2.3.2 、2.3.3 向量积的运算公式及度量公式

合集下载

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式课件

高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式课件
三角函数的联系,利用向量可以解决有关三角问题.
1
2
3
【做一做3-1】 已知A(1,2),B(2,3),C(-2,5),则△ABC为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法判断
解析:由=(1,1),=(-4,2),=(3,-3),
于是 ·=1×3-1×3=0,
即 ⊥ ,
(3)向量的夹角的余弦公式:已知 a=(a1,a2),b=(b1,b2),则两个向量
a,b 的夹角的余弦为 cos<a,b>=
1 1 +2 2
2
2
21 +22 1 +2
.
归纳总结 1.由向量的长度公式可以发现,引入向量的直角坐标,
建立了向量与解析几何的联系.
2.由两个向量的夹角的余弦的表达式可以发现向量的数量积与
2.向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2x2y1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上
鉴别,垂直是a·b=0,而共线是方向相同或相反.
题型一
题型二
题型三
题型四
【变式训练2】 已知a=(-3,2),b=(-1,0),向量λa+b与a-2b垂直,则实
设 与的夹角为 θ,
则 cos θ=
·
||||
16
4
= 20 = 5,
4
∴矩形 ABCD 的两条对角线所夹的锐角的余弦值为5.
反思用向量法解决几何问题的关键是把有关的边赋予向量,然后
把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运
算即可,最后再回归到原始几何图形中进行说明.
解析:由|a|2=9+x2=25,解得x=±4.

