(通用版)18年高考数学二轮复习第一部分专题三立体几何教学案文

合集下载

2018届高中数学二轮复习教案:立体几何

2018届高中数学二轮复习教案:立体几何

学习过程一、考纲解读立体几何模块内容在目前高考中结构和比重相对稳定,一般为一个客观题加一个解答题的格局,分值在17到22分之间,难度不太高,是得基本分的关键内容之一.立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

在选择、填空题中侧重立体几何中的概念型、空间想象型、简单计算型问题,而解答题侧重立体几何中的逻辑推理型问题,立体几何常考的四类问题(1)三视图及相关的体积、表面积的简单计算.(2)点、直线、平面之间的位置关系.(3)距离、角度的向量计算.(4)存在型、探究型问题.立体几何中的空间想象能力是培养能力是数学学习中重要的一个组成部分,同时该部分内容也是培养逻辑思维能力的重要手段,体现在证明和运算的规范性上,熟练掌握基本定理的文字语言和图形语言和符号语言是学习的基本保证,该模块中涉及到的重要数学思想方法有分类讨论、化归转化和类比等对本部分的考查,三视图是考察重点,几乎年年都考,以选择,填空题为主,当然也可能在大题中由三视图还原为直观图后考查定性及定量问题。

文理对平行、垂直关系的证明依然是考察重点。

符号语言、图形语言、文字语言的相互转化要引起足够的重视(尤其在选择填空题)文科对空间角不再考查,但理科引入了空间向量对其都有要求。

有关球的考查降低了要求,不再考球面距离但球的表面积、体积要熟练掌握。

二、复习预习(1)空间几何体定义体积表面积(2)点、直线、平面之间的位置关系平行垂直距离角度(3)空间向量法向量的求法及其在立体几何中的应用三、知识讲解考点1 (1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.① 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.① 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.① 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).考点2点、直线、平面之间的位置关系① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.① 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.①如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若ααα//,//,,a b a b a 则⊂⊄.①如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行, 即若βαββα//,//,//,,,则b a p b a b a =⊂ .①如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 即若ααα⊥⊥⊥=⊂⊂l n l m l B n m n m 则,,,,, .①如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直, 即若βααβ⊥⊂⊥则,,l l . 理解以下性质定理,并能够证明.①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若b a b a a //,,,//则=⊂βαβα .①两平行平面与同一个平面相交,那么两条交线平行,即若α①β,α∩γ=a ,β∩γ=b ,则b a // ①垂直于同一平面的两直线平行,即若b a b a //,,则αα⊥⊥①如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面, 即若αββαβα⊥⊥⊂=⊥l a l l a 则,,,, . 考点3 空间向量法向量的求法以及法向量在立体几何证明球角度距离中的应用四、例题精析例1 [2014全国2卷] 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某 零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切 削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【规范解答】① 毛坯是底面半径为3,高为6的圆柱,体积V 1=9π·6=54π,加工后的零件,左半部为小圆柱,底面半径为2,高4,右半部为大圆柱, 底面半径为3,高2,体积V 2=4π·4+9π·2=34π, ① 削掉部分的体积与原体积的比值=πππ543454-=2710,故选C 【总结与反思】 ① 考查识别三视图所表示的立体模型;① 考查圆柱的体积公式。

2018大二轮高考总复习理数文档:解答题4 立体几何与空

2018大二轮高考总复习理数文档:解答题4 立体几何与空

第一单元高考中档大题突破解答题04:立体几何与空间向量基本考点——利用空间向量证明空间位置关系设直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3).(1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3. (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.1.(2017·深圳模拟)已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明:以A 为原点,AB ,AC ,AA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2), F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1)DE →=(-2,4,0),平面ABC 的一个法向量为AA 1→=(0,0,4), ∵DE →·AA →1=0,DE ⊄平面ABC , ∴DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2), B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, ∴B 1F →⊥EF →,∴B 1F ⊥EF .B 1F →·AF →=(-2)×2+2×2+(-4)×0=0,∴B 1F →⊥AF →,∴B 1F ⊥AF .∵AF ∩EF =F ,AF ,EF ⊂平面AEF , ∴B 1F ⊥平面AEF .2.(2017·济南模拟)在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D 、F 、G 分别为CC 1、C 1B 1、C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA =a ,则A (a,0,0),所以BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2),B 1D →·BA →=0, B 1D →·BD →=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD ,又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G (a2, 1, 4),F (0,1,4),则EG →=(a 2, 1, 1),EF →=(0,1,1),B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF ,又EG ∩EF =E ,EG ,EF ⊂平面EGF ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD .常考热点——空间角与探索性问题考向01:空间角的求法1.向量法求异面直线所成的角若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cos θ=|cos〈a,b〉|=|a·b| |a||b|.2.向量法求线面所成的角求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sin θ=|cos〈n,a〉|=|n·a||n||a|.3.向量法求二面角求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cos θ=|cos〈n1,n2〉|=|n1·n2||n1||n2|;若二面角α-l-β所成的角θ为钝角,则cos θ=-|cos〈n1,n2〉|=-|n1·n2| |n1||n2|.注意:注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论错误.(2017·郑州二模)如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.阿凡题1083962(1)求证:A1B⊥AC1;(2)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.(1)【证明】取AC的中点O,连接A1O,因为四边形AA1C1C是菱形,且∠A1AC=60°,所以△A1AC为等边三角形,所以A1O⊥AC,又平面ABC⊥平面AA1C1C,所以A 1O ⊥平面ABC , 所以A 1O ⊥BC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C , 所以AC 1⊥BC .在菱形AA 1C 1C 中,AC 1⊥A 1C , 所以AC 1⊥平面A 1BC , 所以A 1B ⊥AC 1.(2)【解】 以点O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,则A (0,-1,0),B (2,1,0),C (0,1,0),C 1(0,2,3),AB →=(2,2,0),BB 1→=CC 1→(0,1,3),设m =(x ,y ,z )是平面ABB 1A 1的法向量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·BB 1→=0,即⎩⎨⎧2x +2y =0,y +3z =0,取z =-1,可得m =(-3,3,-1). 又E (1,0,0),所以EC 1→=(-1,2,3), 设直线EC 1与平面ABB 1A 1所成的角为θ, 则sin θ=|cos 〈EC 1→,m 〉|=|EC 1→·m ||EC 1|→·|m |=1510.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP=90°.阿凡题1083963(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. (1)【证明】 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)【解】 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,F A →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A22,0,0,P 0,0,22,B 22,1,0,C -22,1,0, 所以PC →=-22,1,-22,CB →=(2,0,0),P A →=22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则 ⎩⎪⎨⎪⎧n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 ⎩⎪⎨⎪⎧ m ·P A →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.所以二面角A -PB -C 的余弦值为-33.向量法求线面角、二面角的4个突破口(1)破“建系关”,构建恰当的空间直角坐标系; (2)破“求坐标关”,准确求解相关点的坐标; (3)破“求法向量关”,求出平面的法向量; (4)破“应用公式关”.考向02:立体几何中的探索性问题以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.求解此类问题一般是用向量方法来处理,通过待定系数法求解其存在性问题,思路简单、解法固定、操作方便.(2017·兰州一模)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC =4,点M 为PC 的中点,点E 为BC 边上的动点,且BEEC=λ.阿凡题1083964(1)求证:平面ADM ⊥平面PBC ;(2)是否存在实数λ,使得二面角P -DE -B 的余弦值为22.若存在,试求出实数λ的值;若不存在,说明理由.(1)【证明】 取PB 的中点N ,连接MN ,AN , ∵M 是PC 的中点, ∴MN ∥BC ,MN =12BC =2,又BC ∥AD ,∴MN ∥AD ,MN =AD , ∴四边形ADMN 为平行四边形, ∵AP ⊥AD ,AB ⊥AD ,AP ∩AB =A , ∴AD ⊥平面P AB , ∴AD ⊥AN ,∴AN ⊥MN , ∵AP =AB ,∴AN ⊥PB ,∵MN ∩PB =N ,∴AN ⊥平面PBC .∵AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(2)【解】 存在符合条件的λ.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .设BE =t ,则E (2,t,0),P (0,0,2),D (0,2,0),B (2,0,0), 从而PD →=(0,2,-2),DE →=(2,t -2,0), 设平面PDE 的法向量为n 1=(x ,y ,z ),即⎩⎪⎨⎪⎧2y -2z =0,2x +(t -2)y =0,令y =z =2,解得x =2-t , ∴n 1=(2-t,2,2),又平面DEB 即为平面xAy ,故其一个法向量为n 2=(0,0,1), 则|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-t )2+4+4=22,解得t =2,可知λ=1.解决此类问题时,把要成立的结论当作条件, 据此列方程或方程组, 把“是否存在”问题转化为“点的坐标(或参数)是否有解”来解决,但要注意检验此解是否在规定范围内.1.(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.(1)证明:取P A 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF .又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解:由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则 x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去),或⎩⎨⎧x =1-22,y =1,z =62,所以M 1-22,1,62,从而AM →=1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105.2.(2017·临沂模拟)如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AB =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,点O 、M 分别为CE 、AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找到一点N ,使得ON ⊥平面ABDE .若能,请指出点N 的位置并加以证明;若不能,请说明理由.(1)证明:以B 为原点,BC 为x 轴,BA 为y 轴,BD 为z 轴,建立空间直角坐标系,则C (4,0,0),A (0,4,0),D (0,0,2),E (0,4,4),O (2,2,2),M (0,2,0).平面ABC 的法向量n 1=(0,0,1),DO →=(2,2,0),DO →·n 1=0,∴OD ∥平面ABC . (2)解:设平面ODM 的法向量为n 2,直线CD 与平面ODM 所成角为θ, ∵DO →=(2,2,0),DM →=(0,2,-2), ∴n 2=(-1,1,1),CD →=(-4,0,2), ∴sin θ=CD →·n 2|CD →||n 2|=155.(3)解:设EM 上一点N 满足BN →=λBM →+(1-λ)BE →=(0,4-2λ,4-4λ),平面ABDE 的法向量n 3=(1,0,0),ON →=BN →-BO →=(-2,2-2λ,2-4λ),不存在λ使n 3∥ON →,∴不存在满足题意的点N .1.(2017·梅州二模)如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求证:BD ⊥平面ADG ;(2)求平面AEFG 与平面ABCD 所成锐二面角的余弦值. (1)证明:在△BAD 中,∵AB =2AD =2,∠BAD =60°. 由余弦定理得BD =3,满足AB 2=AD 2+DB 2, ∴AD ⊥DB直平行六面体中GD ⊥面ABCD ,DB ⊂面ABCD , ∴GD ⊥DB ,且AD ∩GD =D ∴BD ⊥平面ADG .(2)解:如图以D 为原点建立空间直角坐标系D -xyz ,∵∠BAE =∠GAD =45°,AB =2AD =2,∴A (1,0,0),B (0,3,0),E (0,3,2),C (-1,3,0),G (0,0,1).AE →=(-1,3,2),AG →=(-1,0,1), 设平面AEFG 的法向量n =(x ,y ,z ), ⎩⎪⎨⎪⎧n ·AE →=-x +3y +2z =0n ·AG →=-x +z =0,令x =1,得y =-33,z =1 ∴n =⎝⎛⎭⎫1,-33,1,而平面ABCD 的法向量为DG →=(0,0,1), ∴cos 〈DG →,n 〉=|DG →·n ||DG →||n |=217.∴平面AEFG 与平面ABCD 所成锐二面角的余弦值为217.2.(2017·晋江二模)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.(1)证明:以H 为原点,HA ,HB ,HP 分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0),设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解:由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1), 设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0,因此可以取n =(1,3,0),又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24,所以直线P A 与平面PEH 所成角的正弦值为24.3. (2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形, 所以∠ADC =90°.取AC 的中点O ,连接DO ,BO , 则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 所以平面ACD ⊥平面ABC .(2)解:由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E 0,32,12, 故AD →=(-1,0,1),AC →=(-2,0,0),AE →=-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0, 可取n =1,33,1. 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3), 则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77. 4.(2017·江门一模)如图,多面体EF -ABCD 中,ABCD 是正方形,AC ,BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点.(1)求证:BD ⊥平面ACF ;(2)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.(1)证明:取AO 的中点H ,连接EH ,则EH ⊥平面ABCD , ∵BD 在平面ABCD 内,∴EH ⊥BD , 又正方形ABCD 中,AC ⊥BD ,∵EH ∩AC =H ,EH ,AC 在平面EACF 内, ∴BD ⊥平面EACF ,即BD ⊥平面ACF .(2)解:由(1)知EH ⊥平面ABCD ,作HG ∥OB 交AB 于点G .如图,以H 为原点,HA →,HG →,HE →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系H -xyz ,∵EH ⊥平面ABCD ,∴∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =60°,设正方形ABCD 的边长为4a ,则AC =42a ,AH =2a ,EA =22a ,EH =6a ,各点坐标分别为H (0,0,0),A (2a,0,0),B (-2a ,22a ,0),C (-32a,0,0),D (-2a ,-22a,0),E (0,0,6a ).易知HE →为平面ABCD 的一个法向量,记n 1=HE →=(0,0,6a ),AC →=(-42a,0,0),DE →=(2a,22a ,6a ),∵EF ∥AC ,∴EF →=λAC →=(-42aλ,0,0),设平面DEF 的一个法向量为n 2=(x ,y ,z ),则n 2⊥DE →,n 2⊥EF →, 即n 2·DE →=2ax +22ay +6az =0,n 2·EF →=-42aλx =0,令z =-2,则x =0,y =3, ∴n 2=(0,3,-2),且n 2=7,n 1·n 2=-26a , ∴n 1与n 2的夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=27, 即平面DEF 与平面ABCD 所成角α的正弦值为 sin α=1-cos 2θ=217. 5. (2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1) 求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. (1)证明:设AC ,BD 交于点E ,连接ME ,因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.图①(2)解:如图②,取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图②,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).图②设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z =2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3.(3)解:由题意知M -1,2,22,C (2,4,0),MC →=3,2,-22. 设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.6.(2017·吉林实验中学)如图①所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成二面角A -DC -B ,如图②所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.解:(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .(2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DE →·n =0,DF →·n =0,即⎩⎨⎧3y +z =0,x +3y =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217. (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0),∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =23. 把y =233代入上式得x =43,∴BP →=13BC →,∴在线段BC 上存在点P 43,233,0,使AP ⊥DE .。

