电磁场与电磁波理论基础复习题.

合集下载

《电磁场与电磁波》试题含答案

《电磁场与电磁波》试题含答案

E

E x 分量
� ˆ x + ye ˆ y + xe ˆz A = − x 2e
,试求

(2)若在 xy 平面上有一边长为 2 的正方形,且正方形的中心在坐标原点,试求该矢量 A 穿 过此正方形的通量。 17.已知某二维标量场 u ( x, y ) = x + y ,求 (1)标量函数的梯度; (2)求出通过点 (1,0) 处梯度的大小。
三、计算题
15.矢量函数
(每小题 10 分,共 30 分) � ˆ x + yze ˆz A = − yx 2 e
,试求
� ∇ ⋅ A (1) � (2) ∇ × A � � ˆx − e ˆy ˆ x − 2e ˆz B = e A = 2 e 16.矢量 , ,求
(1 ) A − B (2)求出两矢量的夹角 17.方程 u ( x, y, z ) = x + y + z 给出一球族,求 (1)求该标量场的梯度; (2)求出通过点 (1,2,0) 处的单位法向矢量。

等于零,则此两个矢量必然相互垂直。 关系。 函
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 数的旋度来表示。
二、简述题
(每小题 5 分,共 20 分) � � ∂B ∇×E = − ∂t ,试说明其物理意义,并写出方程的积分形式。 11.已知麦克斯韦第二方程为
(1) 求出入射波磁场表达式; (2) 画出区域 1 中反射波电、磁场的方向。

区域 1 图3
区域 2《电磁场与电磁波》试题2一、填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的介电常数为 ε ,则电位移矢量 D 和电场 E 满足的 方程为: 。

电磁场与电磁波练习题

电磁场与电磁波练习题

电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。

B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。

C.梯度的散度恒为零。

D.一个标量场的性质可由其梯度来描述。

5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。

电磁场与电磁波复习题

电磁场与电磁波复习题

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将( A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。

B如果高斯面上E处处不为零,则面内必有静电荷。

C如果高斯面内无电荷,则高斯面上E处处为零。

D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。

电磁场与电磁波总复习

电磁场与电磁波总复习

一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。

电磁场与电磁波复习题(含问题详解)

电磁场与电磁波复习题(含问题详解)

电磁场与电磁波复习题(含问题详解)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数.散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分.旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u l8、亥姆霍兹定理的表述在有限区域.⽮量场由它的散度、旋度及边界条件唯⼀地确定.说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()sls s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场. ⼀般采⽤时谐场来分析时变电磁场的⼀般规律.是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下.可以使⽤叠加原理。

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。

静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

2、请解释磁场与恒定磁场的概念。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

3、请解释时变电磁场与电磁波的概念。

如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

4、请解释自由空间的概念。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

5、举例说明电磁场与波的应用。

静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。

电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。

当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。

6、请解释常矢与变矢的概念。

若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。

而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。

7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。

8、请解释静态场和动态场的概念。

如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。

换句话说,在某一空间区域中,物理量的无穷集合表示一种场。

电磁场与电磁波波试卷3套含答案

电磁场与电磁波波试卷3套含答案

电磁场与电磁波波试卷3套含答案电磁场与电磁波》试卷1一、填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场无漩涡流动。

另一个是环流量不为0,表明矢量场的流体沿着闭合回路做漩涡流动。

2.带电导体内静电场值为常数,从电势的角度来说,导体是一个等电位体,电荷分布在导体的表面。

3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为三个函数的乘积,而且每个函数仅是一个坐标的函数,这样可以把偏微分方程化为常微分方程来求解。

