2015-2016学年九年级上《圆的基本性质》单元测试卷含答案
数学九年级上学期《圆》单元检测卷(带答案)
∵OP=1,∠POE=45°,
∴OE=PE= ,即点P的坐标为( , ),
则第2秒P点为(0,1),
根据题意可知,第3秒P点为(- , ),第4秒P点为(-1,0),第5秒P点为(- ,- ),第6秒P点为(0,-1),
第7秒P点为( ,- ),第8秒P点为(1,0),
2018÷8=252……2,
A. B. πC. πD. π
11.如图,A B是⊙O的直径,C,D是圆上两点,连接A C,B C,A D,C D.若∠C A B=55°,则∠A D C的度数为( )
A. 55°B. 45°C. 35°D. 25°
12.如图,在矩形A B C D中,A B=3,B C=4,O为矩形A B C D对角线的交点,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()
A. 44°B. 54°C. 62°D. 72°
3.如图,A B、C D分别与半圆OO切于点A,D,B C切⊙O于点E,若A B=4,C D=9,则⊙O 半径为( )
A. 12B. C. 6D. 5
4.如图,△A B C是⊙O的内接三角形,A B为⊙O的直径,点D为⊙O上一点,若∠A C D=40°,则∠B A D的大小为( )
16.如图,Rt△A B C中,A B⊥B C,A B=6,B C=4,P是△A B C内部的一个动点,且满足∠PA B=∠PB C,则线段CP长的最小值为_____.
17.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接A D,则图中阴影部分面积是_____.
第3章 圆的基本性质单元测试卷(含解析)
绝密★启用前第三章圆的基本性质单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,AB是直径,,∠BOC=40°,则∠AOE的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3 C.S1<S3<S2D.S3<S2<S17.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)为()A.10 cm B.16 cm C.24 cm D.26 cm9.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C12.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=度.13.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.14.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.15.在Rt△ABC中,∠ACB=90°,在斜边AB上分别截取AD=AC,BE=BC,DE=6,点O是△CDE的外心,如图所示,则点O到△ABC的三边的距离之和是.16.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,17.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.18.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点,==,则CM+DM 的最小值为.评卷人得分三.解答题(共6小题,共46分)19.(6分)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.20.(6分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.21.(8分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.22.(8分)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.23.(8分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).24.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.参考答案与试题解析1.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.2.解:∵,∠BOC=40°,∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故选:D.3.解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x ∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•P B即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.4.解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.5.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,6.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.7.解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.8.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.9.解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.10.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选:B.11.解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.12.解:如图,连接AE,∵点D是的中点,∴∠AED=∠CED,∵∠CED=40°,∴∠AEC=2∠CED=80°,∵四边形ADCE是圆内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°﹣∠AEC=100°,故答案为:100.13.解:连接OC,如图,∵OA=OC,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.14.解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.15.解:由题意点O是EC、CD垂直平分线的交点,∵AD=AC,BE=BC,∴EC的垂直平分线经过B且平分∠B,CD的垂直平分线经过A且平分∠A,∴O是△ABC的内心,则r=(AC+BC﹣AB)=(AD+BE﹣AB)=DE=3,∴点O到△ABC的三边的距离之和是3r=9,故答案为9.16.解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.17.解:如图,连接CE.∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在直角△OEC 中,OC=2,CE=4, ∴∠CEO=30°,∠ECB=60°,OE=2∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =﹣π×22﹣×2×2=﹣2,故答案为:﹣2.18.解:如图,作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M , 此时,点M 为CM +DM 的最小值时的位置, 由垂径定理,=,∴=,∵==,AB 为直径,∴C ′D 为直径,∴CM +DM 的最小值是16. 故答案是:16.19.证明:连接OC , ∵=,∴∠AOC=∠BOC .∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO=∠CEO=90° 在△COD 与△COE 中, ∵,∴△COD ≌△COE (AAS ), ∴OD=OE ,∵AO=BO,∴AD=BE.20.解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.21.(1)解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠ADC=86°,∴∠ABC=94°,∴∠CBE=180°﹣94°=86°;(2)证明:∵AC=EC,∴∠E=∠CAE,∵AC平分∠BAD,∴∠DAC=∠CAB,∴∠DAC=∠E,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠ADC=∠CBE,在△ADC和△EBC中,,∴△ADC≌△EBC,∴AD=BE.22.解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2, ∴△DOC 为等边三角形, ∴∠DOC=60°, ∴∠CBD=30°, ∴∠ADB=90°, ∴∠BED=60°, ∴∠AEC=60°.23.解:(1)连接OD ,OC , ∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°, ∴∠CAB=30°, ∵DE ⊥AB , ∴∠AEF=90°,∴∠AFE=90°﹣30°=60°; (2)由(1)知,∠AOD=60°, ∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2, ∵DE ⊥AO , ∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×=π﹣.24.(1)证明:∵CD ⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B,∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.。
九年级数学:圆的基本性质检测卷(含答案)