2018年高考数学浙江专版三维二轮专题复习讲义:第一部分+专题三 数列与数学归纳法+Word版含答案

2018年高考数学浙江专版三维二轮专题复习讲义:第一部分+专题三 数列与数学归纳法+Word版含答案

专题三 数列与数学归纳法第一讲数列的通项考点一 利用a n 与S n 的关系求通项一、基础知识要记牢a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,使用时要注意对第一项的求解与检验,如果符合a n =S n -S n -1的规律才能合并,否则要写成分段的形式.二、经典例题领悟好[例1] (2018届高三·浙东北三校联考)已知各项均为正数的数列{a n }的前n 项和为S n ,a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰是等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,⎝⎛⎭⎪⎫T n +32k ≥3n -6恒成立,求实数k 的取值范围.[解] (1)∵a 2n +1=4S n +4n +1(n ∈N *), ∴a 2n =4S n -1+4(n -1)+1(n ≥2), 两式相减,得a 2n +1-a 2n =4a n +4(n ≥2), ∴a 2n +1=(a n +2)2(n ≥2). 又a n >0,故a n +1=a n +2(n ≥2). 即a n +1-a n =2(n ≥2).又a 25=a 2a 14,即(a 2+6)2=a 2(a 2+24),解得a 2=3, 又a 22=4S 1+4+1,故a 1=S 1=1.∴a 2-a 1=3-1=2,故数列{a n }是以1为首项,2为公差的等差数列,故a n =2n -1. 易知b 1=a 2=3,b 2=a 5=9,b 3=a 14=27,∴b n =3n. (2)由(1)可知T n =31-3n1-3=3n +1-32. ∴⎝ ⎛⎭⎪⎫3n +1-32+32k ≥3n -6对任意的n ∈N *恒成立,即k ≥2n -43n 对任意的n ∈N *恒成立. 令C n =2n -43n ,则C n -C n -1=2n -43n -2n -63n -1=-22n -73n (n ≥2),故当n =2,3时,C n >C n -1,当n ≥4,n ∈N *时,C n <C n -1,∴C 3=227最大,∴k ≥227.故k 的取值范围为⎣⎢⎡⎭⎪⎫227,+∞.对于数列,a n 和S n 有关系a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这是一种重要的关系,是已知S n 求通项a n 的常用方法.首先利用S n “复制”出S n -1,就是“用两次”,再作差求出a n .三、预测押题不能少1.设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式; (3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a na n +1<13. 解:(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0, 可得S 21+S 1-6=0,解得S 1=-3或2, 即a 1=-3或2,又a n 为正数,所以a 1=2. (2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得, (S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n .又a 1=2=2×1,所以a n =2n . (3)证明:当n =1时,1a 1a 1+1=12×3=16<13成立;当n ≥2时,1a na n +1=12n2n +1<12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1a 1a 1+1+1a 2a 2+1+…+1a na n +1<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n-1-12n+1=16+12⎝⎛⎭⎪⎫13-12n+1<16+16=13.所以对一切正整数n,有1a1a1+1+1a2a2+1+…+1a n a n+1<13.考点二利用累加、累乘、代入等方法求通项一、基础知识要记牢累加即利用恒等式b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)求通项;累乘即利用恒等式a n=a1·a2a1·a3a2·…·a na n-1求通项.二、经典例题领悟好[例2] (1)已知正项数列{a n}中,a1=1,且(n+2)·a2n+1-(n+1)a2n+a n a n+1=0,则它的通项公式为( )A.a n=1n+1B.a n=2n+1C.a n=n+22D.a n=n(2)已知数列{a n}中,a1=1,且a n+1=a n(1-na n+1),则数列{a n}的通项公式为________.[解析] (1)因为(n+2)a2n+1-(n+1)a2n+a n a n+1=0,所以[(n+2)a n+1-(n+1)a n](a n+1+a n)=0.又{a n}为正项数列,所以(n+2)a n+1-(n+1)a n=0,即a n+1a n=n+1n+2,则当n≥2时,a n=a na n-1·a n-1a n-2·…·a2a1·a1=nn+1·n-1n·…·23·1=2n+1,又a1=1=21+1,满足上式,故a n=2n+1.故选B.(2)原数列递推公式可化为1a n+1-1a n=n,令b n=1a n,则b n+1-b n=n,因此b n=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)+b1=(n-1)+(n-2)+…+2+1+1=n2-n+22,所以a n=2n2-n+2.[答案] (1)B (2)a n=2n2-n+21累加、累乘是课本中求等差比数列通项方法的推广,若已知a na n -1=g n 且g n 可以求积,则可以利用恒等式a n =a 1·a 2a 1·a 3a 2…a na n -1求通项.若已知b n +1-b n =f n且fn 可以求和,则可以利用恒等式b n =b 1+b 2-b 1+b 3-b 2+…+b n -b n -1解出通项;基本方法都有很大的“弹性空间”,把握其思想精髓就可以大有作为.2给出数列的递推关系求通项时通常利用代入法、整体换元法等求解,不必考虑特殊技巧.三、预测押题不能少2.(1)已知数列{a n },a 1=1,a n =2a n -1+1(n ≥2,n ∈N *),则数列{a n }的通项公式a n =________.解析:由a n =2a n -1+1(n ≥2,n ∈N *),设a n +t =2(a n -1+t )(n ≥2),所以2t -t =1,解得t =1,所以a n +1=2(a n -1+1)(n ≥2),所以a n +1a n -1+1=2,又a 1+1=2,所以{a n +1}是以2为首项,2为公比的等比数列,所以a n +1=2n,所以a n =2n-1.答案:2n-1(2)已知数列{a n }中,a 1=1,a n +1=a n a n +3(n ∈N *),则数列{a n }的通项公式为________.解析:因为a n +1=a na n +3(n ∈N *),所以1a n +1=3a n +1,设1a n +1+t =3⎝ ⎛⎭⎪⎫1a n +t ,所以3t -t =1,解得t =12,所以1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12,又1a 1+12=1+12=32,所以数列⎩⎨⎧⎭⎬⎫1a n +12是以32为首项,3为公比的等比数列,所以1a n +12=32×3n -1=3n2,所以a n =23n -1.答案:a n =23n-1[知能专练(九)]一、选择题1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .14解析:选C 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.2.已知等差数列{a n }满足a 2=3,a 5=9,若数列{b n }满足b 1=3,b n +1=ab n ,则{b n }的通项公式为b n =( )A .2n-1 B .2n+1 C .2n +1-1 D .2n -1+2解析:选B 据已知易得a n=2n-1,故由b n+1=ab n可得b n+1=2b n-1,变形为b n+1-1=2(b n-1),即数列{b n-1}是首项为2,公比为2的等比数列,故b n-1=2n,解得b n=2n +1.故选B.3.已知数列{a n}中,a1=3,a2=5且对于大于2的正整数,总有a n=a n-1-a n-2,则a2 018等于( )A.-5 B.5 C.-3 D.3解析:选B a n+6=a n+5-a n+4=a n+4-a n+3-a n+4=-(a n+2-a n+1 )=-a n+2+a n+1=-(a n+1-a n)+a n+1=a n,故数列{a n}是以6为周期的周期数列,∴a2 018=a336×6+2=a2=5,故选B.4.已知数列{a n}满足a1=1,且a n=13a n-1+⎝⎛⎭⎪⎫13n(n≥2,且n∈N*),则数列{an}的通项公式为( )A.a n=3nn+2B.a n=n+23nC.a n=n+2 D.a n=(n+2)3n解析:选B 由a n=13a n-1+⎝⎛⎭⎪⎫13n(n≥2且n∈N*),得3n an=3n-1an-1+1,3n-1an-1=3n-2an-2+1,…,32a2=3a1+1,以上各式相加得3n a n=n+2,故a n=n+2 3n.5.(2017·宝鸡模拟)已知数列{a n}的前n项和为S n,且满足4(n+1)(S n+1)=(n+2)2a n,则数列{a n}的通项公式为a n=( )A.(n+1)3 B.(2n+1)2C.8n2 D.(2n+1)2-1解析:选A 当n=1时,4(1+1)(a1+1)=(1+2)2a1,解得a1=8,当n≥2时,由4(S n+1)=n+22a nn+1,得4(S n-1+1)=n+12a n-1n,两式相减得,4a n=n+22a nn+1-n+12a n-1n ,即a na n-1=n+13n3,所以a n=a na n-1·a n-1a n-2·…·a2a1·a1=n+13 n3·n3n-13·…·3323·8=(n+1)3,经验证n=1时也符合,所以a n=(n+1)3.6.在各项均不为零的数列{a n}中,若a1=1,a2=13,2a n a n+2=a n+1a n+2+a n a n+1(n∈N*),则a2 018=( )A.14 033B.14 034C.14 035D.14 037解析:选C 因为2a n a n +2=a n +1a n +2+a n a n +1(n ∈N *),所以2a n +1=1a n +1a n +2,所以⎩⎨⎧⎭⎬⎫1a n 是等差数列,其公差d =1a 2-1a 1=2,所以1a n =1+(n -1)×2=2n -1,a n =12n -1,所以a 2 018=14 035.二、填空题7.已知数列{a n }中,a 3=3,a n +1=a n +2,则a 2+a 4=________,a n =________. 解析:因为a n +1-a n =2,所以{a n }为等差数列且公差d =2,由a 1+2d =3得a 1=-1,所以a n =-1+(n -1)×2=2n -3,a 2+a 4=2a 3=6.答案:6 2n -38.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式a n =________.解析:因为{nS n +(n +2)a n }为等差数列,且S 1+3a 1=4,2S 2+4a 2=8,则该等差数列的公差为4,所以nS n +(n +2)a n =4+4(n -1)=4n ,即S n +n +2n a n =4,S n -1+n +1n -1a n -1=4(n ≥2),两式相减整理得a n a n -1=n 2n -1(n ≥2),则a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=12n -1×1×21×32×…×n n -1=n 2n -1,经验证n =1时也符合,所以a n =n2n -1. 答案:n2n -19.如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是________.解析:设△A 1B 1O 的面积为S 0,梯形A n B n B n +1A n +1的面积为S ⇒S 0S 0+S =⎝ ⎛⎭⎪⎫a 1a22⇒S =3S 0, S 0+nS S 0+n +1S =⎝ ⎛⎭⎪⎫a n +1a n +22⇒1+3n 4+3n =⎝ ⎛⎭⎪⎫a n +1a n +22.由上面2种情况得3n -23n +1=⎝ ⎛⎭⎪⎫a n a n +12⇒⎝ ⎛⎭⎪⎫a 1a 22⎝ ⎛⎭⎪⎫a 2a 32⎝ ⎛⎭⎪⎫a 3a 42·…·⎝ ⎛⎭⎪⎫a n a n +12=⎝ ⎛⎭⎪⎫a 1a n +12=14·47·710·…·3n -23n +1=13n +1⇒⎝ ⎛⎭⎪⎫a 1a n +12=13n +1⇒a n +1=3n +1,且a 1=1⇒a n =3n -2,n ∈N *.答案:a n =3n -2,n ∈N *三、解答题10.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2).(1)求a 2,a 3; (2)证明:a n =3n-12.解:(1)易知a 2=4,a 3=13. (2)证明:由于a n =3n -1+a n -1(n ≥2),∴a n -a n -1=3n -1(n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…3+1=3n -12(n ≥2),经检验,n =1时也满足上式,故a n =3n-12.11.数列{a n }满足a 1=1且8a n +1a n -16a n +1+2a n +5=0(n ≥1),记b n =1a n -12(n ≥1).(1)求b 1,b 2,b 3,b 4的值;(2)求数列{b n }的通项及数列{a n b n }的前n 项和S n . 解:(1)由b n =1a n -12,得a n =1b n +12. 代入递推关系8a n +1a n -16a n +1+2a n +5=0, 整理得4b n +1b n -6b n +1+3b n=0.即b n +1=2b n -43.由a 1=1得b 1=2, 所以b 2=83,b 3=4,b 4=203.(2)∵b n +1=2b n -43,∴b n +1-43=2⎝ ⎛⎭⎪⎫b n -43,b 1-43=23≠0.∴⎩⎨⎧⎭⎬⎫b n-43是以23为首项,以2为公比的等比数列. 故b n -43=13×2n ,即b n =13×2n+43.由b n =1a n -12得a n b n =12b n +1, 故S n =a 1b 1+a 2b 2+…+a n b n =12(b 1+b 2+…+b n )+n =131-2n1-2+53n =13(2n+5n -1). 12.(2016·浙江高考)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,又a 2=2,则a n=3n -1,而n =1时也符合该式,所以数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3, 当n ≥3时,T n =3+91-3n -21-3-n +7n -22=3n -n 2-5n +112,因为当n =2时,也符合T n =3n-n 2-5n +112.所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *.第二讲等差数列、等比数列考点一 等差、等比数列的基本运算 一、基础知识要记牢等差数列 等比数列概念 a n -a n -1=d ,n ≥2 a na n -1=q ,n ≥2 通项公式a n =a 1+(n -1)d a n =a 1q n -1(q ≠0) 前n 项和S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n1-q=a 1-a n q1-q(2)q =1,S n =na 1二、经典例题领悟好[例1] (1)(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏(2)设等比数列{a n }中,若a 3=3,且a 2 017+a 2 018=0,则S 101等于( ) A .3 B .303 C .-3D .-303[解析] (1)每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 11-271-2=381,解得a 1=3.(2)∵等比数列{a n }中,a 3=3,且a 2 017+a 2 018=0,∴⎩⎪⎨⎪⎧a 1q 2=3,a 1q2 0161+q =0,解得⎩⎪⎨⎪⎧a 1=3,q =-1,∴S 101=a 11-q 1011-q =3[1--1101]1--1=3×22=3.[答案] (1)B (2)A等差等比数列的基本运算,一般通过其通项公式及前n 项和公式建立关于a 1和d或q的方程或方程组解决.注意利用等比数列前n 项和公式求和时,不可忽视对公比q 是否为1的讨论. 三、预测押题不能少1.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①②解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5,或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6. 考点二 等差、等比数列的判定与证明 一、基础知识要记牢1.证明数列{a n }是等差数列的两种基本方法 (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2). 2.证明{a n }是等比数列的两种基本方法 (1)利用定义,证明a n +1a n(n ∈N *)为一常数; (2)利用等比中项,即证明a 2n =a n -1a n +1(n ≥2,a n ≠0). 二、经典例题领悟好[例2] (2018届高三·浙江联考)已知数列{a n }的前n 项和为S n ,且S n =2-⎝ ⎛⎭⎪⎫2n+1a n (n ≥1).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;(2)设数列{2na n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n的大小.[解] (1)证明:由a 1=S 1=2-3a 1得,a 1=12.由S n =2-⎝ ⎛⎭⎪⎫2n +1a n 得,S n -1=2-⎝ ⎛⎭⎪⎫2n -1+1a n -1,n ≥2,于是a n =S n -S n -1=⎝⎛⎭⎪⎫2n -1+1a n -1-⎝ ⎛⎭⎪⎫2n +1a n,整理得a n n =12×a n -1n -1(n ≥2),所以数列⎩⎨⎧⎭⎬⎫a n n 是首项及公比均为12的等比数列.(2)由(1)得a n n =12×⎝ ⎛⎭⎪⎫12n -1=12n ,于是2na n =n ,T n =1+2+3+…+n =n n +12,1T n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1,A n =⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=2n n +1. 又2na n=2n +1n 2,所以问题转化为比较2n +1n 2与2n n +1的大小,即比较2nn 2与n n +1的大小. 设f (n )=2nn2,g (n )=n n +1,因为f (n +1)-f (n )=2n[n n -2-1][n n +1]2, 当n ≥3时,f (n +1)-f (n )>0, 所以当n ≥3时,f (n )单调递增,所以当n ≥4时,f (n )≥f (4)=1,而g (n )<1, 所以当n ≥4时,f (n )>g (n ).经检验当n =1,2,3时,仍有f (n )>g (n ). 综上可得,A n <2na n.1判断一个数列是等差等比数列,还有通项公式法及前n 项和公式法,但不可作为证明方法.2若要判断一个数列不是等差等比数列,只需判断存在连续三项不成等差等比数列即可.3a 2n =a n -1a n +1n ≥2,n ∈N *是{a n }为等比数列的必要不充分条件,也就是要注意判断一个数列是等比数列时,各项不能为0.三、预测押题不能少2.在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n 项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小. 解:(1)证明:∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列.由a 1=35,b n =1a n -1得b 1=-52,∴S n =-5n2+n n -12=n 22-3n .(2)由(1)知:b n =-52+n -1=n -72.由b n =1a n -1得a n =1+1b n =1+22n -7.∴a n -S n -7=-n 22+3n -6+22n -7.∵当n ≥4时,y =-n 22+3n -6是减函数,y =22n -7也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴对任意的n ∈N *,a n -S n -7≤0,∴a n ≤S n +7.考点三 等差、等比数列的性质 一、基础知识要记牢等差数列等比数列性质 (1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m +a n =a p +a q(2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m ·a n =a p ·a q (2)a n =a m qn -m(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S n ≠0)[例3] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97(2)(2017·湖州模拟)在各项均为正数的等比数列{a n }中,a 2a 10=9,则a 5+a 7( ) A .有最小值6 B .有最大值6 C .有最大值9D .有最小值3[解析] (1)法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8, ∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.(2)因为等比数列{a n }各项为正数,且a 5·a 7=a 2·a 10=9, 所以a 5+a 7≥2a 5·a 7=29=6, 当且仅当a 5=a 7=3时等号成立, 所以a 5+a 7的最小值为6.故选A. [答案] (1)C (2)A等差、等比数列性质应用问题求解策略(1)等差数列{a n }的前n 项和S n =n a 1+a n2=nan +12(n 为奇数)是常用的转化方法.(2)熟练运用等差、等比数列的性质,可减少运算过程,提高解题正确率.(3)灵活利用等差、等比数列和的性质,等差(比)数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…也是等差(比)数列(公比q 不为-1).三、预测押题不能少3.(1)设等差数列{a n }的前n 项和为S n ,已知a 2+a 8>0,S 11<0,则S n 的最大值为( ) A .S 5 B .S 6 C .S 9D .不能确定解析:选A 因为{a n }是等差数列,所以a 2+a 8=2a 5>0,a 5>0,又S 11=11a 1+a 112=11a 6<0,a 6<0,所以等差数列{a n }的前5项是正数,从第6项开始为负数,所以S n 的最大值为S 5,故选A.(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,即S 9-S 6=16,S 12-S 9=32,因此S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=4+8+16+32=60,故选B.[知能专练(十)]一、选择题1.(2017·苏州模拟)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A.-6 B.-4C.-2 D.2解析:选A 根据等差数列的定义和性质可得,S8=4(a1+a8)=4(a3+a6),又S8=4a3,所以a6=0.又a7=-2,所以a8=-4,a9=-6.2.(2017·全国卷Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.-24 B.-3C.3 D.8解析:选A 设等差数列{a n}的公差为d,因为a2,a3,a6成等比数列,所以a2a6=a23,即(a1+d)(a1+5d)=(a1+2d)2.又a1=1,所以d2+2d=0.又d≠0,则d=-2,所以{a n}前6项的和S6=6×1+6×52×(-2)=-24.3.已知等比数列{a n}中,a4+a8=-2,则a6(a2+2a6+a10)的值为( )A.4 B.6C.8 D.-9解析:选 A ∵a4+a8=-2,∴a6(a2+2a6+a10)=a6a2+2a26+a6a10=a24+2a4a8+a28=(a4+a8)2=4.4.(2017·宝鸡质检)设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为( )A.18 B.19C.20 D.21解析:选 D 因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n a1+a n2=n a5+a n-42=n2×32=16n=336,解得n=21.5.(2016·浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N *,|Bn B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若d n=|A n B n|,S n为△A n B n B n+1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.6.已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为m q 2D .数列{c n }为等比数列,公比为m m q 解析:选C 等比数列{a n }的通项公式a n =a 1q n -1,所以c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m =a 1q m (n -1)·a 1qm (n -1)+1·…·a 1qm (n -1)+m -1=a m 1q m (n -1)+m (n -1)+1+…+m (n -1)+m -1=a m1q(m )(m )m (n )211+112+---=a m1qm m n 2(1)(1)2+--.所以数列{c n }为等比数列,公比为m q 2. 二、填空题7.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , 则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-88.已知公比q 不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 2+S 2,a 3+S 3,a 4+S 4成等差数列,则q =________,S 6=________.解析:由a 2+S 2=12+q ,a 3+S 3=12+12q +q 2,a 4+S 4=12+12q +12q 2+q 3成等差数列,得2⎝ ⎛⎭⎪⎫12+12q +q 2=12+q +12+12q +12q 2+q 3,化简得(2q 2-3q +1)q =0,q ≠1,且q ≠0,解得q=12,所以S 6=a 11-q61-q=1-⎝ ⎛⎭⎪⎫126=6364.答案:12 63649.(2018届高三·杭州七校联考)等比数列{a n }中a 1=2,公比q =-2,记Πn =a 1×a 2×…×a n (即Πn 表示数列{a n }的前n 项之积),Π8,Π9,Π10,Π11中值最大的是________.解析:由a 1=2,q =-2,Πn =a 1×a 2×…×a n =(a 1)nqn n (-)12,Π8=28(-2)28=236;Π9=29(-2)36=245;Π10=210(-2)45=-255;Π11=211(-2)55=-266.故Π9最大.答案:Π9 三、解答题10.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ),于是d (2a 1+25d )=0. 又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2·(-6n +56)=-3n 2+28n .11.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:由S n =4a n -3可知, 当n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1,又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3×⎝ ⎛⎭⎪⎫43n -1-1(n ≥2,n ∈N *). 当n =1时上式也满足条件.所以数列{b n }的通项公式为b n =3×⎝ ⎛⎭⎪⎫43n -1-1(n ∈N *).12.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q . 由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =-2×[1--2n]1--2=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n2n +13=2S n,故S n +1,S n ,S n +2成等差数列.第三讲数列的综合应用考点一 数列求和数列求和的关键是分析其通项,熟悉两个基本数列的求和公式以及体现的思想方法(如转化与化归思想、错位相减法、倒序相加法等),根据具体情形采取灵活手段解决.数列求和的基本方法有公式法、错位相减法、裂(拆)项相消法、分组法、倒序相加法和并项法等.考查类型(一) 利用公式、分组求和 一、经典例题领悟好[例1] (2016·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.[解] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27, 所以b n =3n -1(n ∈N *).设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2. 所以a n =2n -1(n ∈N *).(2)由(1)知,c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n 1-3=n 2+3n-12.分组求和法的2种常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组法求和.二、预测押题不能少1.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,又a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考查类型(二) 错位相减求和 一、经典例题领悟好[例2] (2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由b 2+b 3=12,得b 1(q +q 2)=12. 因为b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n. 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②联立①②,解得a 1=1,d =3,由此可得a n =3n -2. 所以{a n }的通项公式为a n =3n -2,{b n }的通项公式为b n =2n. (2)设数列{a 2n b n }的前n 项和为T n ,由a 2n b n =(6n -2)·2n.有T n =4×2+10×22+16×23+…+(6n -2)×2n,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1,上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n-(6n -2)×2n +1=12×1-2n1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 得T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.1错位相减法适用于一个等差数列和一个等比数列对应项相乘所得的数列求和,属于等比数列求和公式的推导方法的应用.2利用错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应注意两式“错项对齐”;②当等比数列的公比为字母时,应对字母是否为1进行讨论.二、预测押题不能少2.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .解:(1)设{a n }的公比为q , 由题意知:a 1(1+q )=6,a 21q =a 1q 2. 又a n >0,解得a 1=2,q =2,所以a n =2n. (2)由题意知,S 2n +1=2n +1b 1+b 2n +12=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1=32+1-⎝ ⎛⎭⎪⎫12n -1-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .考查类型(三) 裂项相消求和一、经典例题领悟好[例3] (2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. [解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=22n +12n -1=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.(1)裂项相消一般适用于通项公式为h nf ng n型数列的求和.(2)裂项相消求和法一般是把数列每一项分裂成两项的差,通过正、负项相消求和.常用裂项形式如:an n +k =a k ⎝ ⎛⎭⎪⎫1n -1n +k ,a n +n +k =a k (n +k -n )(a ,k 是不为0的常数).利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.(3)如果数列的通项公式不是常见的裂项形式,可以先猜后验,再确定如何裂项. 二、预测押题不能少3.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且3a 2是a 1+3和a 3+4的等差中项.(1)求数列{a n }的通项公式; (2)设b n =a na n +1a n +1+1,数列{b n }的前n 项和为T n ,求证:T n <12.解:(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3+a 3+42=3a 2,解得a 2=2.设数列{a n }的公比为q ,则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q+2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2.∴a 1=1.故数列{a n }的通项公式为a n =2n -1.(2)证明:∵b n =a na n +1a n +1+1=2n -12n -1+12n+1=12n -1+1-12n+1,∴T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+122+1-123+1+…+⎝ ⎛⎭⎪⎫12n -1+1-12n +1=11+1-12n +1=12-12n +1<12. 考点二 数列在实际问题中的应用 一、经典例题领悟好[例4] 某企业为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的设备维修、燃料和动力等消耗的费用(称为设备的低劣化值)会逐年增加,第一年设备低劣化值是4万元,从第二年到第七年,每年设备低劣化值均比上年增加2万元,从第八年开始,每年设备低劣化值比上年增加25%.(1)设第n 年该生产线设备低劣化值为a n ,求a n 的表达式;(2)若该生产线前n 年设备低劣化平均值为A n ,当A n 达到或超过12万元时,则当年需要更新生产线,试判断第几年需要更新该生产线,并说明理由.[解] (1)当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,所以a n =4+2(n -1)=2n +2.当n ≥8时,数列{a n }是首项为a 7,公比为54的等比数列,又a 7=16,所以a n =16×⎝ ⎛⎭⎪⎫54n -7,所以a n 的表达式为a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝ ⎛⎭⎪⎫54n -7,n ≥8.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤7时,S n =4n +n (n -1)=n 2+3n ,当n ≥8时,由S 7=70,得S n =S 7+16×54×1-⎝ ⎛⎭⎪⎫54n -71-54=80·⎝ ⎛⎭⎪⎫54n -7-10.该生产线前n 年设备低劣化平均值为A n=S nn =⎩⎪⎨⎪⎧n +3,1≤n ≤7,80·⎝ ⎛⎭⎪⎫54n -7-10n,n ≥8.当1≤n ≤7时,数列{A n }为单调递增数列; 当n ≥8时,因为S n +1n +1-S n n =80·⎝ ⎛⎭⎪⎫54n -7⎝ ⎛⎭⎪⎫n 4-1+10n n +1>0,所以{A n }为单调递增数列.又S 77=10<12,S 88=11.25<12,S 99≈12.78>12, 则第九年需要更新该生产线.数列应用题中的常见模型(1)等差模型:即问题中增加(或减少)的量是一个固定量,此量即为公差. (2)等比模型:即问题中后一量与前一量的比是固定常数,此常数即为公比. (3)a n 与a n +1型:即问题中给出前后两项关系不固定,可考虑a n 与a n +1的关系. 二、预测押题不能少4.某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产,设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).解:(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d=⎝ ⎛⎭⎪⎫322a n -2-32d -d…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d .由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000. ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000解得d =m m ⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭3210002312--⨯=1 0003m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 0003m-2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.[知能专练(十一)]一、选择题1.(2018届高三·金华十校联考)已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2 018=( )A .2×31 009-2 B .2×31 009C.32 018-12 D.32 018+12解析:选A 由a n +2=3a n 可得数列{a n }的奇数项与偶数项分别构成等比数列,所以S 2 018=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 018)=1-31 0091-3+31-31 0091-3=(-2)×(1-31 009)=2×31 009-2.2.(2017·长沙质检)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( )A .2 017B .2 016C .1 009D .1 008解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=( )A .200B .-200C .400D .-400解析:选 B S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘以n ,得数列(记为)a 1,a 2,a 3,…,a n . 则a 1a 2+a 2a 3+…+a n -1a n =( )A .n 2B .(n -1)2C .n (n -1)D .n (n +1)解析:选C a 1a 2+a 2a 3+…+a n -1a n =n 1·n 2+n 2·n 3+…+n n -1·nn =n 2⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n -1n =n 2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 2·n -1n=n (n -1). 5.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:选D 当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有S n >0.6.(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110解析:选A 设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n n +12.由题意可知,N >100,令n n +12>100,得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n-1,前n 组的所有项的和为21-2n1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t-1应与-2-k 互为相反。