4.求解边值问题时的边界条件分为三类,第一类为整个边界上的电位函数为已知,这种条件称为XXX条件。

第二类为已知整个边界上的电位法向导数,称为诺伊曼条件。

第三类条件为部分边界上的电位为已知,另一部分边界上电位法向导数已知,称为混合边界条件。

在每种边界条件下,方程的解是唯一的。

5.无界的介质空间中场的基本变量B和H是连续可导的,当遇到不同介质的分界面时,B和H经过分界面时要发生突变,用公式表示就是n·(B1-B2)=0,n×(H1-H2)=Js。

6.亥姆霍兹定理可以对Maxwell方程做一个简单的解释:矢量场的旋度和散度都表示矢量场的源,Maxwell方程表明了电磁场和它们的源之间的关系。

二、简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。

(10分)答:均匀导波系统上传播的电磁波有三种模式:横电磁波(TEM波)、横磁波(TM波)和横电波(TE波)。

其中,横电磁波在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内;横磁波在电磁波传播方向上有电场但没有磁场分量,即磁场在横平面内;横电波在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内。

从Maxwell方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。

2.写出时变电磁场的几种场参量的边界条件。

电磁场与电磁波重要例题、习题复习资料

电磁场与电磁波重要例题、习题复习资料

电磁场与电磁波易考简答题归纳1、什么是均匀平面电磁波?答:平面波是指波阵面为平面的电磁波。

均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。

2、电磁波有哪三种极化情况?简述其区别。

答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差90或270;(3)椭圆极化,振幅相位任意。

3、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。

答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。

意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。

电场和磁场的分量由媒质决定。

4、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。

答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。

物理意义:磁场是由电流和时变的电场激励的。

B 、第二方程:法拉第电磁感应定律。

物理意义:说明了时变的磁场激励电场的这一事实。

C 、第三方程:时变电场的磁通连续性方程。

物理意义:说明了磁场是一个旋涡场。

D 、第四方程:高斯定律。

物理意义:时变电磁场中的发散电场分量是由电荷激励的。

5、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρD B t BE tD J H )4(0)3()2()1(答:(1)微分形式(2) 积分形式物理意义:同第4题。

6、写出达朗贝尔方程,即非齐次波动方程,简述其意义。

答:→→→-=∂∂-∇J tA A μμε222,ερμε-=∂Φ∂-Φ∇→→222t 物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。

电磁场和电磁波练习(有答案)

电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。

电磁场与电磁波复习题

电磁场与电磁波复习题

一、选择题1、关于均匀平面电磁场,下面的叙述正确的是A.在任意时刻,各点处的电场相等B.在任意时刻,各点处的磁场相等C.在任意时刻,任意等相位面上电场相等、磁场相等D.同时选择A和B2、空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A.大于腔内各点的电场强度B.小于腔内各点的电场强度C.等于腔内各点的电场强度D.不能确定3、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是A.镜像电荷是否对称B.电位所满足的方程是否未改变C.边界条件是否保持不变D.同时选择B和C∇⨯=,其中的J4、微分形式的安培环路定律表达式为H JA.是传导电流密度B.是磁化电流密度C.是传导电流和磁化电流密度D.若在真空中则是传导电流密度;在介质中则为磁化电流密度5、电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场 D. 有散有旋场6、两个载流线圈之间存在互感,对互感没有影响的是A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.线圈所在空间的介质7、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使A.磁场随时间变化B.回路运动C.磁场分布不均匀D.同时选择A和B8、一沿+z 传播的均匀平面波,电场的复数形式为()m x y E E e je =-r r r ,则其极化方式是A .直线极化B .椭圆极化C .右旋圆极化D .左旋圆极化9、.对于载有时变电流的长直螺线管中的坡印廷矢量,下列陈述中,正确的是:A. 无论电流增大或减小, 都向内B. 无论电流增大或减小, 都向外C. 当电流增大,向内;当电流减小时,向外10、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布A .一定相同B .一定不相同C .不能断定相同或不相同11、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场与电磁波(必考题)

电磁场与电磁波(必考题)