19-20版 第2章 2.3 2.3.3 向量数量积的坐标运算与度量公式

19-20版 第2章 2.3 2.3.3 向量数量积的坐标运算与度量公式

2.3.3向量数量积的坐标运算与度量公式1.两向量的数量积与两向量垂直的坐标表示 (1)向量内积的坐标运算:已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. (2)用向量的坐标表示两个向量垂直的条件:设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0. 2.向量的长度、距离和夹角公式 (1)向量的长度:已知a =(a 1,a 2),则|a |(2)两点间的距离:如果A (x 1,y 1),B (x 2,y 2),则|AB →|(3)两向量的夹角:设a =(a 1,a 2),b =(b 1,b 2), 则cos 〈a ,b思考:与向量a =(a 1,a 2)同向的单位向量的坐标如何表示? [提示] 由于单位向量a 0=a|a |,且|a |=a 21+a 22,所以a 0=a|a |=1a 21+a 22(a 1,a 2)=⎝⎛⎭⎪⎫a 1a 21+a 22,a 2a 21+a 22,此为与向量a =(a 1,a 2)同向的单位向量的坐标.1.已知a=(1,-1),b=(2,3),则a·b=()A.5 B.4C.-2D.-1D[a·b=(1,-1)·(2,3)=1×2+(-1)×3=-1.]2.(2019·全国卷Ⅲ)已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________.-210[∵a=(2,2),b=(-8,6),∴a·b=2×(-8)+2×6=-4,|a|=22+22=22,|b|=(-8)2+62=10.∴cos〈a,b〉=a·b|a||b|=-422×10=-210.]3.已知a=(3,x),|a|=5,则x=________. ±4[|a|=32+x2=5,∴x2=16.即x=±4.]A .12 B .-12 C .32D .-32(2)已知向量a =(-1,2),b =(3,2),则a·b =________,a·(a -b )=________. (3)已知a =(2,-1),b =(3,2),若存在向量c ,满足a·c =2,b·c =5,则向量c =________.[思路探究] 根据题目中已知的条件找出向量坐标满足的等量关系,利用数量积的坐标运算列出方程(组)来进行求解.(1)D (2)1 4 (3)⎝ ⎛⎭⎪⎫97,47 [(1)因为a =(1,2),b =(2,x ),所以a·b =(1,2)·(2,x )=1×2+2x =-1,解得x =-32.(2)a·b =(-1,2)·(3,2)=(-1)×3+2×2=1,a·(a -b )=(-1,2)·[(-1,2)-(3,2)]=(-1,2)·(-4,0)=4. (3)设c =(x ,y ),因为a·c =2,b·c =5, 所以⎩⎪⎨⎪⎧2x -y =2,3x +2y =5,解得⎩⎪⎨⎪⎧x =97,y =47,所以c =⎝ ⎛⎭⎪⎫97,47.]1.进行数量积运算时,要正确使用公式a·b=x1x2+y1y2,并能灵活运用以下几个关系:|a|2=a·a;(a+b)(a-b)=|a|2-|b|2;(a+b)2=|a|2+2a·b+|b|2.2.通过向量的坐标表示可实现向量问题的代数化,应注意与函数、方程等知识的联系.3.向量数量积的运算有两种思路:一种是向量式,另一种是坐标式,两者相互补充.1.设向量a=(1,-2),向量b=(-3,4),向量c=(3,2),则(a+2b)·c=() A.(-15,12) B.0C.-3 D.-11C[依题意可知,a+2b=(1,-2)+2(-3,4)=(-5,6),∴(a+2b)·c=(-5,6)·(3,2)=-5×3+6×2=-3.]A.4 B.5C.3 5 D.4 5(2)已知向量a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________.[思路探究](1)两向量a=(x1,y1),b=(x2,y2)共线的坐标表示:x1y2-x2y1=0.(2)已知a=(x,y),则|a|=x2+y2.(1)D(2)254[(1)由a∥b,得y+4=0,y=-4,b=(-2,-4),∴2a-b=(4,8),∴|2a-b|=4 5.故选D.(2)由题意知,a+b=(-2,4),a-b=(4,0),因此|a+b|=25,|a-b|=4.]向量模的问题的解题策略:(1)字母表示下的运算,利用|a|2=a2将向量模的运算转化为向量的数量积的运算.(2)坐标表示下的运算,若a=(x,y),则|a|=x2+y2.2.已知向量a=(2x+3,2-x),b=(-3-x,2x)(x∈R),则|a+b|的取值范围为________.[2,+∞)[∵a+b=(x,x+2),∴|a+b|=x2+(x+2)2=2x2+4x+4=2(x+1)2+2≥2,∴|a+b|∈[2,+∞).]1.设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?[提示] cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.2.已知a =(1,-1),b =(λ,1),当a 与b 的夹角α为钝角时,λ的取值范围是什么?[提示] ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角, ∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0,∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).【例3】 (1)已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( )A .(-2,+∞) B.⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,-2)D .(-2,2)(2)已知a =(3,4),b =(2,-1),且(a +m b )⊥(a -b ),则实数m 为何值? [思路探究] (1)可利用a ,b 夹角为锐角⇔⎩⎨⎧a·b>0a ≠λb 求解. (2)可利用两非零向量a ⊥b ⇔a·b =0来求m .(1)B [当a 与b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0°,所以要使a 与b 的夹角为锐角,则有a·b>0且a ,b 不同向.由a·b =2+k >0得k >-2,且k ≠12,即实数k 的取值范围是⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞,选B.](2)解:a +m b =(3+2m,4-m ),a -b =(1,5),因为(a +m b )⊥(a -b ),所以(a +m b )·(a -b )=0,即(3+2m )×1+(4-m )×5=0,所以m =233.1.利用数量积的坐标表示求两向量夹角的步骤:(1)求向量的数量积.利用向量数量积的坐标表示求出这两个向量的数量积. (2)求模.利用|a|=x 2+y 2计算两向量的模. (3)求夹角余弦值.由公式cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22求夹角余弦值.(4)求角.由向量夹角的范围及cos θ求θ的值.2.涉及非零向量a ,b 垂直问题时,一般借助a ⊥b ⇔a·b =x 1x 2+y 1y 2=0来解决.3.若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 [2a -3b =2(k,3)-3(1,4)=(2k -3,-6). 因为2a -3b 与c 的夹角为钝角,则(2k -3,-6)·(2,1)<0且不反向,即4k -6-6<0,解得k<3.,当2a-3b与c反向时,k=-92所以k的范围是k<3且k≠-92.](教师用书独具)1.向量垂直的坐标表示(1)记忆口诀和注意问题注意坐标形式下两向量垂直的条件与两向量平行的条件不要混淆,“a⊥b ⇔x1x2+y1y2=0”可简记为“对应相乘和为0”;“a∥b⇔x1y2-x2y1=0”可简记为“交叉相乘差为0”.(2)可以解决的问题应用公式可解决向量垂直,两条直线互相垂直等问题.2.区分向量平行与垂直的坐标公式(1)向量的坐标表示与运算不但简化了数量积的运算,而且使有关模(长度)、角度、垂直等问题用坐标运算来解决尤为简单.(2)注意向量垂直的充要条件和向量平行的充要条件公式的区别.1.(2019·全国卷Ⅱ)已知向量a=(2,3),b=(3,2),则|a-b|=() A. 2 B.2C.5 2 D.50A[∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|=(-1)2+12= 2.故选A.]2.若a=(3,-1),b=(x,-2),且〈a,b〉=π4,则x等于()A.1 B.-1 C.4 D.-4A[∵a·b=|a|·|b|cos π4,∴3x+2=10×x2+4×2 2,解得x=1或x=-4.又∵3x+2>0,∴x>-23,故x=1.]3.设a=(x,x+1),b=(1,2)且a⊥b,则x=________.-23[∵a⊥b,∴a·b=0.即x+2(x+1)=0.解得x=-23.]4.已知向量a=(3,-1),b=(1,-2),求:(1)a·b;(2)(a+b)2;(3)(a+b)·(a-b).[解](1)因为a=(3,-1),b=(1,-2),所以a·b=3×1+(-1)×(-2)=3+2=5.(2)a+b=(3,-1)+(1,-2)=(4,-3),所以(a+b)2=|a+b|2=42+(-3)2=25. (3)a+b=(3,-1)+(1,-2)=(4,-3),a-b=(3,-1)-(1,-2)=(2,1),(a+b)·(a-b)=(4,-3)·(2,1)=8-3=5.。