(通用版)2018学高考数学二轮复习练酷专题高考第18题(或19题)立体几何课件文

(通用版)2018学高考数学二轮复习练酷专题高考第18题(或19题)立体几何课件文

6 (2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为 , 3 求该三棱锥的侧面积. 解:设 AB=x,在菱形 ABCD 中,由∠ABC=120°,可得 AG
3 x =GC= x,GB=GD= . 2 2 3 因为 AE⊥EC,所以在 Rt△AEC 中,可得 EG= x. 2 由 BE⊥平面 ABCD,知△EBG 为直角三角形, 2 可得 BE= x. 2 由已知得,三棱锥 EACD 的体积 1 1 6 3 6 VEx= , ACD= × ×AC×GD×BE= 3 2 24 3
线线垂直的证明及空间 几何体的体积
线面垂直的应用及空间 几何体的体积 线线垂直的证明及空间 几何体的体积
年份
2016 2015
卷别
全国卷Ⅲ 全国卷Ⅰ
考题位置
考查内容
间几何体的体积
解答题第19题 线面平行的证明及空 解答题第18题 面面垂直的判定及空 间几何体的侧面积
2015
全国卷Ⅱ
解答题第19题 空间线面位置关系、
由题设可得PC⊥平面PAB,DE⊥平面PAB, 2 1 所以DE∥PC,因此PE= PG,DE= PC. 3 3 由已知,正三棱锥的侧面是直角三角形且PA=6, 可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2, 1 1 4 所以四面体PDEF的体积V= × ×2×2×2= . 3 2 3
2.(2016· 全国卷Ⅰ)如图,已知正三棱锥PABC 的侧面是直角三角形,PA=6,顶点P在平 面ABC内的正投影为点D,D在平面PAB内 的正投影为点E,连接PE并延长交AB于点G. (1)证明:G是AB的中点; (2)在图中作出点E在平面PAC内的正投影F(说明作法及理 由),并求四面体PDEF的体积. 解:(1)证明:因为P在平面ABC内的正投影为D,

2018高考数学理二轮复习课件:1-4-2 高考中的立体几何 精品

2018高考数学理二轮复习课件:1-4-2 高考中的立体几何 精品
[解] ①证明:∵AD⊥侧面 PAB,PE⊂平面 PAB, ∴AD⊥PE. 又∵△PAB 是等边三角形,E 是线段 AB 的中点, ∴PE⊥AB.∵AD∩AB=A, ∴PE⊥平面 ABCD. 而 CD⊂平面 ABCD,所以 PE⊥CD.
②求 PC 与平面 PDE 所成角的正弦值.
[解]②以 E 为原点,建立如图所示的空间直角坐标系 E-xyz.
②求平面 B1GE 与底面 ABC 所成锐二面角的余弦值.
[解]②过点 A1 作 A1O⊥AB,垂足为 O,连接 OC, ∵侧面 AA1B1B⊥底面 ABC, ∴A1O⊥底面 ABC, ∴∠A1AB=60°, ∵AA1=2,∴AO=1, ∵AB=2,∴点 O 是 AB 的中点, 又∵点 G 为正三角形 ABC 的重心, ∴点 G 在 OC 上, ∴OC⊥OB,
热点探究悟道
热点一 空间位置关系 (1)[2015·陕西高三质检]如图,在正方体 ABCD-A1B1C1D1 中,AA1=2,E 为棱 CC1 的中点.
①求证:B1D1⊥AE;
[证明] ①连接 BD, 则 BD∥B1D1. ∵四边形 ABCD 是正方形, ∴AC⊥BD. ∵CE⊥平面 ABCD, ∴CE⊥BD. 又 AC∩CE=C, ∴BD⊥平面 ACE. ∵AE⊂平面 ACE, ∴BD⊥AE, ∴B1D1⊥AE.
= |a·b| |a||b| .
(2)线面角
|l·n|
设 l 是斜线 l 的方向向量,n 是平面 α 的法向量,则斜线 l 与平面 α 所成的角满足 sinθ= |l||n| .
(3)二面角 →①如→图(ⅰ),AB,CD 是二面角 α-l-β 的两个半平面内与棱 l 垂直的直线,则二面角的大小 θ= 〈AB,CD〉 .
∵A1O⊥底面 ABC,∴A1O⊥OB,A1O⊥OC, 以 O 为原点,分别以 OC,OB,OA1 为 x,y,z 轴建立如图空间直角坐标系 O-xyz,由题意得 A(0,

2018届高考数学文新课标二轮专题复习课件:2-9 立体几何 精品

2018届高考数学文新课标二轮专题复习课件:2-9 立体几何 精品

1.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,E,F 分别为 线段 AA1,B1C 上的点,则三棱锥 D1-EDF 的体积为________.
答案
1 6
解析 VD1-EDF=VF-D1ED,
又 S△D1ED=12,点 F 到平面 D1ED 的距离为 1,
∴VD1-EDF=VF-D1ED=61.
(2)(2016·保定调研)已知一个四棱锥的高为 3,其底面用斜二
测画法所画的水平放置的直观图是一个边长为 1 的正方形,则此
四棱锥的体积为( )
A.2 2
B.6 2
C.1
D. 2
【解析】 因为底面用斜二测画法所画的水平放置的直观图 是一个边长为 1 的正方形,所以在直角坐标系中,底面是边长为 1 和 3 的平行四边形,且平行四边形的一条对角线垂直于平行四 边形的短边,此对角线的长为 2 2,所以该四棱锥的体积为 V= 13×2 2×1×3=2 2.
A1-ADC 的高仍为 h,底面面积为21S,所以该三棱锥的体积为
V1=31×21Sh=16Sh.多面体 A1B1C1DBC 的体积为 V2=Sh-16Sh=65
Sh.所以多面体 A1ADC 与多面体 A1B1C1DBC 体积的比值为15.
【答案】
1 5
(4)(2016·北京)某三棱锥的三视图如图所示,则该三棱锥的体 积为( )
∴该球的体积 V=34πR3=43×54
45π=5
5π 6.
【答案】 D
【回顾】 (1)四棱锥、直六棱柱的外接球球心同样位于过底 面外心与底面垂直的直线上.
(2)球心到多面体各个顶点距离相等.
[求多面体的高]
(1)(2016·长沙四校联考)已知棱长均为 a 的正三棱柱 ABC-