1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。

解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。

《电磁场与电磁波》复习题

《电磁场与电磁波》复习题

A.入射波与反射波叠加形成驻波,电场与磁场同相位
B.入射波与反射波叠加形成驻波,电场与磁场相位相差������/2
C.入射波与反射波叠加形成行驻波,电场与磁场同相位
D.入射波与反射波叠加形成行驻波,电场与磁场相位相差������/2
9.均匀平面波垂直入射到两无损耗介质的分界面上时,若反射系数与透射系数大小相等,则
D.������! =
! !
������! ������ !!!/! (������!

j������! )������ !!!" ,
������! =
! !
������! ������ !!!/! (������!

j������! )������ !!!"
8.均匀平面波垂直入射到理想导体表面( )。
A.入射波与反射波叠加形成������ = ∞的驻波,存在半波损失
B.入射波与反射波叠加形成������ = 3的行驻波,存在半波损失
C.入射波与反射波叠加形成������ = 3的行驻波,不存在半波损失
D.入射波与反射波叠加形成������ = ∞的驻波,存在半波损失
10.频率为������的均匀平面电磁波从空气中垂直入射到������ = 16������!, ������ = ������!, ������ = 0的理想介质平面上,
5.电磁波的相速度等于( )。
A.信号的传递速度 B.能量传输的速度 C.电磁波包络传播的速度 D.等相面移动的速度
6.均匀平面电磁波的电场矢量为������(������) = ������!������������!������!!"# − ������!������!������!!"#,则该电磁波为( )。 A.左旋圆极化波 B.左旋椭圆极化波 C.右旋圆极化波 D.右旋椭圆极化波

电磁场与电磁波复习题

电磁场与电磁波复习题

文档解密:6cL4SsoDTwyFgJ电磁场与电磁波复习题一、填空1、球坐标系的坐标变量分别为半径r,角度φ,角度θ。

2、散度处处为零的场称为无散场,旋度处处为零的场称为无旋场。

3、无极分子的极化称为位移极化,有极分子的极化称为取向。

4、真空中的恒定电流场是无旋无散场。

5、任一标量场梯度的旋度一定等于0。

6、线性各向同性的均匀介质,极化的本构关系为D=ε E ,磁化的本构关系为βμH ,导电介质的本构关系为J=σE 。

7、恒定磁场的两种磁介质分界面处,磁感应强度的法向分量一定连续。

8、传导电流是指电子离子在导体或液体中形成的电流。

9、均匀平面波的电场强度和磁场强度之比,称为电磁波的___波阻抗_____________。

10、散度定理的公式∮sAds=∫r(∆A)dr 。

11、真空中的恒定磁场是有旋无散场。

12、复能流密度矢量的实部代表流动,虚部代表交换。

13、电磁波的频率描述相位随时间的变化特性, 而波长描述相位随空间的变化特性。

14、根据介质中束缚电荷的分布特性,介质分子可以分为有极分子和无极分子。

15、恒定磁场是有旋无散场。

16、电磁波的周期是描述相位随时间的变化特性,而波长是描述相位随空间的变化特性。

17、复数形式的麦克斯韦方程组是__________________,____________________,________________,___________________。

18、均匀平面波的电场和磁场振幅之比等于__波阻抗_______。

19、损耗媒质的本征阻抗为_②_____(①实数,②复数),损耗媒质又称为_____散媒介____。

20、理想介质分界面两侧电场强度E满足的关系是_E1t=E2t__________,电位移矢量D满足的关系是___D1n=D2n___________。

21、已知介质中有恒定电流分布J,则介质中磁场强度H与J的关系为_D×H=J__________,磁感应强度B的散度为__∆·B=0____________。

电磁场与电磁波试题与答案

电磁场与电磁波试题与答案

电磁场与电磁波试题与答案电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。

A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. ?B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= ?B. =0, = ×C. = ? ,= ×D. = ? , =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, ? =0B. × ≠0, ? ≠0C. × ≠0, ? =0D. × =0, ? ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。