九年级数学:圆的基本性质检测卷(含答案)一、选择题(本大题共10小题,每小题4分,共40分)1.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP =6厘米时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定 2.有下列四个命题:①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④三点确定一个圆.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,已知弦CD ⊥直径AB 于点E ,连结OC ,OD ,CB ,DB ,下列结论一定正确的是( ) A .∠CBD =120° B .BC =BDC .四边形OCBD 是平行四边形 D .四边形OCBD 是菱形第3题图4.在半径为3cm 的⊙O 中,45°的圆周角所对的弧长为( )A.34πB.32πC.52πD.94π 5.如图,AB 是⊙O 的一条弦,且OD ⊥AB 于点C ,BD ︵所对的圆周角∠DEB =35°,则∠AOD 的度数是( )第5题图A .35°B .55°C .70°D .110°5.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为( )第6题图A .12个单位B .10个单位C .4个单位D .15个单位 7.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,当第24秒时,点E 在量角器上对应的读数为( )A .72°B .90°C .108°D .144°第7题图8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB ︵上一点,则∠APB 的度数为( )第8题图A .45°B .30°C .75°D .60° 8.如图,圆内接△ABC 的外角∠ACH 的平分线与圆交于点D ,DP ⊥AC ,垂足为P ,DH ⊥BH ,垂足为H ,有下列结论:①CH =CP ;②AD ︵=BD ︵;③AP =BH ;④AB ︵=BC ︵.其中一定成立的结论有( )第9题图A .1个B .2个C .3个D .4个 9.(威海中考)如图,AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( )第10题图A.68° B.88° C.90° D.112°二、填空题(本大题共6小题,每小题5分,共30分)11.已知四边形ABCD内接于⊙O,∠A:∠C=1∶2,则∠A=____.12.已知扇形的圆心角为120°,所对的弧长为8π3,则此扇形的面积是________.13.(长沙中考)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.第13题图14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为____.第14题图14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为____(结果保留π).第15题图16.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为____.三、解答题(本大题共8小题,共80分)17.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的格点A 、B 、C . (1)请完成如下操作:①以点O 为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D ,并连结AD 、CD ;(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C ____、D ____;②⊙D 的半径=____(结果保留根号).第17题图18.(8分)如图,在给定的圆上依次取点A ,B ,C ,D ,连结AB ,CD ,AC =BD ,设AC ,BD 交于点E ;第18题图(1)求证:AE =DE ;(2)若AD ︵=100°,AB =ED ,求AB ︵的度数.19.(8分)“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,求直径CD的长.”(1尺=10寸)第19题图20.(8分)如图,在△ABC中,AB=AC,BD是∠ABC的角平分线,△ABD的外接圆交BC于E.求证:AD=EC.第20题图21.(10分)(武汉中考)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.第21题图(1)如图1,若点P 是AB ︵的中点,求PA 的长; (2)如图2,若点P 是BC ︵的中点,求PA 的长.22.(12分)如图,⊙O 为四边形ABCD 的外接圆,圆心O 在AD 上,OC ∥AB .第22题图(1)求证:AC 平分∠DAB ;(2)若AC =8,AC ︵∶CD ︵=2∶1,试求⊙O 的半径;(3)若点B 为AC ︵的中点,试判断四边形ABCO 的形状.23.(14分)如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧ACB 上的一个动点(点C 不与A 、B 重合).(1)如图1,CD ⊥AB 于D ,交⊙O 于点N ,若CE 平分∠ACB ,交⊙O 于点E ,求证:∠ACO =∠BCD ;(2)如图2,设AB =8,⊙O 半径为5,在(1)的条件下,四边形ACBE 的面积是否是定值?若是定值,求出这个定值,若不是定值,求出四边形ACBE 面积的取值范围.图1图2 第23题图第3章 圆的基本性质检测卷1.A 2.A 3.B 4.B 5.C 6.B 7.D 8.D 9.C 10.B 11.60° 12. 163π 13. 4 14. (3,2) 15. 52π-4 16. 3或7317. (1)略 (2)①(6,2) (2,0) ②2 518.(1)连结BC ,∵AC =BD ,∴AC ︵=BD ︵,AC ︵-AD ︵=BD ︵-AD ︵,即AB ︵=CD ︵,∴∠ACB =∠DBC,∴BE =CE ,又AC =BD ,∴AE =DE ; (2)连结AD.∵AD ︵=100°,∴∠ABD =50°,又∵AB=DE =AE ,∴∠ABD =∠AEB=50°,∠ADB =25°,AB ︵的度数为50°.19. 26寸.20.证明:连结DE ,∵四边形ABED 是圆内接四边形,∴∠EDC =∠CBA,∵AB =AC ,∴∠ACB =∠CBA,∵∠EDC =∠CBA,∠ACB =∠CBA,∴∠ACB =∠EDC,∴DE =EC ,∵BD 是∠CBA 的角平分线,∴∠DBA =∠DBC,∴AD ︵=DE ︵,∴AD =DE ,∵DE =EC ,AD =DE ,∴AD =EC.21.(1)如图1,连结PB.∵ AB 是⊙O 的直径,P 是弧AB 的中点,∴ PA =PB ,∠APB =90°.∵AB =13,∴PA =22AB =1322; (2)如图2,连结BC ,OP ,且它们交于点D ,连结PB. ∵ P 是BC ︵的中点,∴ OP ⊥BC ,BD =CD.∵ OA=OB ,∴ OD =12AC =52.∵ OP =12AB =132,∴ PD =OP-OD =132-52=4.∵ AB 是⊙O 的直径,∴ ∠ACB =90°.∵ AB =13,AC =5,∴BC =12.∴ BD=12BC =6.∴ PB=PD 2+BD 2=42+62=213.∵ AB 是⊙O 的直径,∴∠APB =90°. ∴ PA AB 2-PB 2=132-(213)2=313.第21题图22.第22题图(1)证明:∵OC∥AB,∴∠BAC=∠ACO,∵OC=OA,∴∠ACO=∠CAO.∴∠CAO=∠BAC.即:AC平分∠DAB. (2)AC=8,弧AC与CD之比为2∶1,∴∠DAC=30°,又∵AD是圆的直径,∴∠ACD=90°,∴CD=AC·tan∠DAC=833,∵∠COD=2∠DAC=60°,OD=OC,∴△COD是等边三角形.∴圆O的半径=CD=833. (3)∵点B为弧AC的中点,∴AB︵=BC︵,∴∠BAC=∠BCA,∵AC平分∠DAB,∴∠OAC=∠BAC,∴∠BAC=∠BCA=∠OAC=∠OCA.∴OA∥BC.又OC∥AB,∴四边形ABCO是平行四边形.∵AO=CO,∴四边形ABCO为菱形.23.(1)略; (2)不是定值,8<S四边形ACBE≤40.。
2016年秋季九年级上学期数学《圆》单元测试及答案
2016年秋季九年级上学期数学《圆》单元测试一、选择题 (每小题4分,共40分):1.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图(1)所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是() A .第①块 B .第②块 C .第③块 D .第④块2.下面命题中是真命题的有( )①长度相等的弧是等弧 ②平分弦的直径垂直于弦; ③相等的圆心角所对的弦相等 ④任意三点确定一个圆⑤外心在三角形的一条边上的三角形是直角三角形。
A.0个 B.1个 C.2个 D.3个 3.已知、是同圆的两段弧,且=2,则弦AB 与CD 之间的关系为( )A.AB=2CDB.AB<2CDC.AB>2CDD.不能确定4.如图(2),以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.如图(3),⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AOC=84°,则∠E 等于( ) A.42 ° B.28° C.21° D.20°6.如图(4)已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,若过点且与平行的直线与⊙有公共点, 设x OP =,则的取值范围是( ) A .-1≤≤1 B .≤≤C .0≤≤D .>7.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶18.设⊙O 的半径为2,圆心O 到直线l 的距离OP=m ,且m 使得关于x 的方程2x 2-22x+m-1=0有实数根,则直线l 与⊙O 的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定9.如图(5),在边长为20cm 的等边三角形ABC 纸片中,以顶点C 为圆心,以此三角形的高为半径画弧分别交AC BC ,于点D E ,,则扇形CDE 所围的圆锥(不计接缝)的底圆 半径为( )A .533cm B .1033cm C.53cm D .103cm 10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时,点P 的坐标是() A.(2016,0) B.(2017,-1) C. (2017,1) D. (2018,0)二、填空题(每小题4分,共40分):11.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是_______.12.如图(6),四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠DCE 的度数为___50°____. 13.如图(7),AB 是⊙O 的弦,OH ⊥AB 于点H,点P 是优弧上一点,若AB=2,OH=1,则∠APB 的度数是 .14.如图(8),在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为_________.15.如图(9),Rt △ABC 中,∠C=90°,AC=6,BC=8.则△ABC 的内切圆半径r=____.16.如图(10),圆锥的母线长OA 为8,底面圆的半径为4.若一只蚂蚁在底面上点A 处,在相对母线OC 的中点B 处有一只小虫,蚂蚁要捉到小虫,需要爬行的最短距离为_______.17.如图(11),一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是______ m 2.18.如图(12),△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________ (结果保留π). O O 45AOB ∠=︒P P OA O x x 2-x 2x 2x 2_______________班级:(____)班 座号:_____号 姓名:_______________________…………………………………………………………装订线………………………………………………………………………………(2)(3)(6)(7)6m 4m 5m 120° 小羊AO A C B (10) (12) (9) rB AC O ABCD E (5)(8)(11)19.如图(13)分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 ______个平方单位。
数学九年级上册《圆》单元检测带答案
(1)求证:B C平分∠A B D
(2)若D C=8,BE=4,求圆的直径.