2018年高考理科数学通用版三维二轮专题复习教学案:第一部分 层级三 30分的拉分题因人而定酌情自选 Word版

2018年高考理科数学通用版三维二轮专题复习教学案:第一部分 层级三 30分的拉分题因人而定酌情自选 Word版

[全国卷3年考情分析][典例] (2016·四川高考)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题:①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线. 其中的真命题是________(写出所有真命题的序号).[解析] 对于①,特殊值法.取A (1,1),则A ′⎝⎛⎭⎫12,-12,A ′的“伴随点”为点(-1,-1).故①为假命题.对于②,单位圆的方程为x 2+y 2=1,设其上任意一点(x ,y )的“伴随点”为(x ′,y ′),则⎩⎪⎨⎪⎧x ′=yx 2+y2=y ,y ′=-xx 2+y 2=-x ,∴y 2+(-x )2=y 2+x 2=1.故②为真命题.③设A (x ,y ),B (x ,-y ),则它们的伴随点分别为A ′⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,B ′⎝⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2,A ′与B ′关于y 轴对称,故③为真命题.④设共线的三点A (-1,0),B (0,1),C (1,2),则它们的伴随点分别为A ′(0,1),B ′(1,0),C ′⎝⎛⎭⎫25,-15,此三点不共线,故④为假命题. 故真命题为②③. [答案] ②③1.(2018届高三·湘中高三联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a n n为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ,①则当n ≥2时,(n -1)·2n =a 1+2a 2+…+2n -2a n -1,②①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,令b n =a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧b 5≥0,b 6≤0,即⎩⎪⎨⎪⎧5(2-k )+2≥0,6(2-k )+2≤0,解得73≤k ≤125.答案:⎣⎡⎦⎤73,125[典例] (2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.[解析] 求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2,所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. [答案] 1-ln 22.(2017·郑州质检)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥a 恒成立,则a的最大值为( )A .22B .4 2C .8D .16解析:选C 法一:依题意得,2x -1>0,y -1>0,4x 2y -1+y 22x -1=[(2x -1)+1]2y -1+[(y -1)+1]22x -1≥4(2x -1)y -1+4(y -1)2x -1≥4×22x -1y -1×y -12x -1=8,即4x 2y -1+y 22x -1≥8,当且仅当⎩⎪⎨⎪⎧2x -1=1,y -1=1,2x -1y -1=y -12x -1,即⎩⎪⎨⎪⎧x =1,y =2时,取等号,因此4x 2y -1+y 22x -1的最小值是8,即a ≤8,故a 的最大值是8.法二:令m =2x -1,n =y -1, 则m >0,n >0,x =m +12,y =n +1,4x 2y -1+y 22x -1=4⎝⎛⎭⎫m +122n +(n +1)2m=(m +1)2n +(n +1)2m ≥4m n +4nm≥24m n ×4nm=8, 当且仅当m =1且n =1,即x =1,y =2时取等号, 即4x 2y -1+y 22x -1≥8, 故a ≤8,所以a 的最大值是8.[典例] (2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A .[-2,2] B .[-23,2] C .[-2,2 3 ]D .[-23,2 3 ][解析] 选A 法一:作出f (x )的图象如图所示.当y =⎪⎪⎪⎪x2+a 的图象经过点(0,2)时,可知a =±2. 当y =x 2+a 的图象与y =x +2x 的图象相切时,由x 2+a =x +2x ,得x 2-2ax +4=0,由Δ=0, 并结合图象可得a =2. 要使f (x )≥⎪⎪⎪⎪x 2+a 恒成立,当a ≤0时,需满足-a ≤2,即-2≤a ≤0, 当a >0时,需满足a ≤2,即0<a ≤2, 综上可知,-2≤a ≤2.法二:∵f (x )≥⎪⎪⎪⎪x 2+a 在R 上恒成立, ∴-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立.①令g (x )=-f (x )-x2.当0≤x <1时,f (x )=x +2, g (x )=-x -2-x 2=-32x -2≤-2,即g (x )max =-2.当x <0时,f (x )=-x +2,g (x )=x -2-x 2=x2-2,即g (x )<-2. 当x ≥1时,f (x )=x +2x ,g (x )=-x -2x -x 2=-32x -2x ≤-23,即g (x )max =-2 3. ∴a ≥-2. ②令h (x )=f (x )-x2.当0≤x <1时,f (x )=x +2,h (x )=x +2-x 2=x2+2≥2,即h (x )min =2. 当x <0时,f (x )=-x +2,h (x )=-x +2-x 2=-32x +2>2,即h (x )>2. 当x ≥1时,f (x )=x +2x ,h (x )=x +2x -x 2=x 2+2x ≥2,即h (x )min =2. ∴a ≤2.综上可知,-2≤a ≤2.法三:若a =23,则当x =0时,f (0)=2, 而⎪⎪⎪⎪x 2+a =23,不等式不成立,故排除选项C ,D.若a =-23,则当x =0时,f (0)=2,而⎪⎪⎪⎪x 2+a =23,不等式不成立,故排除选项B.故选A.3.(2017·东北四市高考模拟)已知函数f (x )=cos x +mcos x +2,若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,则实数m 的取值范围是( )A.⎝⎛⎭⎫54,6B.⎝⎛⎭⎫53,6 C.⎝⎛⎭⎫75,5 D.⎝⎛⎭⎫54,5 解析:选C f (x )=cos x +m cos x +2=1+m -2cos x +2,令t =cos x +2,由于-1≤cos x ≤1,因此1≤t ≤3, 设g (t )=1+m -2t(1≤t ≤3).法一:若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,不妨设a <c ,b <c ,则只需满足f (a )+f (b )>f (c )恒成立,故只需2f (x )min >f (x )max 即可,即2g (t )min >g (t )max .当m =2时,f (a )=f (b )=f (c )=1,成立,故m =2符合题意;当m <2时,g (t )=1+m -2t 在[1,3]上单调递增,则⎩⎪⎨⎪⎧ 2(m -1)>1+m -23,m <2,解得75<m <2;当m >2时,g (t )=1+m -2t在[1,3]上单调递减,则⎩⎪⎨⎪⎧2⎝⎛⎭⎫1+m -23>m -1,m >2,解得2<m <5.综上,75<m <5. 法二:令m =5,则g (t )=1+3t (1≤t ≤3),∴2≤g (t )≤4.取f (a )=f (b )=2,f (c )=4.不合题意,排除A 、B ;取m =1310,则g (t )=1-710t (1≤t ≤3),∴310≤g (t )≤2330,取f (a )=310,f (b )=310,f (c )=2330,不合题意,排除D ,故选C.[典例] (2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m[解析] 法一:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f (-x )+f (x )2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x ,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1m x i =0,∑i =1m y i =2×m2=m ,所以∑i =1m (x i +y i )=m .法二:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f (-x )+f (x )2=1,所以函数y =f (x )的图象关于点(0,1)对称.可设y =f (x )=x +1,由⎩⎪⎨⎪⎧y =x +1,y =x +1x ,得交点(-1,0),(1,2),则x 1+y 1+x 2+y 2=2,结合选项,应选B.[答案] B[针对训练]4.(2017·沈阳质检)已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则P A ―→·PB ―→的值是( )A .-38B.316 C .-38D.38解析:选A 法一:令点P (x 0,y 0),因为该双曲线的渐近线分别是x 3-y =0,x 3+y =0,所以可取|P A |=⎪⎪⎪⎪x 03-y 013+1,|PB |=⎪⎪⎪⎪x 03+y 013+1,又cos ∠APB =-cos ∠AOB =-cos2∠AOx=-cos π3=-12,所以P A ―→·PB ―→=|P A ―→|·|PB ―→|·cos ∠APB =⎪⎪⎪⎪x 203-y 2043·⎝⎛⎭⎫-12=34×⎝⎛⎭⎫-12=-38. 法二:如图,由题意知,双曲线的渐近线方程为y =±33x ,∴∠AOB =60°, ∴∠APB =120°, ∴P A ―→·PB ―→<0.取P 点为双曲线右顶点. 则|P A |=|PB |=12|OP |=32,∴P A ―→·PB ―→=-38.[专题过关检测]一、选择题1.设a 1,a 2,a 3,…,a n ∈R ,n ≥3.若p :a 1,a 2,a 3,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选A (特殊数列)取大家最熟悉的等比数列a n =2n ,代入q 命题(不妨取n =3)满足,再取a n =3n 代入q 命题(不妨取n =3)也满足,反之取a 1=a 2=a 3=…=a n =0时,满足q 命题,但不满足p 命题,故p 是q 的充分条件,但不是q 的必要条件.2.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C .12D .1解析:选C 法一:由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.3.已知函数f (x )在(-1,+∞)上单调,且函数y =f (x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50解析:选B 因为函数y =f (x -2)的图象关于直线x =1对称,则函数f (x )的图象关于直线x =-1对称.又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=100(a 1+a 100)2=50(a 50+a 51)=-100.4.(2017·贵州适应性考试)已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足|P A |=m |PF |,当m 取最大值时,|P A |的值为( )A .1B . 5 C. 6D .2 2解析:选D 设P (x ,y ),由抛物线的定义知|PF |=y +1,|P A |=x 2+(y +1)2,所以m=x 2+(y +1)2y +1,平方得m 2=x 2+(y +1)2(y +1)2,又x 2=4y ,当y =0时,m =1,当y ≠0时,m 2=4y +(y +1)2(y +1)2=4y(y +1)2+1=1+4y +1y+2,由基本不等式可知y +1y ≥2,当且仅当y =1时取等号,此时m 取得最大值2,故|P A |=4+(1+1)2=2 2.5.对任意实数a ,b ,c ,d ,定义⎝⎛⎭⎪⎫ab cd =⎩⎪⎨⎪⎧ad -bc ,ad ≥bc ,12bc -ad ,ad <bc ,已知函数f (x )=⎝⎛⎭⎪⎫x 41x ,直线l :kx -y +3-2k =0,若直线l 与函数f (x )的图象有两个交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫-1,23∪⎝⎛⎭⎫34,1 B.⎝⎛⎭⎫-1,1724 C.⎝⎛⎭⎫-1,1724∪⎝⎛⎭⎫34,1 D .(-1,1)解析:选A 由题意知,f (x )=⎝ ⎛⎭⎪⎫x 41 x =⎩⎪⎨⎪⎧x 2-4,x ≤-2或x ≥2,124-x 2,-2<x <2,直线l :y =k (x -2)+3过定点A (2,3),画出函数f (x )的图象,如图所示,其中f (x )=x 2-4(x ≤-2或x ≥2)的图象为双曲线的上半部分,f (x )=124-x 2(-2<x <2)的图象为椭圆的上半部分,B (-2,0),设直线AD 与椭圆相切,D 为切点.由图可知,当k AB <k <1或-1<k <k AD 时,直线l 与f (x )的图象有两个交点.k AB =3-02-(-2)=34,将y =k AD (x -2)+3与y =124-x 2(-2<x <2)联立消去y ,得(1+4k 2AD )x 2+8k AD (3-2k AD )x +16k 2AD -48k AD +32=0,令Δ=0,解得k AD =23.综上所述,k 的取值范围是⎝⎛⎭⎫-1,23∪⎝⎛⎭⎫34,1. 6.(2016·浙江高考)已知实数a ,b ,c ,( )A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:选D 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立,但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立,但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立,但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A 、B 、C 均不成立,所以选D. 7.(2017·郑州质检)已知函数f (x )=sin x2+cos x.若当x >0时,函数f (x )的图象恒在直线y =kx 的下方,则k 的取值范围是( )A.⎣⎡⎦⎤13,33B.⎣⎡⎭⎫13,+∞ C.⎣⎡⎭⎫33,+∞ D.⎣⎡⎦⎤-33,32 解析:选B 由题意,当x >0时,f (x )=sin x2+cos x <kx 恒成立.由f (π)<k π,知k >0.又f ′(x )=1+2cos x (2+cos x )2,由切线的几何意义知,要使f (x )<kx 恒成立,必有k ≥f ′(0)=13.要证k ≥13时不等式恒成立,只需证g (x )=sin x 2+cos x -13x <0,∵g ′(x )=2cos x +1(2+cos x )2-13=-(cos x -1)23(2+cos x )2≤0,∴g (x )在(0,+∞)上单调递减,∴g (x )<g (0)=0,∴不等式成立.综上,k ∈⎣⎡⎭⎫13,+∞.8.设D ,E 分别为线段AB ,AC 的中点,且BE ―→·CD ―→=0,记α为AB ―→与AC ―→的夹角,则下述判断正确的是( )A .cos α的最小值为22B .cos α的最小值为13C .sin ⎝⎛⎭⎫2α+π2的最小值为825D .sin ⎝⎛⎭⎫π2-2α的最小值为725解析:选D 依题意得CD ―→=12(CA ―→+CB ―→)=12[-AC ―→+(AB ―→-AC ―→)]=12(AB ―→-2AC ―→),BE ―→=12(BA ―→+BC ―→)=12[-AB ―→+(AC ―→-AB ―→)]=12(AC ―→-2AB ―→).由CD ―→·BE ―→=0,得14(AB ―→-2AC ―→)·(AC ―→-2AB ―→)=0,即-2AB ―→2-2AC ―→2+5AB ―→·AC ―→=0,整理得,|AB ―→|2+|AC ―→|2=52|AB ―→|·|AC ―→|cos α≥2|AB ―→|·|AC ―→|,所以cos α≥45,sin π2-2α=cos 2α=2cos 2α-1≥2×⎝⎛⎭⎫452-1=725,所以sin π2-2α的最小值是725.9.(2017·石家庄质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1, 则CP AC =x 3=PQ 1,即PQ =x3, 又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32 =332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,结合图象知选A.10.过坐标原点O 作单位圆x 2+y 2=1的两条互相垂直的半径OA ,OB ,若在该圆上存在一点C ,使得OC ―→=a OA ―→+b OB ―→(a ,b ∈R),则以下说法正确的是( )A .点P (a ,b )一定在单位圆内B .点P (a ,b )一定在单位圆上C .点P (a ,b )一定在单位圆外D .当且仅当ab =0时,点P (a ,b )在单位圆上解析:选B 使用特殊值法求解.设A (1,0),B (0,-1),则OC ―→=a OA ―→+b OB ―→=(a ,-b ).∵C 在圆上,∴a 2+b 2=1,∴点P (a ,b )在单位圆上,故选B. 二、填空题1.已知函数f (x )=⎩⎪⎨⎪⎧a x +1,x ≤0,|ln x |,x >0,当1<a <2时,关于x 的方程f [f (x )]=a 实数解的个数为________.解析:当1<a <2时,作出f (x )的图象如图所示,令u =f (x ),则f (u )=a ,由f (x )的图象可知,若u 满足u <0,此时f (x )=u 无解,若u >0,解得1e 2<u <1e <1或2<e<u <e 2,显然,当x <0时,不可能使得f (x )=u 有解,当x >0,1e 2<u <1e<1时,f (x )=u 有2个解,当x >0,2<e<u <e 2时,f (x )=u 也有2个解.因此f [f (x )]=a 有4个实数解.答案:42.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:(特殊图形)如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得BC sin ∠E =BE sin ∠C,即2sin 30°=BEsin 75°,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,BF sin ∠FCB =BC sin ∠BFC,即BFsin 30°=2sin 75°,解得BF =6-2,所以AB 的取值范围是(6-2,6+2). 答案:(6-2,6+2)3.设0<m <12,若1m +11-2m≥k 恒成立,则实数k 的取值范围是________.解析:由题可知,k 的最大值即为1m +11-2m 的最小值.因为1m +11-2m =[2m +(1-2m )]⎝⎛⎭⎫1m +11-2m =3+1-2m m +2m1-2m ≥3+22,取等号的条件是当且仅当1-2m =2m ,即m =1-22∈⎝⎛⎭⎫0,12时成立,所以k 的最大值为3+2 2.故所求实数k 的取值范围是(-∞,3+2 2 ].答案:(-∞,3+2 2 ]4.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________.解析:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫2x 3+φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12. 答案:23 π125.已知向量a ,b ,c 满足|a |=2,|b |=a ·b =3,若(c -2a )·(2b -3c )=0, 则|b -c |的最大值是________.解析:设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,∴cos θ=a ·b |a ||b |=32×3=22,∵θ∈[0,π],∴θ=π4.