2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。

3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。

4.矢量场的性质由它的______决定。

5.在静电场中,电位相同的点集合形成的面称为______。

6.永久磁铁所产生的磁场,称之为______。

电磁场和电磁波复习题

电磁场和电磁波复习题

《电磁场和电磁波》复习题一、选择题1.图所示两个载流线圈,所受的电流力使两线圈间的距离扩大缩小不变2.毕奥—沙伐定律在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。

3. 真空中两个点电荷之间的作用力A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变4.真空中有三个点电荷、、。

带电荷量,带电荷量,且。

要使每个点电荷所受的电场力都为零,则:A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于5.静电场中电位为零处的电场强度A. 一定为零B. 一定不为零C. 不能确定6.空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A. 大于腔内各点的电场强度B. 小于腔内各点的电场强度C. 等于腔内各点的电场强度7.图示长直圆柱电容器中,内圆柱导体的半径为,外圆柱导体的半径为,内、外导体间的上、下两半空间分别充有介电常数为与的电介质,并外施电压源。

若以外导体圆柱为电位参考点,则对应该问题电位的唯一正确解是A.B.C.8.电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场9.设半径为a 的接地导体球外空气中有一点电荷Q,距球心的距离为,如图所示。

现拆除接地线,再把点电荷Q移至足够远处,可略去点电荷Q对导体球的影响。

若以无穷远处为电位参考点,则此时导体球的电位A.B.C.10.图示一点电荷Q与一半径为a 、不接地导体球的球心相距为,则导体球的电位A. 一定为零B. 可能与点电荷Q的大小、位置有关C. 仅与点电荷Q的大小、位置有关11.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第二类边值问题是指给定12.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第三类边值问题是指给定13.以位函数为待求量边值问题中,设、、都为边界点的点函数,则所谓第一类边值问题是指给定(为在边界上的法向导数值)14.在无限大被均匀磁化的磁介质中,有一圆柱形空腔,其轴线平行于磁化强度, 则空腔中点的与磁介质中的满足15.两块平行放置载有相反方向电流线密度与的无限大薄板,板间距离为, 这时A. 两板间磁感应强度为零。

《电磁场与电磁波》期末复习题-基础

《电磁场与电磁波》期末复习题-基础

《电磁场与电磁波》期末复习题-基础电磁场与电磁波复习题1.点电荷电场的等电位⽅程是()。

A .B .C .D .C Rq =04πεC Rq =204πεCRq =024πεCRq =2024πε2.磁场强度的单位是()。

A .韦伯B .特斯拉C .亨利D .安培/⽶3.磁偶极矩为的磁偶极⼦,它的⽮量磁位为()。

A .B .C .D .024R m e R µπ?u r r 02 ·4R m e R µπu r r 024Rm e R επ?u r r2·4Rm e R επu r r 4.全电流中由电场的变化形成的是()。

A .传导电流 B .运流电流 C .位移电流 D .感应电流5.µ0是真空中的磁导率,它的值是()。

A .4×H/mB .4×H/mC .8.85×F/mD .8.85×F/mπ710-π710710-12106.电磁波传播速度的⼤⼩决定于()。

A .电磁波波长B .电磁波振幅C .电磁波周期D .媒质的性质7.静电场中试验电荷受到的作⽤⼒⼤⼩与试验电荷的电量( )A.成反⽐ B.成平⽅关系 C.成正⽐ D.⽆关8.真空中磁导率的数值为( )A.4π×10-5H/mB.4π×10-6H/mC.4π×10-7H/mD.4π×10-8H/m 9.磁通Φ的单位为( )A.特斯拉 B.韦伯 C.库仑 D.安/匝10.⽮量磁位的旋度是( )A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度11.真空中介电常数ε0的值为( )A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12.下⾯说法正确的是( )A.凡是有磁场的区域都存在磁场能量B.仅在⽆源区域存在磁场能量C.仅在有源区域存在磁场能量D.在⽆源、有源区域均不存在磁场能量13.电场强度的量度单位为()A .库/⽶ B .法/⽶ C .⽜/⽶D .伏/⽶14.磁媒质中的磁场强度由()A .⾃由电流和传导电流产⽣B .束缚电流和磁化电流产⽣C .磁化电流和位移电流产⽣D .⾃由电流和束缚电流产⽣15.仅使⽤库仓规范,则⽮量磁位的值()A .不唯⼀ B .等于零 C .⼤于零D .⼩于零16.电位函数的负梯度(-▽)是()。