向量的数量积运算的所有公式

向量的数量积运算的所有公式

向量的数量积运算的所有公式1.定义:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则a与b的数量积定义为:a·b=a1b1+a2b2+a3b32.单位向量:如果向量a是一个单位向量,则a与任何向量b的数量积等于b在a的方向上的投影长度。

3.平行向量:如果两个向量a和b平行,则它们的数量积为:a ·b = ,a,,b,cosθ其中,a,和,b,分别表示向量的模(长度),θ表示a和b之间的夹角。

4.正交向量:如果两个向量a和b互相垂直(夹角为90度),则它们的数量积为:a·b=05.向量的模:设向量a=(a1,a2,a3),则a的模定义为:a,=√(a1^2+a2^2+a3^2向量的模也可以表示为向量的数量积与自身的开方,即:a,=√(a·a6.向量的投影长度:设向量a与向量b之间的夹角为θ,则向量b 在a的方向上的投影长度为:proj_a(b) = ,b,cosθ投影长度也可以表示为数量积与向量a的模的商,即:proj_a(b) = (a · b) / ,a7.向量的夹角:设向量a和b之间的夹角为θ,则夹角的余弦可以表示为向量的数量积与两个向量模的商,即:cosθ = (a · b) / (,a,,b,)从该公式可以推导出两个向量夹角的正弦和余弦。

8.柯西-施瓦茨不等式:对于任意两个向量a和b,有:a·b,≤,a,当且仅当a和b共线时,等号成立。

9.向量的数量积的性质:-交换律:a·b=b·a-结合律:(c*a)·b=c*(a·b),其中c是一个标量-分配律:(a+b)·c=a·c+b·c这些公式是向量的数量积运算中的一些重要性质和公式。

它们在向量运算、物理学、几何学等领域具有广泛的应用。

2022-2021学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式

2022-2021学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式

2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能依据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能依据向量的坐标求向量的夹角及判定两个向量垂直.1.平面对量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面对量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面对量可以用有序实数对来表示,两个平面对量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面对量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面对量的数量积还会是一个有序实数对吗?同时,平面对量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探究平面对量数量积的坐标表示. 探究点一 平面对量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j , ∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2.又∵i ·i =1,j ·j =1,i ·j =j ·i =0,∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面对量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面对量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面对量长度的坐标形式及两点间的距离公式思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度? 答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标. 解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面对量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗? 答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示? 答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)由于a 与b 的夹角为直角,所以cos θ=0, 所以a·b =0,所以1+2λ=0,所以λ=-12.(2)由于a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不行能反向.所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)由于a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来推断,可将θ分五种状况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面对量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 82解析 ∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2.[呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气.3.留意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.-3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面对量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B.23 C.4 D.12 答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、力气提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 由于m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 由于(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5), ∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面对量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.答案 2解析 由于向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 由于c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c |b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值. 解 ∵a =(1,2),b =(-2,-3), ∴c =2a +b =2(1,2)+(-2,-3)=(0,1), d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ), ∴c ·d =0×(1-2m )+1×(2-3m )=2-3m . 又∵|c |=1,|d |=(1-2m )2+(2-3m )2,∴cos 45°=c ·d|c ||d |=2-3m(1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35.三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16>0, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则 cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.。