设OA ―→=a ,OB ―→=b ,c =(x ,y ),建立如图所示的平面直角坐标系. 则A (1,1),B (3,0),∴c -2a =(x -2,y -2),2b -3c =(6-3x ,-3y ), ∵(c -2a )·(2b -3c )=0,∴(x -2)(6-3x )+(y -2)(-3y )=0. 即(x -2)2+(y -1)2=1. 又知b -c =(3-x ,-y ),∴|b -c |=(x -3)2+y 2≤(3-2)2+(0-1)2+1=2+1, 即|b -c |的最大值为2+1. 答案:2+16.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积的最大值为________.解析:设AD =x ,则AB =AC =2x ,因为两边之和大于第三边,两边之差小于第三边,所以AB +AD >BD ,即2x +x >3,x >1,AB -AD <BD ,即2x -x <3,x <3,所以x ∈(1,3). 在△ABD 中,由余弦定理得9=(2x )2+x 2-2·2x ·x cos A ,即cos A =5x 2-94x 2,S △ABC =2S △ABD =2×12×2x ×x ×sin A=2x21-⎝⎛⎭⎫5x 2-94x 22=32-(x 4-10x 2+9), 令t =x 2,则t ∈(1,9),S △ABC =32-(t -5)2+16,当t =5,即x =5时,S △ABC 有最大值6.答案:67.对于函数f (x )与g (x ),若存在λ∈{x ∈R|f (x )=0},μ∈{x ∈R|g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x+4互为“零点密切函数”,则实数a 的取值范围是________.解析:易知函数f (x )为增函数,且f (2)=e 2-2+2-3=0,所以函数f (x )=e x -2+x -3只有一个零点x =2,则取λ=2,由|2-μ|≤1,知1≤μ≤3.由f (x )与g (x )互为“零点密切函数”知函数g (x )=x 2-ax -x +4在区间[1,3]内有零点,即方程x 2-ax -x +4=0在[1,3]内有解,所以a =x +4x -1,而函数y =x +4x -1在[1,2]上单调递减,在[2,3]上单调递增,所以当x =2时,a 取最小值3,且当x =1时,a =4,当x =3时,a =103,所以a max =4,所以实数a 的取值范围是[3,4].答案:[3,4]8.对于数列{a n },定义{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).对正整数k ,规定{Δk a n }为数列{a n }的k 阶差分数列,其中Δk a n =Δk -1a n +1-Δk -1a n =Δ(Δk -1a n ).若数列{Δ2a n }的各项均为2,且满足a 11=a 2 015=0,则a 1的值为________.解析:因为数列{Δ2a n }的各项均为2,即Δa n +1-Δa n =2,所以Δa n =Δa 1+2n -2,即a n+1-a n =Δa 1+2n -2,所以a n -a 1=(n -1)Δa 1+(0+2+4+…+2n -4) =(n -1)Δa 1+(n -1)(n -2)(n ≥2),所以⎩⎪⎨⎪⎧a 11-a 1=10Δa 1+10×9,a 2 015-a 1=2 014Δa 1+2 014×2 013,即⎩⎪⎨⎪⎧0-a 1=10Δa 1+10×9,0-a 1=2 014Δa 1+2 014×2 013, 解得a 1=20 140. 答案:20 1409.已知圆O :x 2+y 2=1 和点A (-2,0),若定点B (b,0)(b ≠-2) 和常数 λ满足:对圆 O 上任意一点 M ,都有|MB |=λ|MA |,则b =________ ;λ=________ .解析:法一:(三角换元)在圆O 上任意取一点M (cos θ,sin θ),则由|MB |=λ|MA |可得(cos θ-b )2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],整理得1+b 2-5λ2-(2b +4λ2)·cos θ=0,即⎩⎪⎨⎪⎧1+b 2-5λ2=0,2b +4λ2=0,解得⎩⎨⎧b =-12,λ=12.法二:(特殊点)既然对圆O 上任意一点M ,都有|MB |=λ|MA |,使得λ与b 为常数,那么取M (1,0)与M (0,1)代入|MB |=λ|MA |,得⎩⎪⎨⎪⎧(b -1)2=9λ2,b 2+1=5λ2, 解得⎩⎨⎧b =-12,λ=12.答案:-12 1210.(2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x=0的解的个数为8.答案:8压轴专题(二) 第20题解答题“圆锥曲线的综合问题”的抢分策略[全国卷3年考情分析][常考题点逐一突破][典例] (2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1,过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得,a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3,所以离心率e =c a =32.(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1),所以直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.[针对训练]1.(2017·沈阳质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为(-6,0),e =22.(1)求椭圆C 的方程;(2)如图,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y-y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.解:(1)由题意得,c =6,e =22,解得a =23,b =6, ∴椭圆C 的方程为x 212+y 26=1.(2)证明:由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2, 化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20, ∴k 1k 2=2-12x 20x 20-4=-12.故k 1k 2为定值. (3)|OP |2+|OQ |2是定值. 设P (x 1,y 1),Q (x 2,y 2), 联立方程⎩⎪⎨⎪⎧y =k 1x ,x 212+y26=1,解得⎩⎨⎧x 21=121+2k 21,y 21=12k211+2k 21,∴x 21+y 21=12(1+k 21)1+2k 21, 同理,可得x 22+y 22=12(1+k 22)1+2k 22.由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22 =12(1+k 21)1+2k 21+12(1+k 22)1+2k 22=12(1+k 21)1+2k 21+12⎣⎡⎦⎤1+⎝⎛⎭⎫-12k 121+2⎝⎛⎭⎫-12k 12 =18+36k 211+2k 21=18. 综上,|OP |2+|OQ |2为定值,且为18.[典例] (2017·浙江高考)如图,已知抛物线x 2=y ,点A⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值. [解] (1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则直线BQ 的斜率为-1k .则直线AP 的方程为y -14=k ⎝⎛⎭⎫x +12, 即kx -y +12k +14=0,直线BQ 的方程为y -94=-1k ⎝⎛⎭⎫x -32, 即x +ky -94k -32=0,联立⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,在区间⎝⎛⎭⎫12,1上单调递减, 因此当k =12时,|P A |·|PQ |取得最大值2716.[针对训练]2.(2017·沈阳质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点分别为F 1,F 2,离心率e =22,短轴长为2. (1)求椭圆的方程;(2)点A 为椭圆上的一动点(非长轴端点),AF 2的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求△ABC 面积的最大值.解:(1)由题意得⎩⎪⎨⎪⎧e =c a =22,2b =2,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =1,故椭圆的标准方程为x 22+y 2=1.(2)①当直线AB 的斜率不存在时,不妨取A ⎝⎛⎭⎫1,22,B ⎝⎛⎭⎫1,-22,C ⎝⎛⎭⎫-1,-22, 故S △ABC =12×2×2= 2.②当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立方程⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,消去y , 化简得(2k 2+1)x 2-4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,|AB |=(1+k 2)·[(x 1+x 2)2-4x 1x 2] =(1+k 2)·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4k 22k 2+12-4·2k 2-22k 2+1 =22·k 2+12k 2+1,点O 到直线kx -y -k =0的距离d =|-k |k 2+1=|k |k 2+1, ∵O 是线段AC 的中点, ∴点C 到直线AB 的距离为2d =2|k |k 2+1, ∴S △ABC =12|AB |·2d =12·⎝ ⎛⎭⎪⎫22·k 2+12k 2+1·2|k |k 2+1 =2 2k 2(k 2+1)(2k 2+1)2=2 214-14(2k 2+1)2< 2. 综上,△ABC 面积的最大值为 2.[典例] (2016·全国卷Ⅱ)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. [解] 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |,得23+tk 2=k3k 2+t, 即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 因此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.故k 的取值范围是(32,2).解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出参数的取值范围; (4)利用已知不等关系构造不等式,从而求出参数的取值范围; (5)利用函数值域的求法,确定参数的取值范围. [题后悟通][针对训练]3.已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率等于32,以椭圆E 的长轴和短轴为对角线的四边形的周长为4 5.直线l :y =kx +m 与y 轴交于点P ,与椭圆E 相交于A ,B 两个点.(1)求椭圆E 的方程;(2)若AP ―→=3PB ―→,求m 2的取值范围.解:(1)根据已知设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),焦距为2c ,由已知得c a =32,∴c =32a ,b 2=a 2-c 2=a 24. ∵以椭圆E 的长轴和短轴为对角线的四边形的周长为45, ∴4a 2+b 2=25a =45, ∴a =2,b =1.∴椭圆E 的方程为x 2+y 24=1.(2)根据已知得P (0,m ),设A (x 1,kx 1+m ),B (x 2,kx 2+m ),由⎩⎪⎨⎪⎧y =kx +m ,4x 2+y 2-4=0消去y , 得(k 2+4)x 2+2mkx +m 2-4=0.由已知得Δ=4m 2k 2-4(k 2+4)(m 2-4)>0, 即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4.由AP ―→=3PB ―→,得x 1=-3x 2.∴3(x 1+x 2)2+4x 1x 2=12x 22-12x 22=0. ∴12k 2m 2(k 2+4)2+4(m 2-4)k 2+4=0, 即m 2k 2+m 2-k 2-4=0.当m 2=1时,m 2k 2+m 2-k 2-4=0不成立, ∴k 2=4-m 2m 2-1.∵k 2-m 2+4>0,∴4-m 2m 2-1-m 2+4>0,即(4-m 2)m 2m 2-1>0. 解得1<m 2<4.∴m 2的取值范围为(1,4).[典例] (2017·全国卷Ⅰ)已知椭圆C :x a 2+y b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2 =2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l过定点(2,-1).[题后悟通]直线过定点问题的解题模型[针对训练]4.(2017·郑州模拟)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.解:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明:设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2), 则C (-x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2=4y ,y =kx -2消去y ,得x 2-4kx +8=0,∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1-x 24x 1+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,即直线AC 恒过定点(0,2).[典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.[解] (1)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝⎛⎭⎫1,22在椭圆C 上, 所以2a =|AF 1|+|AF 2|=22, 因此a =2,b 2=a 2-c 2=1, 故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,证明如下:假设存在斜率为2的直线,满足条件,则设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9,且-3<t <3.由PM ―→=NQ ―→,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.也可由PM ―→=NQ ―→,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,⎭⎫可得y 4=2t -159又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.[针对训练]5.(2017·郑州质检)已知椭圆x 2+2y 2=m (m >0),以椭圆内一点M (2,1)为中点作弦AB ,设线段AB 的中垂线与椭圆相交于C ,D 两点.(1)求椭圆的离心率;(2)试判断是否存在这样的m ,使得A ,B ,C ,D 在同一个圆上,并说明理由. 解:(1)将方程化成椭圆的标准方程x 2m +y 2m2=1(m >0),则a =m ,c = m -m 2=m 2, 故e =c a =22.(2)由题意,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -2)+1,代入x 2+2y 2=m (m >0),消去y ,得(1+2k 2)x 2+4k (1-2k )x +2(2k -1)2-m =0(m >0). 所以x 1+x 2=4k (2k -1)1+2k 2=4,即k =-1,此时,由Δ>0,得m >6.则直线AB 的方程为x +y -3=0,直线CD 的方程为x -y -1=0.由⎩⎪⎨⎪⎧x -y -1=0,x 2+2y 2=m 得3y 2+2y +1-m =0,y 3+y 4=-23,故CD 的中点N 为⎝⎛⎭⎫23,-13. 由弦长公式,可得 |AB |=1+k 2|x 1-x 2|=2·12(m -6)3. |CD |=2|y 3-y 4|=2·12m -83>|AB |,若存在圆,则圆心在CD 上, 因为CD 的中点N 到直线AB 的距离d =⎪⎪⎪⎪23-13-32=423.|NA |2=|NB |2=⎝⎛⎭⎫4232+⎝⎛⎭⎫|AB |22=6m -49,又⎝⎛⎭⎫|CD |22=14⎝ ⎛⎭⎪⎫2·12m -832=6m -49, 故存在这样的m (m >6),使得A ,B ,C ,D 在同一个圆上.[高考大题通法点拨] 圆锥曲线问题重在“设”——设点、设线[思维流程][策略指导]圆锥曲线解答题的常见类型是:第1小题通常是根据已知条件,求曲线方程或离心率,一般比较简单.第2小题往往是通过方程研究曲线的性质——弦长问题、中点弦问题、动点轨迹问题、定点与定值问题、最值问题、相关量的取值范围问题等等,这一小题综合性较强,可通过巧设“点”“线”,设而不求.在具体求解时,可将整个解题过程分成程序化的三步:第一步,联立两个方程,并将消元所得方程的判别式与根与系数的关系正确写出; 第二步,用两个交点的同一类坐标的和与积,来表示题目中涉及的位置关系和数量关系; 第三步,求解转化而来的代数问题,并将结果回归到原几何问题中.在求解时,要根据题目特征,恰当的设点、设线,以简化运算. [典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎝⎛⎭⎫1,32在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围;(3)过椭圆C 1:x 2a 2+y 2b 2-53=1上异于其顶点的任一点P ,作圆O :x 2+y 2=43的两条切线,切点分别为M ,N (M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m ,n ,证明:13m 2+1n2为定值.[解] (1)由题意得c =1,所以a 2=b 2+1,① 又点P ⎝⎛⎭⎫1,32在椭圆C 上,所以1a 2+94b 2=1,② 由①②可解得a 2=4,b 2=3, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2,A (x 1,y 1), B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +2,x 24+y 23=1,得(4k 2+3)x 2+16kx +4=0,因为Δ=16(12k 2-3)>0, 所以k 2>14,则x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3.因为∠AOB 为锐角,所以OA ―→·OB ―→>0,即x 1x 2+y 1y 2>0, 所以x 1x 2+(kx 1+2)(kx 2+2)>0,所以(1+k 2)x 1x 2+2k (x 1+x 2)+4>0, 即(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0,解得k 2<43.又k 2>14,所以14<k 2<43,解得-233<k <-12或12<k <233.故直线l 的斜率k 的取值范围为⎝⎛⎭⎫-233,-12∪⎝⎛⎭⎫12,233. (3)证明:由(1)知椭圆C 1的方程为:x 24+3y 24=1,设P (x 0,y 0),M (x 3,y 3),N (x 4,y 4), 因为M ,N 不在坐标轴上,所以k PM =-1k OM =-x 3y 3, 直线PM 的方程为y -y 3=-x 3y 3(x -x 3),化简得x 3x +y 3y =43,③同理可得直线PN 的方程为x 4x +y 4y =43.④把P 点的坐标代入③④得⎩⎨⎧x 3x 0+y 3y 0=43,x 4x 0+y 4y 0=43,所以直线MN 的方程为x 0x +y 0y =43.令y =0,得m =43x 0,令x =0,得n =43y 0,所以x 0=43m ,y 0=43n ,又点P 在椭圆C 1上,所以⎝⎛⎭⎫43m 2+3⎝⎛⎭⎫43n 2=4,即13m 2+1n 2=34,为定值.。