《电磁场与电磁波》复习题

《电磁场与电磁波》复习题

《电磁场与电磁波》复习题2016年《电磁场与电磁波》复习题⼀、选择题1.已知⽮量()()()2222x y z E e x axz e xy by e z z czx xyz =++++-+-,试确定常数a 、b 、c ,使E 为⽆源场【】。

A .2,1,2a b c ===-B .2,1,2a b c =-==-C .2,1,2a b c ==-=-D .2,1,2a b c ===2.在两种媒质的分界⾯上,设n e 和t e 分别为界⾯的切向和法向,则电场1E 和2E 满⾜的关系式为___________。

【】A 12()0n e E E ?-=B 12()0n e E E ?-=C 12()0t e E E ?-=D 12()0t eE E ?-=3. 在圆柱坐标系中,三个相互正交的坐标单位⽮量为e ρ、e φ、z e ,其中为常⽮量单位⽮量为【】。

A .e ρB .e φC .z eD .都不是4. 已知()()22222/x y z E e xyz y e x z xy e x y V m=-+-+,则点()2,3,1P -处E ?的值为【】。

A .-10B .5C .10D .-55.同轴线的内导体半径为1r ,外导体的内半径为2r ,内外导体间填充介电常数为0r εεε==的均匀电介质,则同轴线单位长度的电容C 为_________。

【】 A 122ln(/)r r πε B 212ln(/)r r πε C 122ln(/)r r r πε D 212ln(/)r r r πε 6.已知标量函数2u x yz =,则u在点(2,3,1)处沿指定⽅向3/504/505/50l x y z e e e e =++的⽅向导数为【】。

A .100/ B .112/ C .56/ D .224/7. ⼀般导电媒质的电导率σ,介电常数ε和电磁波⾓频率ω之间满⾜【】。

A .()/1σωε>>B .()/1σωε<<C .()/1σωε=D .()/1σωε≈ 8.坡印廷⽮量S E H =?,它的⽅向表⽰____⽅向,⼤⼩表⽰___。

电磁场与电磁波试题

电磁场与电磁波试题

电磁场与电磁波一、填空题。

1.已知电荷体密度为ρ,其运动速度为v,则电流密度的表达式为:_________________.2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为∈,电荷体密度为零,电位所满足的方程为__________________________.3.时变电磁场中,平均坡印延矢量的表达式为_________________________.4.时变电磁场中,变化的电场可以产生_________________________.5、位移电流的表达式为______________________.6、两相距很近的等值异性的点电荷称为_______________________.7、恒定磁场是______场,故磁感应强度沿任一闭合曲面的积分等于零。

8、如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互______________________.9、对平面电磁波而言,其电场、磁场和波的____________三者符合右手螺旋关系。

10、由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可以用磁矢位函数的__________来表示。

11、静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为________________.12、变化的磁场激发__________是变压器和感应电动机的工作原理。

13.从矢量场的整体而言,无旋场的___________不能处处为0。

14.________________方程式经典电磁场理论的核心。

15.如果两个不等于0的矢量的点乘等于0,则此两个矢量必然相互________16.在导电媒质中,电磁波的传播速度随_____________变化的现象称为色放。

17.电场强度矢量的方向随时间变化所描绘的_____________称为极化。

18.两个相互靠近,又相互_____________的任意形状的导体可以构成电容器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