课件3:2.3.3 向量数量积的坐标运算与度量公式

课件3:2.3.3 向量数量积的坐标运算与度量公式
解:设 a 与 b 的夹角为 θ, 则 a·b=(1,2)·(1,λ)=1+2λ.
(1)因为 a 与 b 的夹角为直角,所以 cos θ=0, 所以 a·b=0,所以 1+2λ=0,所以 λ=-21.
(2)因为 a 与 b 的夹角为钝角, 所以 cos θ<0 且 cos θ≠-1, 所以 a·b<0 且 a 与 b 不反向. 由 a·b<0 得 1+2λ<0,故 λ<-21, 由 a 与 b 共线得 λ=2,故 a 与 b 不可能反向. 所以 λ 的取值范围为-∞,-21.
5 10×
5=
2 2.
又∵0 〈a,b〉 π,
∴向量 a 与 b 的夹角为π4.
2.已知向量 a=(1,n),b=(-1,n),若 2a-b 与 b 垂直,
则|a|等于( C )
A.1
B. 2
C.2
D.4
解析 ∵(2a-b)·b=2a·b-|b|2 =2(-1+n2)-(1+n2) =n2-3=0, ∴n=± 3, ∴|a|= 12+n2=2.
3.在△ABC 中,∠C=90°,A→B=(k,1),A→C=(2,3), 则 k 的值为__5__.
解析 ∵B→C=A→C-A→B=(2,3)-(k,1)=(2-k,2), A→C=(2,3), ∴B→C·A→C=2(2-k)+6=0,∴k=5.
4.已知平面向量 a=(2,4),b=(-1,2),若 c=a-(a·b)b, 则|c|=_8__2_.
x1x2+y1y2
则 cos θ=|a||b|= x21+y21 x22+y22.
典型例题 例 1 已知 a 与 b 同向,b=(1,2),a·b=10. (1)求 a 的坐标; (2)若 c=(2,-1),求 a(b·c)及(a·b)c.

高中数学中的向量的数量积与向量积的计算

高中数学中的向量的数量积与向量积的计算

高中数学中的向量的数量积与向量积的计算向量是数学中一个重要的概念,它常用来描述力、速度、加速度等物理量。

在高中数学中,我们学习了向量的数量积与向量积的计算方法。

本文将重点介绍这两种向量运算的定义、性质和计算方法。

一、向量的数量积向量的数量积,也称为内积或点积,是两个向量之间的运算,其结果是一个实数。

数量积的定义如下:设有两个 n 维向量 A 和 B,其数量积记作 A·B 或者A∙B,定义为A·B = |A| |B| cosθ,其中 |A| 和 |B| 分别表示向量 A 和 B 的模,θ 是 A 和B 之间的夹角。

数量积的计算方法如下:设 A = (x₁, y₁, z₁) 和 B = (x₂, y₂, z₂) 是两个三维向量,它们的数量积可以表示为 A·B = x₁x₂ + y₁y₂ + z₁z₂。

数量积具有以下性质:1. 交换律:A·B = B·A2. 分配律:A·(B+C) = A·B + A·C3. 结合律:k(A·B) = (kA)·B = A·(kB),其中 k 是实数。

4. 对于零向量 0,有 A·0 = 0。

通过数量积的计算,我们可以判断两个向量之间的相互关系。

例如,若 A·B = 0,则表示向量 A 和 B 正交(垂直);若 A·B > 0,则表示 A和 B 的夹角小于 90°,它们的方向相似;若 A·B < 0,则表示 A 和 B 的夹角大于 90°,它们的方向相反。

二、向量的向量积向量的向量积,也称为叉积或向量积,是两个向量之间的运算,其结果是一个向量。

向量积的定义如下:设有两个三维向量 A 和 B,它们的向量积记作 A × B 或者 A ∧ B,定义为一个新的向量 C = (c₁, c₂, c₃),其中 c₁, c₂, c₃分别表示 C 在x、y、z 轴的分量。