22.如图,正方形A B C D的边长为2,点E在边A D上(不与A,D重合),点F在边C D上,且∠EBF=45°,若△A BE的外接圆⊙O与C D边相切.
A 24B.14C.10D.7
3.下列语句,错误的是( )
A.直径是弦
B.弦的垂直平分线一定经过圆心
C.相等的圆心角所对的弧相等
D.平分弧的半径垂直于弧所对的弦
4.已知,如图A B,A D是⊙O的弦,∠B=30°,点C在弦A B上,连结CO并延长交⊙O于点D,∠D=35°,则∠B A D的度数是( )
A. 1个B. 2个C. 3个D. 4个
[答案]C
[解析]
[分析]
利用确定圆的条件得到对角互补的四边形有外接圆可对①进行判断;利用切线的性质对②进行判断;根据正多边形中心角的定义和多边形外角和对③进行判断;根据切线长定理对④进行判断.
[详解]解:对角互补的四边形是圆内接四边形,所以①正确;
圆的切线垂直于过切点的半径,所以②错误;
6.如图,A B是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接B C、PA.若∠P=36°,PA与⊙O相切,则∠B等于( )
A.20°B.27°C.36°D.42°
[答案]B
[解析]
[分析]
由A B是⊙O的直径,PA切⊙O于点A,∠P=36°,可求得∠POA的度数,又由圆周角定理,可求得∠B的度数,根据等边对等角的性质,即可求得答案.
2.如图,C D为圆O的直径,弦A B⊥C D,垂足为E,CE=1,半径为25,则弦A B的长为( )
最新浙教版九年级数学上学期《圆的基本性质》单元测试卷及答案解析.docx
九年级上数学圆的基本性质单元测试卷班级 姓名一、选择题1、下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 2、过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题) 5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是()A B C D6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A、35B、5 C、25D、67.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A. 60πcm2B. 45πcm2C. 30πcm2D15πcm2ABCP15c m3c m9c m(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P 之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△11BC A 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分的面积)为( )A 、38737-π B 、38734+π C 、π D 、334+π (第10题)二、填空题(每题4分,共32分)11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.12.同圆的内接正三角形与内接正方形的边长的比是______.13. 如图,△ABC 是等腰直角三角形,BC 是斜边,点P 是△ABC 内的一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合.如果AP=3,那么线段PP ′的长是______.(第13题) (第14题)14.如图,三角形ABC 是等边三角形,以BC 为直径作圆交AB ,AC 于点D ,E ,若BC=1,则DC=________.(第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 .17、在平面直角坐标系中,已知一圆弧点A (-1,3),B (-2,-2),C (4,-2),则该圆弧所在圆的圆心坐标为 .18、如图⊙O 的半径为1cm ,弦AB ,CD 的长度分别为2cm ,1cm ,则弦AC ,BD 相交所夹的锐角 = . 三、解答题(第18题)19、已知:如图,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 长为半径的圆交AB 于D,求的度数.DCBAE DCBA O(第19题)20、 “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E, CE=1寸,求直径CD 的长.”(第20题)21、如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC . 求证:∠ACB=2∠BAC.CBAO(第21题)22、如图所示,BC 是⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ;求证:BE =AE .(第22题)23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD=8,求AE的长;(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.(第24题)25、如图所示,已知⊙O的直径为32,AB为⊙O的弦,且AB=4,P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.第25题26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在AB上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,DF⊥CD交AB于点F. (1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.第26题27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.40cm40cm60cm DCB A 60O参考答案:1~5:AADCC 6~10:ADBCC11. 7厘米或1厘米 12.6213.32 点拨:由旋转的性质,知∠PAP ′等于90°,AP ′=AP=3,所以PP ′=22AP AP '+ =2233+=32. 14.3215、33648-π16、2017、(1,0)18、75°19、50°20、26寸21、求证圆周角∠ACB=2∠BAC,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB=2∠BOC 容易得到.22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC ,∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C ,∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2(2)224、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;(2)解:连结AO 并延长交BC 于F ,连结OB ,OC ,∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =21BC =21×6=3, 在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,BF =3,OF =4-r ,∴222)4(3r r -+=,解得825=r ,∴⊙O 的半径是825 25.解:存在以A ,P ,B 为顶点的面积最大的三角形.如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC=90°.∴BC=22AC AB -=22(32)4-=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线,OD=12BC =22.∴PD=PO+OD=322+22=22.∴APB S =12AB ·PD=12×4×22=42. 26.(1)证明:过点O 作OH ⊥CD 于点H ,∴H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD,则O 为EF 的中点,OE=OF.又∵AB 为直径,∴OA=OB ,∴AE=OA-OE=OB-OF=BF,即AE=BF.(2)解:四边形CDFE 的面积为定值,是216 5 cm .理由:∵动弦CD 在滑动过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,∴CDFE S 四边形=OH ·CD.连结OC.∴OH=22OC CH -=2212822⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=25(cm ).又∵CD 为定值8 cm,∴CDFE S 四边形=OH ·CD=25×8=165(2cm ),是常数.即四边形CDFE 的面积为定值.27.示意图略,路线的长度为140-π3103320+。
浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析
浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析一、选择题1、圆是轴对称图形,它的对称轴有().A.一条B.两条C.三条D.无数条2、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧3、如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.150°C.180°D.240°(第3题图)(第4题图)(第5题图)4、如图,AB 为⊙O 的直径,弦CD⊥AB 于E,已知CD=12,BE=3,则⊙O的直径为()A.8 B.10 C.15 D.205、如图,AB为⊙O的直径,∠ABD=38°,则∠DCB=()A.52°B.56°C.60°D.64°6、如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连结OD,若∠BAC=55°,则∠COD的大小为( )A.70°B.60°C.55°D.35°(第6题图)(第7题图)7、如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°8、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.二、填空题9、一个扇形的圆心角为120°,扇形的弧长12π,则扇形半径是______.10、某圆锥的底面圆的半径为3cm,它的侧面展开图是半圆,则此圆锥的侧面积是_______cm2.(结果保留π)11、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为_________.