数列”,类比这个结论,可猜想:如果数列{}n b 是等差数列, 那么 .14.一个袋中有大小、质地相同的标号为3,2,1的三个小球.某人做如下游戏:每次从袋中摸一个小球,记下标号然后放回,共摸球3次.若拿出球的标号是奇数,则得1分,否则得0分,则3次所得分数之和的数学期望是 .15.已知点P 是椭圆1422=+y x 与双曲线1222=-y x 的一个交点,21,F F 是椭圆的左右焦点,则=∠21cos PF F .16.已知函数⎪⎩⎪⎨⎧≥+<+-=,0),1ln(,0,21)(2x x x x x x f 若kx x f -)(有三个零点,则k 的取值范围为 .17.如图,扇形AOB 的弧的中点为M ,动点D C ,OB OA ,上,且.BD OC =若1=OA ,120AOB ︒∠=,则MC 的取值范围是 .三、解答题(本题共5题,共72分;要求写出详细的演算或推理过程)18.(本题满分14分)已知函数()x x x x f cos cos sin 3)(-=.(Ⅰ)求)(x f 的最小正周期和最大值;(Ⅱ)在△ABC 中,c b a ,,分别为角C B A ,,的对边,S 为△ABC 的面积. 若21)(=A f ,32=a ,=S 32,求c b ,. 俯视图 (第12题) (第17题)第 4 页 共 13 页19.(本题满分14分)已知数列}{n a ,{}n b 满足:1,2121==a a ,)2(4111≥-=-+n a a a n n n ;nn n b a 2=(*N n ∈).(Ⅰ)计算321,,b b b ,并求数列{}n b ,}{n a 的通项公式; (Ⅱ)证明:对于任意的3>n ,都有12345n a a a a a a ++>+++.20.(本题满分14分)如图,在三棱锥ABC P -中,CB CA CP ,, 两两垂直且相等,过PA 的中点D 作平面α∥BC ,且α分别交PC PB ,于N M ,,交AC AB ,的延长线于,E F .(Ⅰ)求证:⊥EF 平面PAC ;(Ⅱ)若BE AB 2=,求二面角N DM P --的余弦值.21.(本题满分15分)如图,在y 轴右侧的动圆⊙P 与⊙1O :1)1(22=+-y x 外切,并与y 轴相切. (Ⅰ)求动圆的圆心P 的轨迹Γ的方程; (Ⅱ)过点P 作⊙2O :1)1(22=++y x 的两条切线,分别交y 轴于B A ,两点,设AB 中点为()m M ,0.求m 的取值范围.22.(本题满分15分) 已知函数.)1ln()(xx x f +=(Ⅰ)证明:若,1≥x 则 ()ln 2f x ≤;(Ⅱ)如果对于任意,0>x px x f +>1)(恒成立,求p 的最大值.第20题1台州市 2011学年第一学期 高三年级期末质量评估试题 数 学(理)答题卷 2012.01一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填入下表内)二、填空题(本大题共7小题,每小题4分,共28分)11.________________________ 12.________________________ 13.14.________________________ 15. 16. 17. 三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤)2请在各题目的答题区域内作答,超出边框限定区域的答案无效3请在各题目的答题区域内作答,超出边框限定区域的答案无效45台州市 2011学年第一学期 高三年级期末质量评估试题理科数学答案及评分标准一、 选择题 DBABD CBCAD 二、 填空题 11.6π 12.316 {}13.10n b 为等比数列 14. 2 15.13- 16.1,12⎛⎫ ⎪⎝⎭ 17. 31,82⎡⎤⎢⎥⎣⎦说明:第11题可填)(6N k k ∈+ππ中的任何一个值;第13题的数列可以填{}nba )1,0(≠>a a 中的任意一个.三、 解答题 18题 (Ⅰ)()x x x x f cos cos sin 3)(-=22cos 12sin 23x x +-=212cos 212sin 23--=x x 即=)(x f 21)62sin(--πx ,…………………………………………………………………4分 所以,)(x f 的最小正周期为π,最大值为.21………………………………………………6分(Ⅱ)由21)(=A f 得1)62sin(=-πA ,又,0π<<A 3π=A , ………8分由32=a ,=S 32利用余弦定理及面积公式得(2222cos ,31sin 23b c bc bc ππ⎧+-⋅=⎪⎪⎨⎪=⎪⎩……………………………………………………………12分 解之得2,4==c b 或.4,2==c b …………………………………………………………14分 19题(Ⅰ).7,4,1321===b b b …………………………………………………………3分 将n n n b a ⋅=21,11121+++⋅=n n n b a ,11121---⋅=n n n b a 代入1141-+-=n nn a a a 中化简得: n n n b b b 211=++-可见,数列{}n b 是等差数列. …………………………………………5分 由4,121==b b 知其公差为3,故.23-=n b n …………………………………………………………………………………6分nn n n n a n