向量的数量积与向量积的计算与性质

向量的数量积与向量积的计算与性质

向量的数量积与向量积的计算与性质向量是高中数学中的一个重要概念,它不仅在几何学中具有重要意义,也在物理学等学科中有广泛应用。

本文将探讨向量的数量积与向量积的计算方法以及它们的性质。

一、向量的数量积的计算数量积,又称点积或内积,是指两个向量的数量上的乘积。

对于两个向量A和B,在数量上的计算方法为A·B=|A||B|cosθ,其中|A|和|B|分别表示向量A和B的模,θ表示两个向量之间的夹角。

例如,假设有向量A(3, 4)和向量B(1, 2),要计算它们的数量积。

首先,计算向量A和向量B的模,分别为|A|=√(3²+4²)=5和|B|=√(1²+2²)=√5。

然后,计算夹角θ的余弦值cosθ=(A·B)/(|A||B|)=(3*1+4*2)/(5*√5)=0.95。

因此,向量A和向量B的数量积为A·B=5*√5*0.95=4.24。

二、向量积的计算向量积,又称叉积或外积,是指两个向量的向量上的乘积。

对于两个向量A和B,在向量上的计算方法为A×B=|A||B|sinθn,其中|A|和|B|表示向量A和B的模,θ表示两个向量之间的夹角,n表示垂直于平面的单位向量。

例如,假设有向量A(3, 4)和向量B(1, 2),要计算它们的向量积。

首先,计算向量A和向量B的模,分别为|A|=√(3²+4²)=5和|B|=√(1²+2²)=√5。

然后,计算夹角θ的正弦值sinθ=sinθ=(A×B)/(|A||B|)=(3*2-4*1)/(5*√5)=0.6。

最后,计算n的值,垂直于A和B的平面可以取z轴正方向,所以n=(0, 0, 1)。

因此,向量A 和向量B的向量积为A×B=5*√5*0.6*(0, 0, 1)=(0, 0, 6)。

三、向量的数量积和向量积的性质1. 交换律:向量的数量积满足交换律,即A·B=B·A;而向量的向量积不满足交换律,即A×B=-B×A。

高二数学向量数量积的坐标运算与度量公式

高二数学向量数量积的坐标运算与度量公式
2 2
设A(x1 , y1 )、B ( x2 , y2 ), 则 AB (x2 x1,y2 y1) 那么
例2、
(1)已知a ( 3, 4)、b (5, 2), 求 | a |, | b |。
( 2)已知点A( 3, 4)、B(5, 2), 试用向量的方法求出A、B两点 间的距离。
3、两向量夹角公式的坐标运算
设非零向量a (x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为, (0 180 ) a b 则 cos a b cos x1 x2 y1 y2
2 x1

2 y1
1、数量积的坐标表示 2、向量坐标表示的求 模公式 3、平面内两点间的距 离公式 4、两向量夹角的余弦
a b x1 x2 y1 y 2
2
2 a x2 y2 , 或 a x2 y2
AB (x1 x2 ) (y1 y2 )
2
cos
x1 x2 y1 y2
由于 a x1i y1 j a (x1,y1) b x2 i y 2 j b ( x 2, y 2)
从 a b x1 x2 y1 y 2得到:
也就是: a b x1 x2 y1 y 2
两个向量的数量积等于它们对应坐标 的乘积的和。
AC (2 1,5 2) (3,3)
AB AC 1 (3) 1 3 0
AB AC
三角形 ABC 是直角三角形.
0
x
变式训练 2
思考:在△ABC 中, AB = (2,3), AC = (1,k),且 A为直角,求k值.

条据书信 向量积的分配律证明

条据书信 向量积的分配律证明

向量积的分配律证明(1)实数与向量的运算法则:设、为实数,则有:1)结合律:(a)()a。

2)分配律:()a a,(a b)a b。

(2)向量的数量积运算法则:1)a b b a。

2)(a)b(a b)a b a(b)。

3)(a b)c a c b c。

(3)平面向量的基本定理。

e1,e2是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a,有且仅有一对实数1,2,满足a1e12e2。

(4)a与b的数量积的计算公式及几何意义:a b|a||b|cos,数量积a b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