(第11题图)(第12题图)(第13题图)12、如图,AB是半圆的直径,O是圆心,,则∠ABC=________°.13、如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是__________.14、如图,AB是⊙O直径,D是半圆弧AB中点,P是BA延长线上一点,连接PD交A⊙O于点C,连接BC,若∠P=250,则∠ABC= ______o.(第14题图)(第15题图)15、如图,将边长为的正方形绕点顺时针旋转到的位置,旋转角为30°,则点运动到点时所经过的路径长为_______.三、解答题16、已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.17、如图,某公园的石拱桥的桥拱是圆弧形(弓形),其跨度AB=24 m,拱的半径R=13 m,求拱高CD.18、如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.(1)求弦AB的长;(2)若∠D=20°,求∠BOD的度数.19、如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)参考答案1、D2、B3、D4、C5、A6、A7、D8、D9、1810、18π11、6.512、3013、60°.14、20°15、16、DB=cm17、CD=8m18、(1);(2)100°.19、(1)证明见解析;(2)8-【解析】1、试题分析:过圆心的任何一条直线都是圆的对称轴,故选D.考点:轴对称图形.2、试题解析:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选B.3、试题分析:根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解:O为圆心,连接三角形的三个顶点,即可得到∠AOB=∠BOC=∠AOC=120°,所以旋转120°或240°后与原图形重合.故选:D.考点:旋转对称图形.4、试题分析:连接OC,设OC=r,则OE=r-3,CE=6,根据Rt△OCE的勾股定理可得:,解得:r=7.5,则圆的直径为7.5×2=15.考点:垂径定理5、试题分析:连结AD,先根据圆周角定理的推论得到∠ADB=90°,再根据互余计算出∠A=52°,然后根据圆周角定理求解.解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣38°=52°,∴∠DCB=∠A=52°.故选A.考点:圆周角定理.6、试题分析:根据AC为切线,OC为半径可得∠ACB=90°,根据∠A=55°可得∠B=90°-55°=35°,根据同弧所对的圆心角与圆周角的关系可得:∠DOC=2∠B=35°×2=70°.考点:圆的基本性质7、试题分析:圆的内接四边形,对角互补.则∠BAD=180°-∠BCD=180°-110°=70°.考点:圆的内接四边形8、试题分析:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选D.考点:正多边形和圆;分类讨论.9、分析:根据扇形弧长公式求得该扇形的半径.详解:设该扇形的半径为R.则解得R=18故答案为:18.点睛:此题主要考查了弧长公式的应用,根据弧长公式,解方程即可求出半径,比较简单,熟记弧长公式是解题关键10、分析:已知底面半径为3的圆锥的侧面展开图是半圆,根据侧面展开图角度与母线,半径的关系,可求出圆锥的母线,代入侧面积公式可得答案.详解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,∵圆锥的底面半径为3cm,故圆锥的母线长为6cm,故圆锥的侧面积S==2π·3²=18π,故答案为18π. 点睛:本题利用了圆的周长公式和扇形面积公式求解,掌握圆锥与扇形各个元素之间的关系是解答本题的关键.11、如图,设圆弧的圆心为点O,连接AO,DO,则由题意可知:O、D、C在同一直线上,且OD⊥AB于点D,∴∠ADO=90°,AD=AB=6,设拱桥的半径为,则AO=,OD=OC-CD=,在Rt△ADO中,由勾股定理可得:,即:,解得:,∴拱桥的半径为6.5.12、试题解析:因为,所以,则,又因为,所以,则,.所以本题的正确答案为30°.13、∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案是:60°.14、分析:连接DB、DA,根据圆周角定理的推论,得到△ADB为等腰直角三角形,然后根据三角形的外角的性质得到∠PDA的度数,然后根据等弧所对的圆周角求解即可.详解:连接DB、DA∵D为弧AB的中点,AB为直径∴△ADB为等腰直角三角形∴∠DAB=45°∴∠P+∠PDA=45°∵∠P=25°,∴∠PDA=45°-25°=20°即∠PBC=20°.故答案为:20°.点睛:此题主要考查了圆周角定理和推论,利用三角形的外角的性质和等腰直角三角形的性质是解题关键.15、分析:连接AC,A′C,利用勾股定理可求出AC的长,即C点运动到C′点所在圆的半径,又因为旋转角为30°,所以根据弧长公式计算即可.详解:连接AC,A′C,∵AB=BC=2cm,∴AC=,∵正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∴C和C′是对应点,∵旋转角为30°,∴∠CAC′=30°,∴C点运动到C′点的路径长=cm,故答案为:.点睛:本题考查了弧长的计算公式运用,旋转的性质,正方形的性质以及勾股定理的运用,解题的关键是正确求出旋转角∠CAC′=30°.16、试题分析:由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.试题解析:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,∠AEC=∠DEB=90°,∵∠B=∠ACD=30°,在Rt△ACE中,AC=2AE=4cm,∴CE==2(cm),∴DE=2cm,在Rt△BDE中,∠B=30°,∴BD=2DE=4cm.∴DB的长为4cm.点睛:注意数形结合思想的应用,注意掌握垂径定理与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、分析:先构建直角三角形,再利用勾股定理和垂径定理计算.详解:如图:因为跨度AB=24m,拱所在圆半径R=13m,所以找出圆心O并连接OA,延长CD到O,构成直角三角形,利用勾股定理和垂径定理求出DO=(m),进而得拱高CD=CO−DO=13−5=8(m).所以拱高CD为8米.点睛:本题考查了垂径定理和勾股定理的应用.可通过作辅助线建立模形,利用垂径定理解答,也可用相交弦定理来解.18、试题分析:(1)延长BO交⊙O 于E,连结AE,由BE是⊙O的直径,可得Rt△ABE,根据已知以及勾股定理即可求得;(2)连结OA,由OA=OB,OA=OD,可得∠BAO=∠B,∠DAO=∠D,从而可得∠DAB=∠B+∠D,再由圆周角定理即可求得.试题解析:(1)延长BO交⊙O 于E,连结AE,∵BE是⊙O的直径,∴∠BAE=90°,在Rt△ABE中,∠ABE=30°,BE=4,∴AE=2,AB==;(2)如图,连结OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO =∠B+∠D,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°.19、试题分析:(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.试题解析:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)∵AC∥BD,∠OCA=90°,BD=4,∴∠OED=∠OCA=90°,∴DE=BD=2,∵sin∠COD=,∴OD=4,在Rt△ACO中,tan∠COA=,∴AC=4,∴S阴影=×4×4-=8-.。
2015-2016年人教版九年级数学上第24章圆单元测试题含答案
河南省西华县东王营中学2015-2016学年度九年级数学人教版上册第24章圆单元测试题一.选择题(每题3分,共30分)1.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A.4个B.3个C.2个D.1个2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=() A.3cm B.4cm C.5cm D.6c m(2题图)(3题图)(4题图)(5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,πC.,D.2,9.下列说法不正确的是( ).A.任何一个三角形都有外接圆。
B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点。
D.一个三角形的外心不可能在三角形的外部10. 如图,⊙A、⊙B、⊙C、⊙D、⊙E的半径都是1,顺次连接这些圆心得到五边形ABCDE,则图中的阴影部分的面积之和为()A.πB.32πC.2πD.52π二、填空:(每题3分,共30分)11.如图,在一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读书恰好是“2”和“10”(单位:cm),那么光盘的直径是cm.12.如图,点O为优弧ACB 所在圆的圆心,AOC108∠=,点D在AB的延长线上,BD BC=,则D∠= .13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度.14.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°,则∠P的度数为度.15.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为__________.(结果保留π)16.圆内接正五边形ABCDE中对角线AC和BD相交于点P,则∠APB的度数。
九年级数学 圆的基本性质 单元测试题
E O ABDC九年级数学《圆的基本性质》单元测试班级 姓名 学号 得分一、选择题(每题3分,共30分)1. 若一个圆的半径是3cm ,则此圆的最长弦的长度为( )A. 3cmB. 4cmC.5cmD. 6cm2. 以下命题:(1)同圆中等弧对等弦;(2)圆心角相等,它们所对的弧长也相等;(3)三点确定一个圆;(4)平分弦的直径必垂直于这条弦.其中正确的命题的个数是( )A. 1个B. 2个C. 3个D. 4个 3. 如图,点A ,B ,C 在⊙O 上,∠AOB =80°,则∠ACB =( )A. 20°B. 40°C. 60°D. 80° 4. 如图,正方形ABCD 的边长为6cm ,则它的外接圆的半径长是( )A.2cmB. 22cmC. 32cmD. 42cm第6题 第7题 5、在⊙O 中,∠AOB=120°,弧AB 的长为 6,则⊙O 的半径是( ) (A )6; (B )9; (C )18; (D )4.5。
6、如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) (A )110°; (B )70°; (C )55°; (D )125°。
7、如图3,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) (A )2.4; (B )4.8 ; (C )1.2; (D )2.5。