高三数学立体几何专题复习教案

高三数学立体几何专题复习教案
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:

最新-2018高考数学二轮专题复习 立体几何理 精品

最新-2018高考数学二轮专题复习 立体几何理 精品

立体几何(理)【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2018年高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【要点梳理】1.三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等.2.直观图:已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ;台体的体积公式: V =棱台1()3h S S ';球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.4.有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5.平行与垂直关系的证明,熟练判定与性质定理.6.利用空间向量解决空间角与空间距离。

(通用版)2018年高考数学二轮复习第一部分专题三立体几何教学案文

(通用版)2018年高考数学二轮复习第一部分专题三立体几何教学案文

专题三立体几何[研高考·明考点][析考情·明重点]第一讲小题考法——空间几何体的三视图、表面积与体积及位置关系的判定考点(一) 主要考查利用三视图的画法规则及摆放规则,根据空间几何体确定其三视图,或根据三视图还原其对应直观图,或根据空间几何体的三视图三视图中的其中两个确定另一个.[典例感悟][典例] (1)(2017·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧视图为( )(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B[方法技巧]1.由直观图确定三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确定.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[演练冲关]1.(2018届高三·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为( )A.5 B.4C.3 D.2解析:选B 由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.2.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2解析:选B 在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=22+22+22=2 3.3.(2017·福州模拟)如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A.2 B.3C.4 D.5解析:选C 由三视图知,该几何体是如图所示的四棱锥P­ABCD,易知四棱锥P­ABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4,故选C.考点(二) 主要考查空间几何体的结构特征、表面积与体积公式的应用,涉及的几何体多为柱体、锥体,且常与三视空间几何体的表面积与体积图相结合考查.[典例感悟][典例] (1)(2016·全国卷Ⅲ)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.81(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(3)(2018届高三·广西三市联考)如图是某几何体的三视图,则该几何体的体积为( )A .6B .9C .12D .18[解析] (1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.(3)该几何体是一个直三棱柱截去14所得,如图所示,其体积为34×12×3×4×2=9.[答案] (1)B (2)B (3)B[方法技巧]1.求解几何体的表面积与体积的技巧(1)求三棱锥的体积:等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积:常用分割或补形的方法,将不规则几何体转化为规则几何体求解.(3)求表面积:其关键思想是空间问题平面化. 2.根据几何体的三视图求其表面积或体积的步骤 (1)根据给出的三视图还原该几何体的直观图.(2)由三视图中的大小标识确定该几何体的各个度量. (3)套用相应的面积公式或体积公式计算求解.[演练冲关]1.(2017·合肥质检)一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A.283B .2823C .28D .22+6 3解析:选A 由三视图知,该几何体为三棱台,其上、下底面分别是直角边为2,4的等腰直角三角形,高为2,所以该几何体的体积V =13×12×2×2+12×4×4+⎝ ⎛⎭⎪⎫12×2×2⎝ ⎛⎭⎪⎫12×4×4 ×2=283,故选A. 2.(2017·沈阳质检)如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的表面积是( )A .36+610B .36+310C .54D .27解析:选A 由三视图知该几何体为底面是梯形的四棱柱,其表面积为S =2×12×(2+4)×3+2×3+4×3+2×3×10=36+610,故选A.3.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2考点(三)主要考查与多面体、旋转体构成的简单组合体的有关切、接球表面积、体积的计算问题,其本质是计算球的半径.与球有关的组合体的计算问题 [典例感悟][典例] (1)(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3(2)(2018届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( ),A .36πB .112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B. [答案] (1)B (2)B[方法技巧]求解多面体、旋转体与球接、切问题的策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题. (2)利用平面几何知识寻找几何体中元素间的关系,或通过画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.[演练冲关]1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.2.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:323.(2017·全国卷Ⅰ)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB , ∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ­ABC =V A ­SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π4.(2018届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π考点(四)主要考查利用空间点、直线、平面位置关系的定义,四空间线面位置关系的判断个公理、八个定理来判断与点、线、面有关命题的真假或判断简单的线面平行垂直的位置关系.[典例感悟][典例] (1)(2017·成都模拟)在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )A.①② B.②③ C.①③ D.①②③(2)(2018届高三·广东五校联考)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n[解析] (1)由题意画出草图如图所示,因为AA 1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF.又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.综上可知,故选C.(2)选项A,若α⊥β,m⊂α,n⊂β,则m∥n与m,n是异面直线均有可能,不正确;选项C,若m⊥n,m⊂α,n⊂β,则α,β有可能相交但不垂直,不正确;选项D,若α∥β,m⊂α,n⊂β,则m,n有可能是异面直线,不正确,故选B.[答案] (1)C (2)B[方法技巧]判断与空间位置关系有关命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.(3)借助反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.[演练冲关]1.(2017·惠州调研)如图是一几何体的平面展开图,其中四边形ABCD 为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有( )A.1个B.2个C.3个D.4个解析:选B 将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E ∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.2.(2017·全国卷Ⅲ)在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C 法一:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1CD.又A1E⊂平面A1B1CD,所以A1E⊥BC1.法二:∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B、D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1.)∵A 1E 在平面DCC 1D 1上的投影为D 1E , 而D 1E 不与DC 1垂直,故A 错.3.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )解析:选A 法一:对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ .又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C 、D 中均有AB ∥平面MNQ .故选A.法二:对于选项A ,设正方体的底面对角线的交点为O (如图所示),连接OQ ,则OQ ∥AB .因为OQ 与平面MNQ 有交点,所以AB 与平面MNQ 有交点,即AB 与平面MNQ 不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B 、C 、D 中AB ∥平面MNQ .故选A.[必备知能·自主补缺] (一) 主干知识要记牢 1.简单几何体的表面积和体积(1)S 直棱柱侧=ch (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线长), S 圆锥侧=πrl (r 为底面半径,l 为母线长),S 圆台侧=π(r ′+r )l (r ′,r 分别为上、下底面的半径,l 为母线长).(5)柱、锥、台体的体积公式V 柱=Sh (S 为底面面积,h 为高), V 锥=13Sh (S 为底面面积,h为高),V 台=13(S +SS ′+S ′)h (S ,S ′为上、下底面面积,h 为高).(6)球的表面积和体积公式S 球=4πR 2,V 球=43πR 3.2.两类关系的转化 (1)平行关系之间的转化(2)垂直关系之间的转化3.证明空间位置关系的方法已知a ,b ,l 是直线,α,β,γ是平面,O 是点,则 (1)线线平行:⎭⎪⎬⎪⎫a ∥b a ∥c ⇒c ∥b , ⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b ,⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ,⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . (2)线面平行:⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α,⎭⎪⎬⎪⎫α∥βa ⊂β⇒a ∥α,⎭⎪⎬⎪⎫α⊥βa ⊥βa ⊄α⇒a ∥α.(3)面面平行:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Oa ∥β,b ∥β⇒α∥β,⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β,⎭⎪⎬⎪⎫α∥βγ∥β⇒α∥γ.(4)线线垂直:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ,⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b .(5)线面垂直:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α,⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂α,a ⊥l ⇒a ⊥β, ⎭⎪⎬⎪⎫α∥βa ⊥α ⇒a ⊥β,⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α.(6)面面垂直:⎭⎪⎬⎪⎫a ⊂βa ⊥α⇒α⊥β,⎭⎪⎬⎪⎫a ∥βa ⊥α⇒α⊥β.(二) 二级结论要用好1.长方体的对角线与其共点的三条棱之间的长度关系d 2=a 2+b 2+c 2;若长方体外接球半径为R ,则有(2R )2=a 2+b 2+c 2.[针对练1] (2018届高三·西安八校联考)设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32π C.20π D .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+232+42=22,所以该三棱锥外接球的表面积为S =4πR 2=32π. 2.棱长为a 的正四面体的内切球半径r =612a ,外接球的半径R =64a .又正四面体的高h =63a ,故r =14h ,R =34h .[针对练2] 正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.解析:由题意知,面积最小的截面是以AB 为直径的圆,设AB 的长为a ,因为正四面体外接球的半径为2,所以64a =2,解得a =463,故截面面积的最小值为π⎝ ⎛⎭⎪⎫2632=8π3. 答案:8π3(三) 易错易混要明了应用空间线面平行与垂直关系中的判定定理和性质定理时,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l ,m ⊥l ,易误得出m ⊥β的结论,就是因为忽视面面垂直的性质定理中m ⊂α的限制条件.[针对练3] 设α,β是两个不同的平面,m 是直线且m ⊂α,则“m ∥β ”是“α∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上可知,“m ∥β ”是“α∥β ”的必要不充分条件.[课时跟踪检测]A 组——12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为2+4×22×2=12,故选B.3.(2017·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条 B.1条 C.2条 D.0条或2条解析:选C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(2017·成都模拟)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m,n可能平行,也可能异面;②若α∩β=l,且m⊥l,n⊥l,则α⊥β;③若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是( )A.0 B.1 C.2 D.3解析:选B 对于①,直线m,n可能平行,也可能异面,故①是真命题;对于②,直线m,n同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n∥l时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B.5.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.π2+1 B.π2+3C.3π2+1 D.3π2+3解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V=13×12π×12×3+13×12×2×2×3=π2+1.6.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160C .240D .480解析:选B 如图所示,题中的几何体是从直三棱柱ABC ­A ′B ′C ′中截去一个三棱锥A ­A ′B ′C ′后所剩余的部分,其中底面△ABC 是直角三角形,AC ⊥AB ,AC =6,AB =8,BB ′=10.因此题中的几何体的体积为⎝ ⎛⎭⎪⎫12×6×8×10-13×12×6×8×10=23×⎝ ⎛⎭⎪⎫12×6×8×10=160,故选B.7.(2017·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选 A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.8.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B.9.(2017·贵阳检测)三棱锥P ­ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ­ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳统考)已知三棱锥P ­ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ­ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3 B.40π3 C.64π3D.80π3解析:选D 依题意,记三棱锥P ­ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ­ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ­ABC 的外接球的表面积为4πR 2=80π3,故选D.11.某几何体的三视图如图所示,则该几何体的体积为( )A.15π2 B .8π C.17π2D .9π解析:选B 依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,故选B.12.(2018届高三·湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.1603 B .32 C.323D.3523解析:选A 由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V =12×4×4×8-13×12×4×4×4=1603,故选A.二、填空题13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.解析:设圆柱高为h ,底面圆半径为r ,周长为c ,圆锥母线长为l .由图得r =2,h =4,则c =2πr =4π,由勾股定理得:l=22+232=4,则S 表=πr 2+ch +12cl =4π+16π+8π=28π.答案:28π14.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为________.解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15. 答案:1515.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12. 答案:1216.(2017·兰州诊断考试)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC=-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2, 即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ­ABC =13×12×12×12×32×5=60 3.答案:60 3B 组——能力小题保分练1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A.16 B.20 C.52 D.60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V=12×3×4×6-2×13×2×4×3=20,故选B.2.(2017·成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A.136π B.34πC.25π D.18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R即为该四棱锥外接球的半径,所以2R=32+32+42,解得R=342,所以该四棱锥外接球的表面积为4πR2=34π,故选B.3.(2018届高三·湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A.45π+96 B.(25+6)π+96C.(45+4)π+64 D.(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S=6×42+π×22+π×2×42+22=(45+4)π+96.4.(2017·石家庄质检)四棱锥P­ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( ) A.6 B.5C.92D.94解析:选D 过点P作PH⊥平面ABCD于点H.由题知,四棱锥P­ABCD是正四棱锥,内切球的球心O应在四棱锥的高PH上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt△PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.5.(2017·云南模拟)某几何体的三视图如图所示,若这个几何体的顶点都在球O 的表面上,则球O 的表面积是( )A .2πB .4πC .5πD .20π解析:选C 由三视图知,该几何体为三棱锥,其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为2,2,1的长方体,所以该几何体的外接球O 的半径R =22+22+122=52,则球O 的表面积S =4πR 2=5π,故选C.6.(2017·武昌调研)在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于点E ,连接CE ,如图所示,则AE ⊥BD ,BD ⊥AC .又AE ∩AC =A ,所以BD ⊥平面AEC ,从而有BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①错误.②假设AB ⊥CD ,∵AB ⊥AD ,AD ∩CD =D ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的直角三角形BAC ,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥平面ADC ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错误.答案:②第二讲 大题考法——立体几何题型(一)平行、垂直关系的证明是高考的必考内容,平行、垂直关系的证明主要考查线面面面平行、垂直的判定定理及性质定理的应用,以及平行与垂直关系的转化等.[典例感悟][典例1] (2016·山东高考)在如图所示的几何体中,D是AC的中点,EF ∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.[证明] (1)因为EF∥DB,所以EF与DB确定平面BDEF.如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.[备课札记][方法技巧]平行、垂直关系的证明思路[演练冲关]1.如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD ,PA ⊥AD ,E 和F 分别为CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ; (3)平面BEF ⊥平面PCD .证明:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA ⊥底面ABCD . (2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE .所以四边形ABED 为平行四边形.所以BE ∥AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以BE ∥平面PAD .(3)因为AB ⊥AD ,且四边形ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ∩PA =A ,所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF ,所以CD ⊥EF .又因为CD ⊥BE ,EF ∩BE =E ,所以CD ⊥平面BEF .又CD ⊂平面PCD ,所以平面BEF ⊥平面PCD .题型(二)本部分的计算题目多设两问,第1问考查空间位置关系的证明,第2问考查空间几何体体积的求法或点到平面距离的求法.体积、距离的计算[典例感悟][典例2] (2017·成都模拟)如图,已知梯形CDEF 与△ADE 所在的平面垂直,AD ⊥DE ,CD ⊥DE ,AB ∥CD ∥EF ,AE =2DE =8,AB =3,EF =9,CD =12,连接BC ,BF .(1)若G 为AD 边上一点,DG =13DA ,求证:EG ∥平面BCF ;(2)求多面体ABCDEF 的体积.[解] (1)证明:如图,作GM ∥CD ,交BC 于点M ,连接MF . 作BH ∥AD ,交GM 于点N ,交DC 于点H . ∵EF ∥CD ,∴GM ∥EF .∵AB ∥CD ,∴四边形ABNG 与四边形ABHD 都是平行四边形, ∴GN =DH =AB =3,HC =9. ∵AB ∥GM ∥DC , ∴NM HC =BM BC =AG AD =23, ∴NM =6,∴GM =GN +NM =9,∴GM 綊EF , ∴四边形GMFE 为平行四边形,∴GE ∥MF . 又MF ⊂平面BCF ,GE ⊄平面BCF ,。

2018年高三数学(理科)二轮复习完整版

2018年高三数学(理科)二轮复习完整版

专题限时集训 (一)A
基础演练
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
1.设 U= {1 , 2, 3, 4, 5} , A= {1 , 5} , B={2 , 4} ,则 B∩ (?UA)= ( )
A . {2 , 3, 4}
B . { 2}
C. {2 , 4}
专题限时集训 (一 )B
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
基础演练
1.已知全集 U= R ,A= { x|x≤ 0} ,B= { x|x≥ 1} ,则集合 ?U(A∪ B) =( )
A . { x|x≥ 0}
B . { x|x≤ 1}
C. { x|0≤ x≤ 1}
A .充分不必要条件 B .必要不充分条件
C .充要条件 D .既不充分也不必要条件
4.已知集合 M = { x|- 2≤ x<2} ,N={ x|y= log 2(x- 1)} ,则 M ∩ N= ( )
A . { x|- 2≤ x<0}
B . { x|- 1< x<0}
C. { x|1<x<2}
形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度 适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段, 月 30 日。
时间为 3 月 10—— 4
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好 做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、 失分点、模糊点,剖析根源,彻底矫正。 四、在第二轮复习过程中,我们安排如下: 1. 继续抓好集体备课。 每周一次的集体备课必须抓落实, 发挥集体智慧的力量研究数学高考 的动向,学习与研究《考试大纲》 ,注意哪些内容降低要求,哪些内容成为新的高考热点,每 周一次研究课。 2.安排好复习内容。 3.精选试题,命题审核。 4.测试评讲,滚动训练。 5.精讲精练:以中等题为主。

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

立体几何初步【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【考纲要求】(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

(完整word版)高三数学二轮专题复习教案设计――立体几何

(完整word版)高三数学二轮专题复习教案设计――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

2018年高考理科数学通用版三维二轮专题复习教学案:第一部分 层级一 45分的基础送分题练中自检无须挖潜 Wor

2018年高考理科数学通用版三维二轮专题复习教学案:第一部分 层级一 45分的基础送分题练中自检无须挖潜 Wor

[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A∩B={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=1x -xB .f (x )=x 3C .f (x )=ln xD .f (x )=2x解析:选A “∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”等价于f (x )在(0,+∞)上为减函数,易判断f (x )=1x-x 满足条件.2.(2017·广西三市第一次联考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则a 的取值范围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)解析:选B ∵f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,∴f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),∴f (2log 3a )>f (2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题1.函数f (x )=1x -1+x 的定义域为( )A .[0,+∞)B .(1,+∞)C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin x x,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.10.函数f (x )=ax +b (x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0,即f (x )=ln 1|x |+1的值域为(-∞,0].答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d |d |=-1.3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D(4,2). ∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y =1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则P A ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以P A ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,P A ―→·(PB ―→+PC ―→)取得最小值,为-32. 4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当P A ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴P A ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,P A ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a+2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |= ⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318. 8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且P A ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则P A ―→+PB ―→=2PD ―→PD ―→. 因为P A ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以P A =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而P A ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a+2b ,则P A ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),P A ―→=(m -1,-2),PB ―→=(-1,n -2),P A ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y=-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x .答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→)=-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2=-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233,由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ym B .x -m ≥y -n C.x n >ymD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负。