38、静态场是指
,静态场包



。分别是



产生的。
39、静电场中的麦克斯韦方程组的积分形式分别为

静电场中的麦克斯韦方程组的微分形式分别为

40、对偶原理的内容是

叠加原理的内容是

唯一性定理的内容是

41、电磁场的赫姆霍兹方程组是


42、电磁波的极化是指
,其三种基本形
式分别是



43、按照波长或频率的顺序把电磁波排列起来,成为电磁波谱。在电磁波谱中,
,本课程主要应用的两个方面分别



12、梯度的物理意义
,等值面、方向导数与梯度的关系


13 、 用 方 向 余 弦 cosα , cosβ , cosγ
写出直角坐标系中单位矢量
r el
的表达


14、直角坐标系下方向导数 ∂u 的数学表达式 ∂l
,梯度的表达式

15、梯度的一个重要恒等式
,其主要应用是
(远大于、远小于)1,属于非色散介质;当表现
为良导体时,损耗正切为
(远大于、远小于)1,属于色散介质。
47、波的色散是指
,其相应的介质为

波的色散是由
特性所决定的。色散介质分为正常色散和非正常色
散介质,前者波长大的波,其相速度
(大、小),群速 (大于、小
于)相速;后者是波长大的波,其相速度
(大、小),群速 (大于、

16、赫姆霍兹定理的表述
,说明的问题是

17、麦克斯韦方程组的积分形式分别为




其物理意义分别为




18、麦克斯韦方程组的微分形式分别为




其物理意义分别为




19 、 传 导 电 流 、 运 流 电 流 和 位 移 电 流 的 形 成 分 别





20、电流连续性原理的数学表达式
频率越小,辐射强度越 ;
44、一般介质中电磁波的波动方程是

。均匀平面
电磁波的波动方程是


45、工程上经常用到损耗正切,其无耗介质的表达式是
,其表示
的物理含义是
。损耗正切越大说

。有耗介质的波阻抗是个复数,说明

46、一般用介质的损耗正切不同取值说明介质在不同情况下的性质。一个介质是
良介质的损耗正切
三、简答题
1、一个矢量场一般是需要采用矢量函数描述,要用一个标量函数描述这个矢量场 的条件是什么? 2、散度和旋度均是用来描述矢量场的,它们之间有什么不同? 3、亥姆霍兹定理的描述及其物理意义是什么? 4、分别叙述麦克斯韦方程组微分形式的物理意义? 5、对偶原理、叠加原理和唯一性定理在静态场求解方法中是如何应用的? 6、有限差分法是有限元的基础,叙述有限差分法的解题思路以及应用举例说明 7、举例说明电磁波的极化的工程应用 8、分别说明平面电磁波在无耗介质和有耗介质中的传播特性 9、试论述介质在不同损耗正切取值时的特性? 10、试论述介质的色散带来电磁波传播和电磁波接收的影响,在通信系统中一般
采取哪些有效的措施? 11、论述趋肤效应在高速或高频电路板设计中的电路布线、器件选型、板层设计
中的应用? 12、定性叙述电磁波在介质分界面上的反射和折射时,电磁波的幅度、相位和极
化状态和方向变化关系
四、计算题:
知识点: 1、麦克斯韦方程求解电磁场的场量 2、麦克斯韦方程求解电磁波的参数 3、电磁波的极化方向(左旋、右旋)判断 4、损耗正切和趋肤深度的计算
小于)相速;在无色散介质中,不同波长的波相速度 (相等、不相等),
其群速
(等于、不等于)相速。
48、色散介质的相速与介质的折射率的关系是