8. 如图,在半径为5的⊙O 中,如果弦AB 的长为8,那么它的弦心距OC 等于( )A. 2B. 3C. 4D. 6OAB CABCDO图1图2第3题第4题第8题图9. 已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠A PB 的度数为( )A. 30oB. 150oC. 30o 或150oD. 60°或120o10.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为() A .C. 2cmD. 3cm二、填空题(每题4分,共24分)11. 一条弧的度数是1080,则它所对的圆心角是 ,所对的圆周角是 .12.P 为⊙O 内一点,⊙O 的半径为5cm ,PO =3cm ,则过P 点的最长的弦长等于 cm ,最短的弦长等于 cm 。
九年级上《圆的基本性质》单元测试卷含答案
江苏省南京市2015-2016学年 九年级上数学圆的基本性质单元测试卷班级 姓名一、选择题1、下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 2、过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题)5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( )A B C D6、如图,在Rt △ABC 中,∠C =90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A 、35B 、5C 、25D 、67.如图,圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为( ) A. 60πcm 2 B. 45πcm 2 C. 30πcm 2 D15πcm 2P(第7题) (第8题)8.如图,小华同学设计了一个圆直径的测量器,并使它们保持垂直,在测直径时,把0个单位,则圆的直径为( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△11BCA的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分的面积)为()A、38737-πB、38734+πC、πD、334+π(第10题)二、填空题(每题4分,共32分)11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.12.同圆的内接正三角形与内接正方形的边长的比是______.13. 如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内的一点,将△ABP绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长是______.(第13题)(第14题)14.如图,三角形ABC是等边三角形,以BC为直径作圆交AB,AC于点D,E,若BC=1,则DC=________.C(第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 .17、在平面直角坐标系中,已知一圆弧点A (-1,3),B (-2,-2),C (4,-2),则该圆弧所在圆的圆心坐标为 . 18、如图⊙O 的半径为1cm ,弦AB ,CD 的长度分别为2cm ,1cm ,则弦AC ,BD 相交所夹的锐角 = . 三、解答题(第18题)19、已知:如图,在△ABC 中,∠ACB =90°,∠B =25°,以C 为圆心,CA 长为半径的圆交AB 于D ,求的度数.A(第19题)20、 “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E , CE =1寸,求直径CD 的长.”(第20题)21、如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .CBAO(第21题)22、如图所示,BC 是⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ;求证:BE =AE .(第22题)23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD =8,求AE的长;(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.(第24题)25、如图所示,已知⊙O的直径为,AB为⊙O的弦,且AB=4,P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.第25题26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在AB上滑动(点C 与A不重合,点D与B不重合),且CE⊥CD交AB于点E,DF⊥CD交AB于点F.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.第26题27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.60cm参考答案:1~5:AADCC 6~10:ADBCC 11. 7厘米或1厘米12.213.点拨:由旋转的性质,知∠PAP′等于90°,AP′=AP=3,所以PP′=15、33648-π 16、20 17、(1,0) 18、75° 19、50° 20、26寸21、求证圆周角∠ACB =2∠BAC ,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB =2∠BOC 容易得到.22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC , ∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C , ∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE 23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2(2)224、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB ⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;(2)解:连结AO 并延长交BC 于F ,连结OB ,OC , ∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =21BC =21×6=3, 在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,BF =3,OF =4-r ,∴222)4(3r r -+=,解得825=r ,∴⊙O 的半径是825 25.解:存在以A ,P ,B 为顶点的面积最大的三角形.如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC=90°.∴∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线,OD=12BC =2.∴PD=PO+OD=2+2=.∴APBS =12AB ·PD=12×4×=26.(1)证明:过点O 作OH ⊥CD 于点H ,∴H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD,则O 为EF 的中点,OE=OF.又∵AB 为直径,∴OA=OB ,∴AE=OA-OE=OB-OF=BF,即AE=BF.(2)解:四边形CDFE 的面积为定值,是2.理由:∵动弦CD 在滑动过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,∴CDFE S 四边形=OH·CD.连结OC.∴cm ).又∵CD为定值8 cm,∴CDFE S 四边形=OH·CD=8=2cm ),是常数.即四边形CDFE 的面积为定值.27.示意图略,路线的长度为140-π3103320+。
九年级上册数学《圆》单元综合测试附答案
根据矩形的性质可得AM=OH,
因MH⊥B C,
由垂径定理得HC=HB=6,
所以OH=AM=10,
在RT△AOM中,由勾股定理可求得OM==2 .
故答案选D.
[点睛]本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.
5. 如图,A,B,C是⊙O上三点,∠A C B=25°,则∠B AO 度数是( )
15.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__.
16.如图,A B切⊙O于点B,OA=2,∠OA B=30°,弦B C∥OA,劣弧 弧长为.(结果保留π)
17.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA= ,∠P=60°,则图中阴影部分的面积为____.
A.40°B.45°C.50°D.60°
[答案]A
[解析]
试题解析:
∵点C是 的中点,
故选A.
点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.
4.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M到坐标原点O的距离是( )
A.10;B.8 ;C.4 ;D.2 ;
A.24CmB.48CmC.96CmD.192Cm
[答案]B
[解析]
[分析]
利用底面周长=展开图的弧长可得.
[详解]设这个扇形铁皮的半径为rCm,由题意得 ,解得r=48.
故这个扇形铁皮的半径为48Cm,
故选B.
考点:圆锥的计算.
10.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧A B的中点,连接A C、B C,则图中阴影部分面积是( )
九年级上册数学《圆》单元综合测试题(含答案)
14.已知 的直径为 ,如果圆心到直线 的距离为 ,则直线 与 的位置关系________
15.如果扇形的半径为 ,圆心角是 ,那么它的面积是________.
16.小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是 .
∵CD=2 ,
∴CN= ,
∴CO=2,
∴扇形BOC的面积为: ,
故选A.
【点睛】此题主要考查了圆周角定理、垂径定理和扇形面积公式,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
10.有一个长为 的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是()
A. B. C. D.
【答案】
【解析】
【分析】
根据弧长公式l= (弧长为l,圆心角度数为n,圆的半径为R)进行计算即可.