(5)平面向量的运算法则。

1)设a=(x1,y1),b=(x2,y2),则a+b=(x1x2,y1y2)。

2)设a=(x1,y1),b=(x2,y2),则a-b=(x1x2,y1y2)。

3)设点A(x1,y1),B(x2,y2),则AB OB OA(x2x1,y2y1)。

4)设a=(x,y),R,则a=(x,y)。

5)设a=(x1,y1),b=(x2,y2),则a b=(x1x2y1y2)。

(6)两向量的夹角公式:cos(a=(x1,y1),b=(x2,y2))。

(7)平面两点间的距离公式:。

dA,B=|AB|(A(x1,y1),B(x2,y2))(8)向量的平行与垂直:设a=(x1,y1),b=(x2,y2),且b0,则有:1)a||b b=a x1y2x2y10。

2)a b(a0)a·b=0x1x2y1y20。

(9)线段的定比分公式:P(x,y)(x,y)P(x,y)PP设P,,是线段的分点,是实数,且PP PP2,则111222121x yx1x2OPOP211)。

(1t)OP OP1OP tOP12(t1y1y211(10)三角形的重心公式:△ABC三个顶点的坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则△ABC 的重心的坐标为G(x1x2x3y1y2y3,)。

2.3.2 、2.3.3 向量积的运算公式及度量公式

2.3.2 、2.3.3 向量积的运算公式及度量公式

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x --=所以=||要点核心解读1.向量数量积的运算律a b b a ⋅=⋅)1((交换律);)()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律).2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c B A ⋅=⋅== ,)(00/c b a c OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+ ,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此 ①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a ==则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c c b b a c b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 - 3所示,若,,b BC a AB ==则=CA ,B ,b a D b a -=+由+==a b a ||||||,b 可知,60o ABC =∠b 与B D 所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值. 于是,4||,5||==b a 且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k 解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,Q BP C ⋅有最大值?[解析] 由三角形法则构造B 及C 的数量积转化为实数范围内求最大值,,,B C A AP =+-=即,--=--=A A C---=⋅∴C B ().(.⋅+⋅-=A .)()22.r AP -⋅=⋅+- =-+)(AC AB AP =⋅+-⋅r AC ..2..cos ||.||2AP r A AC AB +-.cos 2+-=r A bc ⋅当与CB 同向时,CB AP ⋅最大为.||.||ra =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..Q P C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:C Q B P 与 的夹角θ为何值时,.⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k AC AB ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(B C ,0k A AC B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标, 考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角. [解析] 解法一:根据,|||||,|||22b a b a ==有 又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a ab a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -=得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B OA b OB a OA 0,,、以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠ 这时,,0b a b a -=+= 而|,|||||b a b a -== 即 .||||||BA OB OA ==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30=∠AOC 即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围, 考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b,0231213=⨯-⨯=⋅b a 故有.b a ⊥由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a 即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433tt k -=故 ,47)2(41)34(41222-+=-+=+t t t tt k 即当2-=t 时,t t k 2+有最小值为⋅-47[点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对 3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题: ①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ).)14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a =+=|2|,1||),0b a b 则( ).3.A 32.B4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-O ().(,0)2=-OA 则△ABC 的形状为( ). A .正三角形 B .等腰三角形 C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(B ),6,4(==O OA 且,OB //,C 0AC OA ⊥则向量=C 0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ).||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //.8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足=PA PM 则2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ 11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x 12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a 三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||o b a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-= (1)求||tb a +的最小值及相应的t 值; (2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明:;)1(EF PA = .)2(EF PA ⊥16.平面内有向量)1,2(),1,5(),7,1(===O 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

数学:2.3.3《向量数量积的坐标运算与度量公式》课件(1)(新人教B版必修4)