(通用版)2018年高考数学二轮复习第一部分专题五解析几何教学案文

(通用版)2018年高考数学二轮复习第一部分专题五解析几何教学案文

专题五解析几何[研高考·明考点][析考情·明重点]第一讲 小题考法——直线与圆[典例感悟][典例] (1)已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( )A .-32B .0C .-32或0D .2(2)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12(3)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________________________________________________________________.[解析] (1)由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.(2)易知BC 所在直线的方程是x +y =1,由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即当a =0时,易得b =1-22,故b 的取值范围是⎝⎛⎭⎪⎫1-22,12. (3)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0.[答案] (1)C (2)B (3)y =2或4x -3y +2=0[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况是否符合题意.[演练冲关]1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b=-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪6-2312+-12=823.3.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5考点(二) 主要考查圆的方程的求法,常涉及弦长公式、直线与圆相切等问题.圆 的 方 程[典例感悟][典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43(2)(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为______________.(3)(2017·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是______________.[解析] (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的一般方程为x 2+y 2-2x -433y +1=0,圆心为⎝ ⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎪⎫2332=213. (2)由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.(3)抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3,即x -y +3=0相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] (1)B (2)⎝ ⎛⎭⎪⎫x -322+y 2=254 (3)x 2+(y -1)2=2[方法技巧] 圆的方程的2种求法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.[演练冲关]1.(2017·长春质检)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需求圆心(2,0)关于直线y =33x 对称的点的坐标即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4,故选D.2.(2017·北京西城区模拟)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 根据题意直线x -y +1=0与x 轴的交点为(-1,0),即圆心为(-1,0).因为圆C 与直线x +y +3=0相切,所以半径r =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A.3.(2017·惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4[典例感悟][典例] (1)(2017·昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(3)(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以r =a 2+2=2,所以圆C 的面积为π×22=4π.(3)如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt△BOD 中,∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. [答案] (1)B (2)4π (3)4[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.直线截圆所得弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,即l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间的距离公式求解.[演练冲关]1.(2017·南昌模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B .-510C.910D .-910解析:选D 因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2×0-0+1|22+-12=15,所以弦长|AB |=222-⎝ ⎛⎭⎪⎫152=2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.2.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2.答案:23.(2017·云南调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时圆心C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |=2-12+-1+22=2<5,所以点M 位于圆C 内,所以当点M 为线段EF 的中点时,|EF |最小,其最小值为252-22=2 3.答案:2 3[必备知能·自主补缺] (一) 主干知识要记牢 1.直线方程的五种形式 点斜式y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不能表示y 轴和平行于y 轴的直线)斜截式y =kx +b (b 为直线在y 轴上的截距,且斜率为k ,不能表示y 轴和平行于y 轴的直线)两点式y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不能表示坐2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2.(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则 (1)当|O 1O 2|>r 1+r 2时,两圆外离; (2)当|O 1O 2|=r 1+r 2时,两圆外切;(3)当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交; (4)当|O 1O 2|=|r 1-r 2|时,两圆内切; (5)当0≤|O 1O 2|<|r 1-r 2|时,两圆内含. (二) 二级结论要用好1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0.[针对练1] 若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________.解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.若点P (x 0,y 0)在圆x 2+y 2=r 2上,则圆过该点的切线方程为:x 0x +y 0y =r 2. [针对练2] 过点(1,3)且与圆x 2+y 2=4相切的直线l 的方程为____________. 解析:∵点(1,3)在圆x 2+y 2=4上, ∴切线方程为x +3y =4,即x +3y -4=0. 答案:x +3y -4=0 (三) 易错易混要明了1.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况,直接设为x a +y a=1;再如,忽视斜率不存在的情况直接将过定点P (x 0,y 0)的直线设为y -y 0=k (x -x 0)等.[针对练3] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x -y =0;当截距不为0时,设直线方程为x a +y a=1,代入P (1,5),得a =6,∴直线方程为x +y -6=0.答案:5x -y =0或x +y -6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.如果利用直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0垂直的充要条件A 1A 2+B 1B 2=0,就可以避免讨论.[针对练4] 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:∵l 1⊥l 2,∴(t +2)(t -1)+(1-t )(2t +3)=0,解得t =1或t =-1. 答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C 1-C 2|A 2+B 2,导致错解.[针对练5] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 解析:把直线6x +4y +5=0化为3x +2y +52=0,故两平行线间的距离d =⎪⎪⎪⎪⎪⎪-5-5232+22=151326.答案:1513264.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6] 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0相切,则m =________.解析:由x 2+y 2-2x -6y -1=0,得(x -1)2+(y -3)2=11,由x 2+y 2-10x -12y +m =0,得(x -5)2+(y -6)2=61-m .当两圆外切时,有5-12+6-32=61-m +11,解得m =25+1011;当两圆内切时,有5-12+6-32=||61-m -11,解得m =25-1011.答案:25±1011[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3 C.33或0 D.3或0解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.(2017·陕西质检)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.(2017·洛阳统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件.4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:选C 由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2 C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43B .x 2+⎝ ⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝⎛⎭⎪⎫x ±332+y 2=13 解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝ ⎛⎭⎪⎫x ±332+y 2=43,故选C. 8.(2017·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.9.(2018届高三·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心; ②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4B .3C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π×12<S <2×2,即π<S <4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .3 2B .-3 2C .6D .-6解析:选B 两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.二、填空题13.(2017·河北调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析:由题意得直线l 1和l 2截圆所得弦所对的圆心角相等,均为90°,因此圆心到两直线的距离均为22r =2,即|1-2+a |2=|1-2+b |2=2,得a 2+b 2=(22+1)2+(1-22)2=18. 答案:1814.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+52=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=915.设直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程为____________.解析:因为直线l 恒过定点(0,1),由x 2+y 2-2x -3=0变形为(x -1)2+y 2=4,易知点(0,1)在圆(x -1)2+y 2=4的内部,依题意,k ·1-00-1=-1,即k =1,所以直线l 的方程为y =x +1.答案:y =x +116.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝ ⎛⎭⎪⎫-k2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的最大距离为322,所以P 到直线AB 的最大距离,即△PAB 的AB 边上的高的最大值为1+322,又|AB |=22,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎪⎫1+322=3+ 2.答案:3+ 2B 组——能力小题保分练1.(2017·石家庄模拟)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( )A.12 B.32C.34D.34解析:选 D 因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.则t =a 1+2b 2=122·(22a )·1+2b 2≤122×12×[]22a2+1+2b22=142·[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.2.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形AOB 的三个顶点,其中OA =OB =2,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,即|k |2=1,解得k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4有两个不同的交点,故|k |2<2,即k <2 2.综上,k 的取值范围为[2,22).3.(2018届高三·湖北七市(州)联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+32=2.当2-r >1,即0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当2-r =1,即r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当0<2-r <1,即1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当2-r =0,即r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当0<r -2<1,即2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1; 当r -2=1,即r =3时,直线与圆相交,此时圆上有3个点到直线的距离为1; 当r -2>1,即r >3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1;由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3.故p 是q 的充要条件,故选C.4.(2018届高三·广东五校联考)已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝⎛⎦⎥⎤-∞,18C.⎝ ⎛⎦⎥⎤0,14D.⎝ ⎛⎦⎥⎤0,18 解析:选B 把圆的方程化为标准方程得,(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝⎛⎦⎥⎤-∞,18.5.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以x -32+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤t +12+2t -42≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎢⎡⎦⎥⎤45,2. 答案:⎣⎢⎡⎦⎥⎤45,2 6.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]第二讲 小题考法——圆锥曲线的方程与性质考点(一)主要考查圆锥曲线的定义及其应用、标准方程的求法.圆锥曲线的定义与标准方程[典例感悟][典例] (1)(2017·合肥模拟)已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.12(2)在平面直角坐标系中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 1上一点M 到点Q (0,3)的距离的最大值为4.则椭圆C 1的方程为( )A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 (3)(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] (1)在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A.(2)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设M (x ,y ),则|MQ |=x -02+y -32=4b 2-4y 2+y -32=-3y 2-6y +4b 2+9=-3y +12+4b 2+12.所以当y =-1时,|MQ |有最大值,为4b 2+12=4,解得b 2=1,则a 2=4,所以椭圆C 1的方程是x 24+y 2=1.故选B.(3)法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6. [答案] (1)A (2)B (3)6[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程. (2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2017·长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),而抛物线y 2=-4x的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A.2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x ,可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.3.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________.解析:法一:令l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,所以|PF |=|PA |=y 0+1=43.法二:如图所示,∠AFO =30°, ∴∠PAF =30°,又|PA |=|PF |,∴△APF 为顶角∠APF =120°的等腰三角形, 而|AF |=2cos 30°=433,∴|PF |=|AF |3=43.答案:43考点(二) 主要考查椭圆、双曲线的离心率的计算、双曲线渐近线的应用以及抛物线的有关性质.圆锥曲线的几何性质[典例感悟][典例] (1)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)由题,不妨设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去),∴C 的焦点到准线的距离为4.(2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =b ax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=abc ,即3b 2=ab c ,所以e =23=233. [答案] (1)B (2)233[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值;②利用渐近线方程设所求双曲线的方程.[演练冲关]1.(2017·成都模拟)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A. 2B.-3+624 C. 3 D.3+627解析:选D 如图,在圆O 中,F 1F 2为直径,P 是圆O 上一点,所以PF 1⊥PF 2,设以OF 1为直径的圆的圆心为M ,且圆M 与直线PF 2相切于点Q ,则M ⎝ ⎛⎭⎪⎫-c 2,0,MQ ⊥PF 2,所以PF 1∥MQ ,所以|MQ ||PF 1|=|MF 2||F 1F 2|,即c2|PF 1|=3c22c ,可得|PF 1|=2c 3,所以|PF 2|=2c 3+2a ,又|PF 1|2+|PF 2|2=|F 1F 2|2,所以4c 29+⎝ ⎛⎭⎪⎫2c 3+2a 2=4c 2,即7e 2-6e -9=0,解得e =3+627,e =3-627(舍去).故选D. 2.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则ab≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).3.(2017·贵阳检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 3=2y 1,y 4=12y 2,|EG |=y 4-y 3=12y 2-2y 1.因为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=12y 2-2×⎝ ⎛⎭⎪⎫-4y 2=12y 2+8y 2≥212y 2×8y 2=4,当且仅当12y 2=8y 2,即y 2=4时取等号,所以|EG |的最小值为4.答案:4考点(三)主要考查直线与圆锥曲线的位置关系以及圆[典例感悟][典例] (1)(2018届高三·河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是( )A .(-∞,-3)∪(0,+∞)B .(-∞,-2)∪(0,+∞)C .(-3,0)D .(-2,0)(2)(2017·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A.53B.54C.53或2516D.53或54 [解析] (1)因为直线与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .将直线方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.故选A.(2)圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r =1.当m <0,n >0时,由mx 2+ny 2=1得y 21n-x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =a b x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D.[答案] (1)A (2)D[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.(2018届高三·广西三市联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|PA |=12·|PF 1|=a +c ,则在Rt△APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.2.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,则直线OM 与直线l 的斜率之积为________.解析:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9,故直线OM 的斜率k OM =y M x M=-9k,所以k OM ·k =-9,即直线OM 与直线l 的斜率之积为-9.答案:-9[必备知能·自主补缺] (一) 主干知识要记牢圆锥曲线的定义、标准方程和性质 名称 椭圆 双曲线 抛物线定义|PF 1|+|PF 2|=2a (2a >|F 1F 2|)||PF 1|-|PF 2||=2a (2a <|F 1F 2|)|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M标准方程x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0)图形几何性质轴长轴长2a , 短轴长2b实轴长2a , 虚轴长2b离心率e =c a e =c ae =1(二) 二级结论要用好 1.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,|PF 1|=ex 0+a ,|PF 2|=ex 0-a ;若P 在左支上,|PF 1|=-ex 0-a ,|PF 2|=-ex 0+a .3.抛物线y 2=2px (p >0)焦点弦AB 的4个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2; (3)|AB |=2psin 2α(α是直线AB 的倾斜角); (4)|AB |=x A +x B +p . 4.圆锥曲线的通径 (1)椭圆通径长为2b2a;(2)双曲线通径长为2b2a;。