【详解】l= = =2.5π.
故答案为2.5π.
【点睛】本题考查了弧长公式,注意计算时把直径化成半径.
12.点 到圆 上的点的最小距离为 厘米,最大距离为 厘米,那么圆 的半径为________.
【答案】 厘米或 厘米
A. B. C. D.
【答案】B
【解析】
【分析】
由弧ABC、弧ADC的长度分别为8π、10π,可得圆的周长为18π,由∠BCD=100°可求得弧BAD= ×18π=10π.
【详解】∵弧ABC、弧ADC的长度分别为为8π、10π,∴圆的周长为18π.
∵∠BCD=100°,∠BCD+∠A=180°,故弧BAD= ×18π=10π.
A.40°B.50°C.60°D.80°
6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()
圆的基本性质单元测试卷(标准难度)(含答案)
浙教版初中数学九年级上册第三单元《圆的基本性质》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.若正多边形的内角和是540°,则该正多边形的一个外角为( )A. 45°B. 60°C. 72°D. 90°2.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α−β=90°D. 2α−β=90°3.如图,AB是半圆O的直径,以弦AC为折痕折叠AC⏜后,恰好经过点O,则∠AOC等于( )A. 120°B. 125°C. 130°D. 145°4.如图,在Rt△ABC中,∠ACB=90∘,∠A=60∘,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,则点B′与点B之间的距离为( )A. 12B. 6C. 6√2D. 6√35. 在平面直角坐标系中,把点A(3,4)绕原点逆时针旋转90°,得到点B ,则点B 的坐标为( )A. (4,−3)B. (−4,3)C. (−3,4)D. (−3,−4)6. 如图,在⊙O 中,弦AB//CD ,OP ⊥CD ,OM =MN ,AB =18,CD =12,则⊙O 的半径为( )A. 4B. 4√2C. 4√6D. 4√37. 如图,将⊙O 沿AB 折叠后,圆弧恰好经过圆心,则AMB ⌢所对的圆心角等于( )A. 60°B. 90°C. 120°D. 150°8. 如图,在△ABC 中,∠C =90°,DE ⏜的度数为α,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,则∠A 的度数为( )A. 45∘−12αB. 12αC. 45∘+12αD. 25∘+12α9. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦BC 的长为( ) A. 1B. √3C. 2D. 2√310.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC的度数等于( )A. 55°B. 60°C. 65°D. 70°11.如上图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若∠C=110∘,则∠ABC的度数等于( )A. 55∘B. 60∘C. 65∘D. 70∘12.如图,在3×4的方格中,每个小方格都是边长为1的正方形,O,A,B分别是小正方形的顶点,则AB⏜的长度为( )A. πB. √2πC. 2πD. 4π第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.根据“不在同一直线上的三点确定一个圆”,可以判断平面直角坐标系内的三个点A(3,0)、B(0,−4)、C(2,−3)______确定一个圆(填“能”或“不能”).14.如图,在⊙A中,弦DE=6,∠BAC+∠EAD=180°,则点A到弦BC的距离等于_________.15.如图,四边形ABCD内接于⊙O,F是CD⏜上一点,且DF⏜=BC⏜,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105∘,∠BAC=25∘,则∠E的度数为.16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2√3,则AC⏜的长为______.三、解答题(本大题共9小题,共72分。
浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)
第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。
浙教版九年级第一学期第三章《圆的基本性质》单元评价A卷(附答案)
浙教版九年级第一学期第三章《圆的基本性质》单元评价A 卷班级: _________姓名: _________ 得分: _________一、选择题(每小题3分,共30分)1.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接BC 、BD ,下列结论中不一定正确的是( )A .AE = BEB .AD ⌒ =BD ⌒C .OE = DED .∠DBC = 90°2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长是3,则弦AB 的长是( )A .4B .6C .7D .83.下列命题中:①任意三点确定一个圆;②平分弦的直径垂直于弦;③等边三角形的外心也是三角形的三条中线、高线、角平分线的交点;④90°的圆心角所对的弦是直径;⑤同弧或等弧所对的圆周角相等.其中真命题的个数为( )A .2B .3C .4D .54.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD = 12,EB = 2,则⊙O 的直径为………( )A .8B .10C .16D .205.如图,在半径为6 cm 的⊙O 中,点A 是劣弧BC ⌒ 的中点,点D 是优弧BC ⌒ 上一点,且∠D = 30°,下列四个结论:①OA ⊥BC ;②BC = 63 cm ;③∠AOB = 60°;④四边形ABOC 是菱形.其中正确结论的序号是( )A .①③B .①②③④C .②③④D .①③④6.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a > b ),则此圆的半径为( ) A.2b a + B .2b a - C . a +b 2 或 a −b 2 D .a + b 或a - b7.如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD = 22.5°,若CD = 6 cm ,则AB 的长为( )A .4 cmB .32cmC .23 cmD .26 cm8.过⊙O 内一点M 的最长的弦长为6 cm ,最短的弦长为4 cm .则OM 的长为…( )A .3 cmB .5 cmC .2 cmD .3 cm9.在矩形ABCD 中,已知AB = 2 cm ,BC = 3 cm ,现有一根长为2 cm 的木棒EF 紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF 的中点P 在运动过程中所围成的图形的面积为( )A .6 cm 2B .3 cm 2C .(2 + π)cm 2D .(6 - π)cm 210.如图,AB 是⊙O 的直径,弦BC = 2 cm ,∠ABC = 60°.若动点P 以2 cm /s的速度从B 点出发沿着B →A 的方向运动,点Q 以1 cm /s 的速度从A 点出发沿着A →C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t (s ),当△APQ 是直角三角形时,t 的值为( )A . 4 3B .3 -3C .3 - 3或133832 D . 4 3 或3 -3或3 二、填空题(每小题4分,共24分)11.扇形的圆心角为150°,扇形的面积为240πcm 2,则扇形的弧长为 _________ .12.如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C = 25°,则∠D = _________ .13.⊙O 的半径为1,弦AB = 2,弦AC = 3,则∠BAC 度数为 _________ .14.如图,A ,B ,C ,D 是圆周上的四个点,AB⌒ + CD ⌒ = AC ⌒ +BD ⌒ ,且弦AB = 8,CD = 4,则图中两个弓形(阴影)面积的和是 _________ (结果保留3个有效数字).15.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A ,B ,并使AB 与车轮内圆相切于点D ,作CD ⊥AB 交外圆于点C .测得CD = 10 cm , A B = 60 cm ,则这个车轮的外圆半径为 _________ cm .16.如图,在平面直角坐标系中,已知点A (1,0),B (1 - a ,0),C (1 + a ,0)(a > 0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC = 90°,则a 的最大值是 _________ .三、解答题(共66分)17.(6分)如图,以等腰△ABC的顶点A为圆心作圆,交BC所在直线于D,E两点,求证:DB = CE.18.(8分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC = BD,连结AC交⊙O 于点F.(1)AB与AC的大小有什么关系?为什么?⌒的长.(2)若∠BAC = 40°,AB = 4,求DF19.如图,⊙O是△ABC的外接圆,直径AD = 4,∠ABC = ∠DAC,求AC的长.20.如图,在Rt△AOB中,∠AOB = 90°,OA = 3,OB = 2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,求图中阴影部分面积.21.(10分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律,请写出你所得到的结论(不要求证明).22.如图,在△ABC 中,∠C = 90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .(1)求证:∠1 = ∠F .(2)若AC :AB =55,EF = 25,求CD 的长.23.(12分)在平面直角坐标系中,已知点A(4,0),B(- 6,0),点C是y轴上的一个动点,当∠BCA = 45°时,求点C的坐标.。
九年级上学期数学《圆》单元综合测试题(含答案)
(2)求阴影部分面积.