a 223232-=⇒-=. …………………………………………………………7分6(Ⅱ)设数列}{n a 的前n 项和为.n S 则nn n S 22327242132-++++=, 132223253242121+-+-+++=n n n n n S ,……………………………9分 相减可得:23111113333222222231[1()]13242.12212n n n n n n S n +-+-=++++---=+-- nn n S 2434+-=,………………………………………………………………………12分 可见,对于任意的*N n ∈,总有.4<n S 但2819321>=++a a a ,故当3>n 时.232154a a a a a a n ++<<+++ ……………………………………………………14分20题(Ⅰ)证明:由AC BC PC BC ⊥⊥,可知: ⊥BC 平PAC ;…………………………3分 又因为平面α∥BC ,平面AEF 过BC 且与平面α交于EF ,所以EF ∥BC .……6分 故⊥EF 平面PAC . ……………………………………………………………………7分 (Ⅱ)以CP CB CA ,, 分别为z y x ,,轴建立空间直角坐标系,并设2=BC .则)0,0,2(A ,)0,2,0(B ,)2,0,0(P ;设平面PAB 的法向量),,(1111z y x n =, 由01=⋅PA n ,01=⋅PB n 可求得)1,1,1(1=n ,……………………………………………10分 )1,0,1(D ,)0,3,1(-E ,).0,0,1(-F设平面DEF 的法向量),,(2z y x n =,由02=⋅DE n ,02=⋅FE n 可得)2,0,1(2-=n ,……………………………13分 .1515==二面角N DM P --的余弦值为.1515…………………………………………14分7注:几何解法相应给分. 21题(Ⅰ)由题意,点P 到点)0,1(的距离等于它到直线1-=x 的距离,故Γ是抛物线,方程为x y 42=(0≠x ).………………………………………………………………………5分注:由1)1(22+=+-x y x 化简同样给分;不写0≠x 不扣分.(Ⅱ)设),4(2t t P (0≠t ),切线斜率为k , 则切线方程为)4(2t x k t y -=-,即042=-+-kt t y kx .…………………………6分由题意,1)1(22=++y x 的圆心)0,1(-到切线的距离11422=+-+-kkt t k ,……………………………………………………………………8分两边平方并整理得:01)4(8)8(22222=-++-+t k t t k t t .……………………9分该方程的两根21,k k 就是两条切线的斜率,由韦达定理:)8()4(822221++=+t t t t k k . ①……………………………………………………………………………………………11分另一方面,在)4(21t x k t y -=-,)4(22t x k t y -=-中令0=x 可得B A ,两点的纵坐标1214k t t y -=,2224k t t y -=,故)(8221221k k t t y y m +-=+=, ②……………………………………………………………………………………………13分 将①代入②,得842+=t tm t t 84+= ,………………………………………………14分 故m 的取值范围是.0,2222≠≤≤-m m ……………………………………15分822题(Ⅰ)函数x x x f )1ln()(+=的导函数为2/)1ln(1)(xx x xx f +-+=, …………1分在[)+∞,0上考虑函数)1ln(1)(x xxx g +-+=,由011)1(1)(2/≤+-+=x x x g , 可知)(x g 单调递减,结合0)0(=g ,当0>x 时,)(x g 0<,所以,0)(/<x f ,xx x f )1ln()(+=在()+∞,0单调递减 .…………………………………………………3分 2ln )1(=f ,∴若,1≥x 则 .2ln )(≤x f …………………………………………………………………5分(Ⅱ) 要使得对任意,0>x px x f +>1)(即px xx +>+1)1ln(恒成立,首先由熟知的不等式x x <+)1ln(知0<p …………………………………………………………………7分 令2)1ln()(px x x x h --+=,则只要0)(>x h 恒成立.………………………………8分 以下在[)+∞,0上考虑)(x h .xpp x px px xx h +++-=--+=1)212(22111)(/.………………………………………10分这里0<p ,故若012>+p ,则在区间⎪⎪⎭⎫ ⎝⎛+-p p 212,0内,0)(/<x h ,)(x h 单调递减,但,0)0(=h 所以在区间⎪⎪⎭⎫⎝⎛+-p p 212,0内,0)(<x h ,这与题意不符;…………………12分 反之,若012≤+p ,则当0>x 时恒有0)(/>x h ,)(x h 单调递增,但,0)0(=h 所以对任意,0>x 0)(>x h ,也就是px xx +>+1)1ln(恒成立. …………………………………14分 综上所述,使得对任意,0>x px x f +>1)(恒成立的最大的.21-=p …………………15分9。