(通用版)2018年高考数学二轮复习第一部分专题五解析几何教学案理

(通用版)2018年高考数学二轮复习第一部分专题五解析几何教学案理

专题五解析几何[研高考·明考点][析考情·明重点]第一讲 小题考法——直线与圆[典例感悟][典例] (1)已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( )A .-32B .0C .-32或0D .2(2)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12(3)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________________________________________________________________.[解析] (1)由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.(2)易知BC 所在直线的方程是x +y =1,由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即当a =0时,易得b =1-22,故b 的取值范围是⎝⎛⎭⎪⎫1-22,12. (3)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0.[答案] (1)C (2)B (3)y =2或4x -3y +2=0[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况是否符合题意.[演练冲关]1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b=-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪6-2312+-12=823. 3.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5考点(二) 主要考查圆的方程的求法,常涉及弦长公式、直线与圆相切等问题.圆 的 方 程[典例感悟][典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43(2)(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为______________.(3)(2017·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是______________.[解析] (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的一般方程为x 2+y 2-2x -433y +1=0,圆心为⎝ ⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎪⎫2332=213. (2)由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.(3)抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3,即x -y +3=0相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] (1)B (2)⎝ ⎛⎭⎪⎫x -322+y 2=254 (3)x 2+(y -1)2=2[方法技巧] 圆的方程的2种求法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.[演练冲关]1.(2017·长春质检)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需求圆心(2,0)关于直线y =33x 对称的点的坐标即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4,故选D.2.(2017·北京西城区模拟)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 根据题意直线x -y +1=0与x 轴的交点为(-1,0),即圆心为(-1,0).因为圆C 与直线x +y +3=0相切,所以半径r =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A.3.(2017·惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4[典例感悟][典例] (1)(2017·昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(3)(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以r =a 2+2=2,所以圆C 的面积为π×22=4π.(3)如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt△BOD 中,∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. [答案] (1)B (2)4π (3)4[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.直线截圆所得弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,即l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间的距离公式求解.[演练冲关]1.(2017·南昌模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B .-510C.910D .-910解析:选D 因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2×0-0+1|22+-12=15,所以弦长|AB |=222-⎝ ⎛⎭⎪⎫152=2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.2.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2.答案:23.(2017·云南调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时圆心C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |=2-12+-1+22=2<5,所以点M 位于圆C 内,所以当点M 为线段EF 的中点时,|EF |最小,其最小值为252-22=2 3.答案:2 3[必备知能·自主补缺] (一) 主干知识要记牢 1.直线方程的五种形式 点斜式y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不能表示y 轴和平行于y 轴的直线)斜截式y =kx +b (b 为直线在y 轴上的截距,且斜率为k ,不能表示y 轴和平行于y 轴的直线)两点式y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不能表示坐标轴和平行于坐标轴的直线)截距式x a +yb =1(a ,b 分别为直线的横、纵截距,且a ≠0,b ≠0,不能表示坐标轴、平行于坐标轴和过原点的直线)一般式 Ax +By +C =0(其中A ,B 不同时为0)2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2.(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则 (1)当|O 1O 2|>r 1+r 2时,两圆外离; (2)当|O 1O 2|=r 1+r 2时,两圆外切;(3)当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交; (4)当|O 1O 2|=|r 1-r 2|时,两圆内切; (5)当0≤|O 1O 2|<|r 1-r 2|时,两圆内含. (二) 二级结论要用好1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0.[针对练1] 若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________. 解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.若点P (x 0,y 0)在圆x 2+y 2=r 2上,则圆过该点的切线方程为:x 0x +y 0y =r 2. [针对练2] 过点(1,3)且与圆x 2+y 2=4相切的直线l 的方程为____________. 解析:∵点(1,3)在圆x 2+y 2=4上, ∴切线方程为x +3y =4,即x +3y -4=0. 答案:x +3y -4=0 (三) 易错易混要明了1.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况,直接设为x a +y a=1;再如,忽视斜率不存在的情况直接将过定点P (x 0,y 0)的直线设为y -y 0=k (x -x 0)等.[针对练3] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x -y =0;当截距不为0时,设直线方程为x a +y a=1,代入P (1,5),得a =6,∴直线方程为x +y -6=0.答案:5x -y =0或x +y -6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.如果利用直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0垂直的充要条件A 1A 2+B 1B 2=0,就可以避免讨论.[针对练4] 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:∵l 1⊥l 2,∴(t +2)(t -1)+(1-t )(2t +3)=0,解得t =1或t =-1. 答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C 1-C 2|A 2+B 2,导致错解.[针对练5] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 解析:把直线6x +4y +5=0化为3x +2y +52=0,故两平行线间的距离d =⎪⎪⎪⎪⎪⎪-5-5232+22=151326.答案:1513264.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6] 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0相切,则m =________.解析:由x 2+y 2-2x -6y -1=0,得(x -1)2+(y -3)2=11,由x 2+y 2-10x -12y +m =0,得(x -5)2+(y -6)2=61-m .当两圆外切时,有5-12+6-32=61-m +11,解得m =25+1011;当两圆内切时,有5-12+6-32=||61-m -11,解得m =25-1011.答案:25±1011[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3 C.33或0 D.3或0解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.(2017·陕西质检)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.(2017·洛阳统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件. 4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:选C 由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43B .x 2+⎝ ⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝⎛⎭⎪⎫x ±332+y 2=13 解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎫x ±332+y 2=43,故选C.8.(2017·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.9.(2018届高三·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心;②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4B .3C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π×12<S <2×2,即π<S <4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .3 2B .-3 2C .6D .-6解析:选B 两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.二、填空题13.(2017·河北调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析:由题意得直线l 1和l 2截圆所得弦所对的圆心角相等,均为90°,因此圆心到两直线的距离均为22r =2,即|1-2+a |2=|1-2+b |2=2,得a 2+b 2=(22+1)2+(1-22)2=18. 答案:1814.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+52=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=915.设直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程为____________.解析:因为直线l 恒过定点(0,1),由x 2+y 2-2x -3=0变形为(x -1)2+y 2=4,易知点(0,1)在圆(x -1)2+y 2=4的内部,依题意,k ·1-00-1=-1,即k =1,所以直线l 的方程为y =x +1.答案:y =x +116.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝ ⎛⎭⎪⎫-k2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的最大距离为322,所以P 到直线AB 的最大距离,即△PAB 的AB 边上的高的最大值为1+322,又|AB |=22,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎪⎫1+322=3+ 2.答案:3+ 2B 组——能力小题保分练1.(2017·石家庄模拟)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( )A.12 B.32C.34D.34解析:选 D 因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.则t =a 1+2b 2=122·(22a )·1+2b 2≤122×12×[]22a2+1+2b22=142·[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.2.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形AOB 的三个顶点,其中OA =OB =2,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,即|k |2=1,解得k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4有两个不同的交点,故|k |2<2,即k <2 2.综上,k 的取值范围为[2,22).3.(2018届高三·湖北七市(州)联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+32=2.当2-r >1,即0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当2-r =1,即r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当0<2-r <1,即1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当2-r =0,即r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当0<r -2<1,即2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1; 当r -2=1,即r =3时,直线与圆相交,此时圆上有3个点到直线的距离为1; 当r -2>1,即r >3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1;由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3.故p 是q 的充要条件,故选C.4.(2018届高三·广东五校联考)已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝⎛⎦⎥⎤-∞,18C.⎝ ⎛⎦⎥⎤0,14D.⎝ ⎛⎦⎥⎤0,18 解析:选B 把圆的方程化为标准方程得,(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝⎛⎦⎥⎤-∞,18.5.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以x -32+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤t +12+2t -42≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎢⎡⎦⎥⎤45,2.答案:⎣⎢⎡⎦⎥⎤45,2 6.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]第二讲 小题考法——圆锥曲线的方程与性质考点(一)主要考查圆锥曲线的定义及其应用、标准方程的求法.圆锥曲线的定义与标准方程 [典例感悟][典例] (1)(2017·合肥模拟)已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.12(2)在平面直角坐标系中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 1上一点M 到点Q (0,3)的距离的最大值为4.则椭圆C 1的方程为( )A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 (3)(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] (1)在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A.(2)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设M (x ,y ),则|MQ |=x -02+y -32=4b 2-4y 2+y -32=-3y 2-6y +4b 2+9=-3y +12+4b 2+12.所以当y =-1时,|MQ |有最大值,为4b 2+12=4,解得b 2=1,则a 2=4,所以椭圆C 1的方程是x 24+y 2=1.故选B.(3)法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6. [答案] (1)A (2)B (3)6[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程. (2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2017·长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),而抛物线y 2=-4x的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A.2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x ,可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.3.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________.解析:法一:令l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,所以|PF |=|PA |=y 0+1=43.法二:如图所示,∠AFO =30°, ∴∠PAF =30°,又|PA |=|PF |,∴△APF 为顶角∠APF =120°的等腰三角形,而|AF |=2cos 30°=433,∴|PF |=|AF |3=43.答案:43[典例感悟][典例] (1)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)由题,不妨设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去),∴C 的焦点到准线的距离为4.(2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =bax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=abc ,即3b 2=ab c ,所以e =23=233. [答案] (1)B (2)233[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值;②利用渐近线方程设所求双曲线的方程.[演练冲关]1.(2017·成都模拟)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A. 2B.-3+624 C. 3 D.3+627解析:选D 如图,在圆O 中,F 1F 2为直径,P 是圆O 上一点,所以PF 1⊥PF 2,设以OF 1为直径的圆的圆心为M ,且圆M 与直线PF 2相切于点Q ,则M ⎝ ⎛⎭⎪⎫-c 2,0,MQ ⊥PF 2,所以PF 1∥MQ ,所以|MQ ||PF 1|=|MF 2||F 1F 2|,即c2|PF 1|=3c22c ,可得|PF 1|=2c 3,所以|PF 2|=2c 3+2a ,又|PF 1|2+|PF 2|2=|F 1F 2|2,所以4c 29+⎝ ⎛⎭⎪⎫2c 3+2a 2=4c 2,即7e 2-6e -9=0,解得e =3+627,e =3-627(舍去).故选D. 2.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则ab≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).3.(2017·贵阳检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 3=2y 1,y 4=12y 2,|EG |=y 4-y 3=12y 2-2y 1.因为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=12y 2-2×⎝ ⎛⎭⎪⎫-4y 2=12y 2+8y 2≥212y 2×8y 2=4,当且仅当12y 2=8y 2,即y 2=4时取等号,所以|EG |的最小值为4.答案:4考点(三)主要考查直线与圆锥曲线的位置关系以及圆锥曲线与圆相结合的问题.圆锥曲线与圆、直线的综合问题 [典例感悟][典例] (1)(2018届高三·河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是( )A .(-∞,-3)∪(0,+∞)B .(-∞,-2)∪(0,+∞)C .(-3,0)D .(-2,0)(2)(2017·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A.53 B.54 C.53或2516D.53或54 [解析] (1)因为直线与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .将直线方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.故选A.(2)圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r=1.当m <0,n >0时,由mx 2+ny 2=1得y 21n-x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =a b x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D.[答案] (1)A (2)D[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.(2018届高三·广西三市联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|PA |=12·|PF 1|=a +c ,则在Rt△APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.2.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,则直线OM 与直线l 的斜率之积为( )A .-9B .-92C .-19D .-3解析:选A 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9,故直线OM 的斜率k OM =y M x M=-9k,所以k OM ·k =-9,即直线OM 与直线l 的斜率之积为-9.[必备知能·自主补缺] (一) 主干知识要记牢圆锥曲线的定义、标准方程和性质 名称 椭圆 双曲线 抛物线定义|PF 1|+|PF 2|=2a (2a >|F 1F 2|)||PF 1|-|PF 2||=2a (2a <|F 1F 2|)|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M标准方程x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0)图形几何性质轴长轴长2a , 短轴长2b实轴长2a , 虚轴长2b离心率e =c a =1-b 2a2(0<e <1)e =c a =1+b 2a2 (e >1)e =1渐近线y =±b ax(二) 二级结论要用好 1.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三立体几何[研高考·明考点][析考情·明重点]第一讲小题考法——空间几何体的三视图、表面积与体积及位置关系的判定[典例感悟][典例] (1)(2017·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧视图为( )(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B[方法技巧]1.由直观图确定三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确定.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[演练冲关]1.(2018届高三·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为( )A.5 B.4C.3 D.2解析:选B 由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.2.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2解析:选B 在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=2+22+22=2 3.3.(2017·福州模拟)如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A.2 B.3C.4 D.5解析:选C 由三视图知,该几何体是如图所示的四棱锥P­ABCD,易知四棱锥P­ABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4,故选C.[典例感悟][典例] (1)(2016·全国卷Ⅲ)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.81(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(3)(2018届高三·广西三市联考)如图是某几何体的三视图,则该几何体的体积为( )A .6B .9C .12D .18[解析] (1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.(3)该几何体是一个直三棱柱截去14所得,如图所示,其体积为34×12×3×4×2=9.[答案] (1)B (2)B (3)B[方法技巧]1.求解几何体的表面积与体积的技巧(1)求三棱锥的体积:等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积:常用分割或补形的方法,将不规则几何体转化为规则几何体求解.(3)求表面积:其关键思想是空间问题平面化. 2.根据几何体的三视图求其表面积或体积的步骤 (1)根据给出的三视图还原该几何体的直观图.(2)由三视图中的大小标识确定该几何体的各个度量. (3)套用相应的面积公式或体积公式计算求解.[演练冲关]1.(2017·合肥质检)一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A.283B .2823C .28D .22+6 3解析:选A 由三视图知,该几何体为三棱台,其上、下底面分别是直角边为2,4的等腰直角三角形,高为2,所以该几何体的体积V =13×12×2×2+12×4×4+⎝ ⎛⎭⎪⎫12×2×2⎝ ⎛⎭⎪⎫12×4×4 ×2=283,故选A. 2.(2017·沈阳质检)如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的表面积是( )A .36+610B .36+310C .54D .27解析:选A 由三视图知该几何体为底面是梯形的四棱柱,其表面积为S =2×12×(2+4)×3+2×3+4×3+2×3×10=36+610,故选A.3.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2[典例感悟][典例] (1)(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3(2)(2018届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( ),A .36πB .112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B. [答案] (1)B (2)B[方法技巧]求解多面体、旋转体与球接、切问题的策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题. (2)利用平面几何知识寻找几何体中元素间的关系,或通过画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.[演练冲关]1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.2.(2017·江苏高考)如图,在圆柱O1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:323.(2017·全国卷Ⅰ)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ­ABC =V A ­SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π4.(2018届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π[典例感悟][典例] (1)(2017·成都模拟)在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )A.①② B.②③ C.①③ D.①②③(2)(2018届高三·广东五校联考)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n[解析] (1)由题意画出草图如图所示,AA1B1B=EH,因为AA所以AA1∥EH.同理AA1∥GF,所以EH∥GF.又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.综上可知,故选C.(2)选项A,若α⊥β,m⊂α,n⊂β,则m∥n与m,n是异面直线均有可能,不正确;选项C,若m⊥n,m⊂α,n⊂β,则α,β有可能相交但不垂直,不正确;选项D,若α∥β,m⊂α,n⊂β,则m,n有可能是异面直线,不正确,故选B.[答案] (1)C (2)B[方法技巧]判断与空间位置关系有关命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.(3)借助反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.[演练冲关]1.(2017·惠州调研)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有( )A.1个B.2个C.3个D.4个解析:选B 将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E ∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.2.(2017·全国卷Ⅲ)在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C 法一:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1CD.又A1E⊂平面A1B1CD,所以A1E⊥BC1.法二:∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B、D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1.)∵A 1E 在平面DCC 1D 1上的投影为D 1E , 而D 1E 不与DC 1垂直,故A 错.3.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )解析:选A 法一:对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ .又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C 、D 中均有AB ∥平面MNQ .故选A.法二:对于选项A ,设正方体的底面对角线的交点为O (如图所示),连接OQ ,则OQ ∥AB .因为OQ 与平面MNQ 有交点,所以AB 与平面MNQ 有交点,即AB 与平面MNQ 不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B 、C 、D 中AB ∥平面MNQ .故选A.[必备知能·自主补缺] (一) 主干知识要记牢 1.简单几何体的表面积和体积(1)S 直棱柱侧=ch (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线长), S 圆锥侧=πrl (r 为底面半径,l 为母线长),S 圆台侧=π(r ′+r )l (r ′,r 分别为上、下底面的半径,l 为母线长).(5)柱、锥、台体的体积公式V 柱=Sh (S 为底面面积,h 为高), V 锥=13Sh (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S ,S ′为上、下底面面积,h 为高).(6)球的表面积和体积公式S 球=4πR 2,V 球=43πR 3.2.两类关系的转化 (1)平行关系之间的转化(2)垂直关系之间的转化3.证明空间位置关系的方法已知a ,b ,l 是直线,α,β,γ是平面,O 是点,则 (1)线线平行:⎭⎪⎬⎪⎫a ∥b a ∥c ⇒c ∥b , ⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b ,⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ,⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . (2)线面平行:⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α,⎭⎪⎬⎪⎫α∥βa ⊂β⇒a ∥α,⎭⎪⎬⎪⎫α⊥βa ⊥βa ⊄α⇒a ∥α.(3)面面平行:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O a ∥β,b ∥β⇒α∥β,⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β,⎭⎪⎬⎪⎫α∥βγ∥β⇒α∥γ.(4)线线垂直:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ,⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b .(5)线面垂直:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α,⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂α,a ⊥l ⇒a ⊥β, ⎭⎪⎬⎪⎫α∥βa ⊥α ⇒a ⊥β,⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α.(6)面面垂直:⎭⎪⎬⎪⎫a ⊂βa ⊥α⇒α⊥β,⎭⎪⎬⎪⎫a ∥βa ⊥α⇒α⊥β.(二) 二级结论要用好1.长方体的对角线与其共点的三条棱之间的长度关系d 2=a 2+b 2+c 2;若长方体外接球半径为R ,则有(2R )2=a 2+b 2+c 2.[针对练1] (2018届高三·西安八校联考)设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32πC .20πD .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+32+42=22,所以该三棱锥外接球的表面积为S =4πR 2=32π. 2.棱长为a 的正四面体的内切球半径r =612a ,外接球的半径R =64a .又正四面体的高h =63a ,故r =14h ,R =34h .[针对练2] 正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.解析:由题意知,面积最小的截面是以AB 为直径的圆,设AB 的长为a ,因为正四面体外接球的半径为2,所以64a =2,解得a =463,故截面面积的最小值为π⎝ ⎛⎭⎪⎫2632=8π3. 答案:8π3(三) 易错易混要明了应用空间线面平行与垂直关系中的判定定理和性质定理时,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l ,m ⊥l ,易误得出m ⊥β的结论,就是因为忽视面面垂直的性质定理中m ⊂α的限制条件.[针对练3] 设α,β是两个不同的平面,m 是直线且m ⊂α,则“m ∥β ”是“α∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上可知,“m ∥β ”是“α∥β ”的必要不充分条件.[课时跟踪检测]A 组——12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为+2×2=12,故选B.3.(2017·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A .0条B .1条C .2条D .0条或2条解析:选C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(2017·成都模拟)已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂β.有下列命题:①若α∥β,则m ,n 可能平行,也可能异面; ②若α∩β=l ,且m ⊥l ,n ⊥l ,则α⊥β; ③若α∩β=l ,且m ⊥l ,m ⊥n ,则α⊥β. 其中真命题的个数是( ) A .0B .1C .2D .3解析:选B 对于①,直线m ,n 可能平行,也可能异面,故①是真命题;对于②,直线m ,n 同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n ∥l 时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B.5.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.6.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160C .240D .480解析:选B 如图所示,题中的几何体是从直三棱柱ABC ­A ′B ′C ′中截去一个三棱锥A ­A ′B ′C ′后所剩余的部分,其中底面△ABC 是直角三角形,AC ⊥AB ,AC =6,AB =8,BB ′=10.因此题中的几何体的体积为⎝ ⎛⎭⎪⎫12×6×8×10-13×12×6×8×10=23×⎝ ⎛⎭⎪⎫12×6×8×10=160,故选B.7.(2017·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选 A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.8.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B.9.(2017·贵阳检测)三棱锥P ­ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ­ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳统考)已知三棱锥P ­ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ­ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3 B.40π3 C.64π3D.80π3解析:选D 依题意,记三棱锥P ­ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ­ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ­ABC 的外接球的表面积为4πR 2=80π3,故选D.11.某几何体的三视图如图所示,则该几何体的体积为( )A.15π2 B .8π C.17π2D .9π解析:选B 依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,故选B.12.(2018届高三·湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.1603 B .32 C.323D.3523解析:选A 由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V =12×4×4×8-13×12×4×4×4=1603,故选A.二、填空题13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.解析:设圆柱高为h ,底面圆半径为r ,周长为c ,圆锥母线长为l .由图得r =2,h =4,则c =2πr =4π,由勾股定理得:l=22+32=4,则S 表=πr 2+ch +12cl =4π+16π+8π=28π.答案:28π14.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为________.解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15. 答案:1515.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12. 答案:1216.(2017·兰州诊断考试)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC=-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2, 即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ­ABC =13×12×12×12×32×5=60 3.答案:60 3B 组——能力小题保分练1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V=12×3×4×6-2×13×2×4×3=20,故选B. 2.(2017·成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π,故选B.3.(2018届高三·湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.4.(2017·石家庄质检)四棱锥P ­ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5 C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ­ABCD 是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt△PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.5.(2017·云南模拟)某几何体的三视图如图所示,若这个几何体的顶点都在球O 的表面上,则球O 的表面积是( )A .2πB .4πC .5πD .20π解析:选C 由三视图知,该几何体为三棱锥,其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为2,2,1的长方体,所以该几何体的外接球O 的半径R =22+22+122=52,则球O 的表面积S =4πR 2=5π,故选C.6.(2017·武昌调研)在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于点E ,连接CE ,如图所示,则AE ⊥BD ,BD ⊥AC .又AE ∩AC =A ,所以BD ⊥平面AEC ,从而有BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①错误.②假设AB ⊥CD ,∵AB ⊥AD ,AD ∩CD =D ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的直角三角形BAC ,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥平面ADC ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错误.答案:②第二讲 大题考法——立体几何主要考查线面面面平行、垂直的判定定理及性质定理的应用,以及平行与垂直关系的转化等.[典例感悟][典例1] (2016·山东高考)在如图所示的几何体中,D 是AC 的中点,EF∥DB .(1)已知AB =BC ,AE =EC ,求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点,求证:GH ∥平面ABC . [证明] (1)因为EF ∥DB , 所以EF 与DB 确定平面BDEF . 如图①,连接DE .因为AE =EC ,D 为AC 的中点,所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D , 所以AC ⊥平面BDEF .因为FB ⊂平面BDEF ,所以AC ⊥FB .(2)如图②,设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的中点,所以GI ∥EF .又EF ∥DB ,所以GI∥DB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC .又HI ∩GI =I,所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .[备课札记][方法技巧]平行、垂直关系的证明思路[演练冲关]1.如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD⊥底面ABCD ,PA ⊥AD ,E 和F 分别为CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ; (3)平面BEF ⊥平面PCD .证明:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA ⊥底面ABCD . (2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE .所以四边形ABED 为平行四边形.所以BE ∥AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以BE ∥平面PAD .(3)因为AB ⊥AD ,且四边形ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ∩PA =A ,所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF ,所以CD ⊥EF .又因为CD ⊥BE ,EF ∩BE =E ,所以CD ⊥平面BEF .又CD ⊂平面PCD ,所以平面BEF ⊥平面PCD .本部分的计算题目多设两问,第问考查空间位置关系的证明,第问考查空间几何体体积的求法或点到平面距离的求法.[典例感悟][典例2] (2017·成都模拟)如图,已知梯形CDEF 与△ADE 所在的平面垂直,AD ⊥DE ,CD ⊥DE ,AB ∥CD ∥EF ,AE =2DE =8,AB =3,EF =9,CD =12,连接BC ,BF .(1)若G 为AD 边上一点,DG =13DA ,求证:EG ∥平面BCF ;(2)求多面体ABCDEF 的体积.[解] (1)证明:如图,作GM ∥CD ,交BC 于点M ,连接MF . 作BH ∥AD ,交GM 于点N ,交DC 于点H . ∵EF ∥CD ,∴GM ∥EF .∵AB ∥CD ,∴四边形ABNG 与四边形ABHD 都是平行四边形, ∴GN =DH =AB =3,HC =9. ∵AB ∥GM ∥DC , ∴NM HC =BMBC=AG AD =23, ∴NM =6,∴GM =GN +NM =9,∴GM 綊EF , ∴四边形GMFE 为平行四边形,∴GE ∥MF . 又MF ⊂平面BCF ,GE ⊄平面BCF ,∴GE ∥平面BCF . (2)如图,连接BD ,BE .∵平面ADE ⊥平面CDEF ,AD ⊥DE ,AD ⊂平面ADE ,∴AD ⊥平面CDEF . ∵CD ⊥DE ,CD ⊂平面CDEF ,∴CD ⊥平面ADE , ∵AB ∥CD ,∴AB ⊥平面ADE .∴四棱锥B ­CDEF 的高为AD ,三棱锥B ­ADE 的高为AB . 在Rt △ADE 中,AD =AE 2-DE 2=82-42=43, ∴V 多面体ABCDEF =V B ­ADE +V B ­CDEF =13S △ADE ·AB +13S 梯形CDEF ·AD =13×⎝ ⎛⎭⎪⎫12×4×43×3+13×12×(9+12)×4×43=64 3. 故多面体ABCDEF 的体积为64 3.[备课札记][方法技巧](1)求解不规则几何体的体积时,常用割补法,将问题转化为柱体或锥体的体积求解. (2)求点到平面的距离时,常用等体积转换法.[演练冲关]2.(2017·全国卷Ⅱ)如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ­ABCD 的体积. 解:(1)证明:在平面ABCD 内, 因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC∥AD ,∠ABC =90°,得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .。

相关文档
最新文档