21.如图,四边形A B C D内接于⊙O,A B是⊙O的直径,A C和B D相交于点E,且D C2=CE•C A.
(1)求证:B C=C D;
(2)分别延长A B,D C交于点P,过点A作AF⊥C D交C D 延长线于点F,若PB=OB,C D= ,求圆O的半径.
A.130°B.65°C.50°或130°D.65°或115°
7.边长分别等于6Cm、8Cm、10Cm的三角形的内切圆的半径为()Cm.
A. B. C. D.
8.如图,已知⊙O是等腰Rt△A B C的外接圆,点D是 上一点,B D交A C于点E,若B C=4,A D= ,则AE的长是()
A.1B.1.2C.2D.3
[答案]4π
[解析]
[分析]
根据弧长的计算公式计算可得答案.
[详解]解:由弧长计算公式为:
可得: = =4 ,
故本题正确答案为4 .
[点睛]本题主要考查弧长的计算,其中弧长公式为: .
11.用一个半径为3Cm,圆心角为120 的扇形围成一个圆锥的侧面,则圆锥的高为______Cm.
[答案]
[解析]
A. B. C. D.
[答案]A
[解析]
试题分析:过点O作OD⊥A B,则OD= ,∴A D= ,∴PD=AP-A D=x- ;
∴ = ,根据垂径定理可得: = -4= ,即y= (0≤x≤5)
考点:二次函数的应用、勾股定理、切线的性质
二、填空题
10.在半径为6Cm的圆中,120°的圆心角所对的弧长为_____Cm.
22.如图,已知四边形A B C D内接于⊙O,点E在C B 延长线上,连结A C、AE,∠A C B=∠B AE=45°.
浙教版九年级数学上册第3章圆的基本性质单元测试卷含答案试卷分析详解
第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1.△AB C 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( )A.80°B.160°C.100°D.80°或100°2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( )A.50°B.60°C.65°D.70°①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4.如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( )A.20°B.25°C.30°D.40°5.如图,在⊙O 中,直径CD 垂直弦AB 于点E ,连接OB,CB ,已知⊙O 的半径为2,AB =32,则∠BCD 的大小为( )A. 30oB. 45oC. 60oD. 15o6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( )A.23 B.3 C.32 D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个8. 如图,在Rt△ABC 中,△ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作△O ,设线段CD 的中点为P ,则点P 与△O 的位置关系是( )A.点P 在△O 内B.点P 在△O 上C.点P 在△O 外D.无法确定9. 圆锥的底面圆的周长是4π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( )A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A.10 cmB.4π cmC.27π cmD.25 cm 二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =2√3,OC =1,则半径OB 的长为 .12.(·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=_______.14.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则OD=_______,CD=_______.15.如图,在△ABC中,点I是外心,∠BIC=110°,则∠A=_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的弧AB),点O是这段弧的圆心,C是弧AB上一点,OC⊥AB,垂足为D,AB=300 m,CD=50 m ,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是.三、解答题(共46分)19.(8分) (·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF 是等腰三角形.23.(8分)如图,已知OA、OB、OC都是⊙O的半径,且∠AOB=2∠BOC.试探索∠ACB 与∠BAC之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形S1、S2,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为h1、h2,试比较h1与h2的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =12∠AOC =12×160°=80°或∠ABC =12×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =12∠AOC =12×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =12∠BOC =12×60°=30°. 5.A 解析:由垂径定理得BE =√3,∠OEB =90o . 又OB =2, ∴ OE =1,∴ ∠BOE =60o . 又OB =OC ,∴ ∠BCD =30o .6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知CD =2CE =3,故选B . 7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP =21AD =25,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则nπ∙6180=4π,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27π (cm). 二、填空题11. 2 解析:∵ BC = 1 2AB = √3,∴ OB = √OC 2+BC 2=√12+(√3)2=2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°.又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°. 14.8;2 解析:因为OD ⊥AB ,由垂径定理得AD =BD =6 ,故OD =√OA 2-AD 2=8 ,CD = OC-OD =2.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得.16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1. 17.250 解析:依据垂径定理和勾股定理可得.18. 4√2 解析:扇形的弧长l =120π×6180=4π(cm ),所以圆锥的底面半径为4π÷2π=2(cm ),所以这个圆锥形纸帽的高为√62-22 = 4√2(cm ).三、解答题19.分析:连接BD ,易证∠BDC =∠C ,∠BOC =2∠BDC =2∠C ,∴ ∠C =30°, 从而∠ADC =60°.解:连接BD .∵ AB 是⊙O 的直径,∴ BD ⊥AD .又∵ CF ⊥AD ,∴ BD ∥CF .∴ ∠BDC =∠C .又∵ ∠BDC =12∠BOC ,∴ ∠C =12∠BOC .∵ AB ⊥CD ,∴ ∠C =30°,∴ ∠ADC =60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20. 解:连接AE ,则AE ⊥BC .由于E 是BC 的中点,则AB =AC ,∠BAE =∠CAE ,则BE =DE =EC ,S 弓形BE =S 弓形DE ,∴ S 阴影=S △DCE .由于∠BED =120°,则△ABC 与△DEC 都是等边三角形,∴ S △DCE =12×2×√3=√3.21.分析:(1)欲求∠DEB ,已知一圆心角,可利用圆周角与圆心角的关系求解.(2)利用垂径定理可以得到AC =BC =21AB ,从而AB 的长可求. 解:(1)连接OB ,∵ OD ⊥AB ,∴ AC =BC ,弧AD =弧BD ,∴ ∠AOD =∠BOD.又∠DEB =21∠DOB , ∴ ∠DEB =21∠AOD =21×52°=26°. (2)∵ OC =3,OA =5,∴ AC =4. 又AC =BC =21AB ,∴ AB =2AC =2×4=8. 22.分析:要证明△OEF 是等腰三角形,可以转化为证明OE =OF ,通过证明△OCE ≌△ODF 即可得出.证明:如图,连接OC 、OD ,则OC =OD ,∴ ∠OCD =∠ODC.在△OCE 和△ODF 中,{OC =OD,∠OCD =∠ODC,CE =DF,∴ △OCE ≌△ODF (SAS ),∴ OE =OF ,从而△OEF 是等腰三角形.23.分析:由圆周角定理,得∠ACB =21∠AOB ,∠CAB =21∠BOC ;已知 ∠AOB = 2∠BOC ,联立三式可得.解:∠ACB =2∠BAC .理由如下:∵ ∠ACB =21∠AOB ,∠BAC =21∠BOC ,又∠AOB =2∠BOC ,∴ ∠ACB =2∠BAC .24.解:(1)已知桥拱的跨度AB =16米,拱高CD =4米,∴ AD =8米.利用勾股定理可得OA 2=AD 2+OD 2=82+(OA-4)2,解得OA =10(米).故桥拱的半径为10米.(2)当河水上涨到EF 位置时,因为EF =12米,EF ∥AB ,所以OC ⊥EF ,∴ EM =21EF =6(米), 连接OE ,则OE =10米,OM =√OE 2-EM 2=√102-62=8(米).又OD =OC-CD =10-4=6(米),所以OM-OD =8-6=2(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是6π,则6π=nπ∙9180,∴ n =120,即圆锥侧面展开图的圆心角是120°.∴ ∠APB =60°.在圆锥侧面展开图中,AP =9,PC =4.5,可知∠ACP =90°.∴ AC =√AP 2-PC 2=239. 故从A 点到C 点在圆锥的侧面上的最短距离为239. 点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可. 解:设扇形S 2 做成圆锥的底面半径为R 2, 由题意知,扇形S 2的圆心角为240°,则它的弧长=240πr 180=2πR 2,解得R 2=32r , 由勾股定理得,h 2=√r 2-(32r)2=35r . 设扇形S 1做成圆锥的底面半径为R 1,由题意知,扇形S 1的圆心角为120°,则它的弧长=120πr 180=2πR 1,解得R 1=31r , 由勾股定理得h 1=√r 2-(31r)2=322r ,所以 h 1>h 2.。
人教版数学九年级上册《圆》单元综合检测附答案
【详解】解: ,
故答案为:D.