耗散介质是指

49 、 基 波 的 相 速 为
,群速就是波包或包络的传播速度,其表达式

。一般情况下,相速与群速不相等,它是由于

起的。
50、趋肤效应是指
,趋肤深度的定义

这是因为恒等式

35、对于时变电磁场,电场强度与标量位φ 函数的关系为

r
r
36、磁场中,定义矢量位函数 B = ∇ × A 的前提条件是因为有恒等式

这里只确定了矢量位函数
r A
的旋度。
r 在时变电磁场中, A的散度定义为
,这个条件叫洛仑兹规范。
37、标量位函数的达朗贝尔方程是
;矢量
位函数的达朗贝尔方程是

29、相对介电常数的表达式
,相对磁导率的表达式

30、介质的三个物态方程分别是



31、电磁场的边界条件是指

32、一般介质分界面的边界条件分别为

பைடு நூலகம்



33、两种理想介质分界面的边界条件分别是
,理想
介质与理想导体分界面的边界条件分别是

34、描述一个矢量场的矢量函数能够用一个标量函数来描述的必要条件是
,该原理表明

21、求解时变电磁场或解释一切宏观电磁现象的理论依据是

22、时谐场是
,一般采用时谐场来分
析时变电磁场的一般规律,是因为


23、坡印廷矢量的数学表达式 rr r
表达式 ∫s (E × H ) dS 的物理意义
,其物理意义


24、电介质是
,分为两类


25、电介质的极化是指
。两种极化现
《电磁场与电磁波理论基础》复习题
一、填空题:
1、直角坐标系下,微分线元表达式
,面积元表达式
2、圆柱坐标系下,微分线元表达式
,面积元表达式
3、圆柱坐标系中,
r er

r eϕ
随变

ϕ
的变化关系分别是

4、矢量的通量物理含义是
,散度的物理意义
散度与通量的关系是

5、 散度在直角坐标系的表达式

散度在圆柱坐标系下的表达式

,趋肤深度的的表达式

二、名词解释
1、散度、旋度、梯度 2、通量源、漩涡源 3、传导电流、位移电流 4、磁通密度、电通密度、电流密度 4、电介质的极化、磁介质的磁化 5、极化强度矢量、磁化强度矢量、坡印廷矢量 6、电介质、磁介质 7、理想介质、理想导体、良导体、良介质 8、矢量位、标量位 9、静电场、时变电磁场、时谐电磁场 10、静电场、恒定电场、恒定磁场 11、泊松方程、拉普拉斯方程 12、对偶原理、叠加原理、唯一性定理 13、镜像法、分离变量法、格林函数法、有限差分法 14、电磁波、平面电磁波、均匀平面电磁波 15、电磁波的极化

6、矢量微分算符(哈密顿算符) ∇ 在直角坐标系、圆柱坐标系和球坐标系的表达
式分别为



7、高斯散度定理数学表达式
,本课程主要应用的两个方
面分别是


8、矢量函数的环量定义
,旋度的定义
。二者的
关系
;旋度的物理意义

9、矢量的旋度在直角坐标系下的表达式

10、旋度的重要恒等式
,其物理意义是

11、斯托克斯定理数学表达式
16、电磁波谱、SHF、UHF、VHF、红外线、紫外线、 χ 射线、 γ 射线
17、色散、色散介质、耗散介质 18、相速、群速 能速 波速 19、趋肤效应、趋肤深度 20、波阻抗、传播矢量 21、反射定理、折射定理 22、反射系数、折射系数 23、全反射、全折射 24、驻波、行波、行驻波 25、各向同性介质、各向异性介质 26、正交坐标系 27、滞后位或动态位 28、电流连续性原理 29、电磁波的边界条件 30、高密度介质、金属介质、等离子体
象分别是

,产生的现象分别



。描述电介质极
化程度或强弱的物理量是

26、介质中的电位移矢量数学表达式
,其物理意义是

位移电流密度矢量与电场强度的关系

27、折射率的定义是
,折射率与波速和相对介电常数之间的关系
分别为


28、磁介质是指
,磁介质的种类可分别




。介质的磁化是

。描述介质磁化程度的物理量是
相关文档
最新文档