【点睛】本题考查了扇形面积的计算,属于基础题,关键是熟记扇形的面积公式.
3.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关
系是( )
A.相交B.相切C.相离D.相交或相切
【答案】C
【解析】
【分析】
根据直径长可得半径为 ,圆心O到直线l的距离为8cm,由此可得直线l与⊙O的位置关系.
人教版数学九年级上学期
《圆》单元测试
(满分120分,考试用时120分钟)
第Ⅰ卷(选择题)
一.选择题(共10小题)
1.下列语句中正确的有几个( )
①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.
A.1B.2C.3D.4
【详解】解:∵⊙O的直径为13cm,
∴⊙O的半径 ,
∵圆心O到直线l的距离d为8cm,
∴ ,
∴直线l与⊙O的位置关系是相离,
故答案为:C.
【点睛】本题考查直线与圆 位置关系.直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离.
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点, ;
A. 8.5B. 7.5C. 9.5D. 8
【答案】A
【解析】
【分析】
根据垂径定理得到直角三角形,求出 的长,连接 ,得到直角三角形,然后在直角三角形中计算出半径的长.
【详解】解:如图所示:连接 ,则 长为半径.
∵ 于点 ,
∴ ,
∵在 中, ,
∴ ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市2015-2016学年
九年级上数学圆的基本性质单元测试卷
班级姓名
一、选择题
1、下列命题中不正确的是( )
A.圆有且只有一个内接三角形;
B.三角形的外心是这个三角形任意两边的垂直平分线的交点;
C.三角形只有一个外接圆;
D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点.
2、过⊙内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()(A)3cm (B)6cm (C)cm (D)9cm
3、如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=()
A70°B、60°C、50°D、40°
4、如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()
A、15
B、20
C、
D、
(第3题)(第4题)(第5题)(第6题)
5、如图,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O—C—D—O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t之间函数关系最恰当的是()
A B C D
6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()
A、B、5 C、D、6
7.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()
A. 60πcm2
B. 45πcm2
C. 30πcm2D15πcm2
(第7题) (第8题) (第9题)
8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )
A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )
A.28.3 cm
B.28.2 cm
C.56.5 cm
D.56.6 cm
10、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△的位置,则整
个旋转过程中线段OH所扫过部分的面积(即阴影部分的面积)
为()
A、B、
C、D、(第10题)
二、填空题(每题4分,共32分)
11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.
12.同圆的内接正三角形与内接正方形的边长的比是______.
13.
如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内的一点,将△ABP绕点A逆
时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长是______.
(第13题)(第14题)
14.如图,三角形ABC是等边三角形,以BC为直径作圆交AB,AC于点D,E,若BC=1,则DC=________.
(第16题)
14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为16,则该半圆的半径为.
15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽米,半径为12米,则
积水部分面积为.
16、如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.
17、在平面直角坐标系中,已知一圆弧点A(-1,3),B(-2,-2
),C(4,-2),则该圆弧所在圆的圆心坐标为.
18、如图⊙O的半径为1cm,弦AB,CD的长度分别为cm,1cm,
则弦AC,BD相交所夹的锐角=.
三、解答题
(第18题)
19、已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求
的度数.
(第19题)
20、“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知
大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD为⊙O的直径,弦AB⊥CD,垂足为E, CE=1寸,求直径CD的长.”
(第20题)
21、如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.
求证:∠ACB=2∠BAC.
(第21题)
22、如图所示,BC是⊙O的直径,AD⊥BC,垂足为D,AB=AF,BF和AD相交于E;求证:BE=AE.
(第22题)
23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD =8,求AE的长;
(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.
24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.
(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.
(第24题)
25、如图所示,已知⊙O的直径为,AB为⊙O的弦,且AB=4,
P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.
第25题
26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,
DF⊥CD交AB于点F.
(1)求证:AE=BF;
(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.
第26题
27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所
示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.
参考答案:
1~5:AADCC 6~10:ADBCC
11. 7厘米或1厘米
12.
13. 点拨:由旋转的性质,知∠PAP′等于90°,AP′=AP=3,所以PP′=
==
.
14.
15、
16、20
17、(1,0) 18、75° 19、50° 20、26寸
21、求证圆周角∠ACB =2∠BAC ,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件
∠AOB =2∠BOC 容易得到.
22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC , ∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C , ∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE
23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2 (2)2
24、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB ⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;
(2)解:连结AO 并延长交BC 于F ,连结OB ,OC , ∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =
BC =
×6=3,
在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,B F =3,OF =4-r ,∴
,解得
,∴⊙O 的半径是
25.解:存在以A ,P ,B 为顶点的面积最大的三角形.
如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC =90°.∴BC=
=
=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线
,OD==.∴PD=PO+OD=+=.∴=·PD=×4×=
.
26.(1)证明:过点O作OH⊥CD于点H,∴H为CD的中点.∵CE⊥CD,DF⊥CD,∴EC∥OH∥FD,则O为EF的中点,OE=OF.又∵AB为直径,∴OA=OB,∴AE=OA-OE=OB-OF=BF,即AE=BF.
(2)解:四边形CDFE的面积为定值,是.理由:∵动弦CD在滑动过程中,条件EC⊥CD,FD⊥CD不变,∴CE∥DF不变.由此可知,四边形CDFE为直角梯形或矩形,∴=OH·CD.连结OC.∴OH===(cm).又∵CD为定值8
cm,∴=OH·CD=×8=(),是常数.即四边形CDFE的面积为定值.
27.示意图略,路线的长度为140-。