数学:2.3.3《向量数量积的坐标运算与度量公式》课件(1)(新人教B版必修4)
AC = (−2 − 1,5 − 2) = ( −3,3)
∴ AB ⋅ AC = 1× (−3) + 1× 3 = 0
△ABC是直角三角形 是直角三角形
变形:在∆ABC中,设 AB = (2,3), AC = (1, k ), 且 ∆ABC是直角三角形,求k的值。
解 : BC = AC − AB = ( − 1, k − 3) ∵ 又 ∆ ABC 是直角三角形 即( − 2, − 3) i ( − 1, k − 3) = 0 ∴ 2 − 3( k − 3) = 0 11 k = 3
1 ∴n = 2
变形: .已知 a = 4, b = 3, a与b的夹角为90 , 且 c = a + 2b, d = 2 a + k b,问 k 为何值时 (1) c ⊥ d (2) c∥d (3) c与 d的 夹角为锐角 ? 的夹角为锐角
°
a b . 注: a ⋅ b > 0不能保证向量与 的夹角为锐角
解: ∵ c ⊥d ,∴ c⋅ d =0, ∴ 即 a+(sinα−3)b⋅−ka+(sinα)b =0 也即 −ka +a⋅b⋅sinα
2
−k(sinα−3)a⋅b+ sinα(sinα−3b =0, )
2
2 2 1 3 又∵ a = ( 3, −1) , b =( , ),∴ a⋅ b =0,且 a = a = 4, 2 2
∴ a ⋅ b = x 1 i + y1 j ( x 2 i + y 2 j ( ) ⋅ )
= x1 x 2 i + x1 y2 i ⋅ j + x 2 y1 j ⋅ i + y1 y2 j
∵ i = 1, j = 1, i ⋅ j = j ⋅ i = 0

高中数学2.3.3向量数量积的坐标运算与度量公式学案新人教B版必修4

高中数学2.3.3向量数量积的坐标运算与度量公式学案新人教B版必修4

2。

3。

3 向量数量积的坐标运算与度量公式1.掌握向量数量积的坐标表达式,能进行平面向量数量积的坐标运算。

(重点)2.能运用数量积表示两个向量的夹角.计算向量的长度,会判断两个平面向量的垂直关系.(难点)[基础·初探]教材整理1 两向量的数量积与两向量垂直的坐标表示阅读教材P112“思考与讨论"以上内容,完成下列问题.1。

向量内积的坐标运算:已知a=(a1,a2),b=(b1,b2),则a·b=a1b1+a2b2.2。

用向量的坐标表示两个向量垂直的条件:设a=(a1,a2),b=(b1,b2),则a⊥b⇔a1b1+a2b2=0。

已知a=(1,-1),b=(2,3),则a·b=( )A。

5 B.4C。

-2 D.-1【解析】a·b=(1,-1)·(2,3)=1×2+(-1)×3=-1.【答案】D教材整理2 向量的长度、距离和夹角公式阅读教材P112~P113内容,完成下列问题。

1。

向量的长度:已知a=(a1,a2),则|a|=错误!。

2。

两点间的距离:如果A(x1,y1),B(x2,y2),则|错误!|=错误!。

3.两向量的夹角:设a=(a1,a2),b=(b1,b2),则cos<a,b>=错误!。

判断(正确的打“√”,错误的打“×”)(1)两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a,b的夹角为0度.()(2)两个向量的数量积等于它们对应坐标的乘积的和。

()(3)若两个向量的数量积的坐标和小于零,则两个向量的夹角一定为钝角.()【解析】(1)×.因为当x1y2-x2y1=0时,向量a,b的夹角也可能为180°。

(2)√。

由向量数量积定义可知正确。

(3)×。

因为两向量的夹角有可能为180°。

【答案】(1)×(2)√(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________解惑:_________________________________________________________疑问2:_________________________________________________________解惑:_________________________________________________________疑问3:_________________________________________________________解惑:_________________________________________________________[小组合作型]平面向量数量积的坐标运算(1)(2016·安溪高一检测)已知向量a=(1,2),b=(2,x),且a·b=-1,则x的值等于()A.12B.-错误!C。

向量公式大全向量公式

向量公式大全向量公式

向量公式大全向量公式导读:就爱阅读网友为您分享以下“向量公式”资讯,希望对您有所帮助,感谢您对的支持!向量公式 1. 0向量?0向量与任意向量共线(平行)?0,a,,a,0,a,a1. 三角形法则(平行四边形法则):AB,BC,AC2. 向量的数乘:(λ为数量)|λa|,λ|a|,λa的方向与a的方向相同3. 向量的数量积:定义式:a?b,|a||b| cos &lt;a, b&gt;(其中&lt;a, b&gt;表示向量a,b的夹角) 该公式可以运用于求cos &lt;a, b&gt;进而求&lt;a, b&gt;:cos &lt;a,b&gt;,(a?b)/(|a||b|)4. 向量的加法、数量积:?加法交换律对向量一样适用:a,b,b,a?乘法交换率对向量的数量积一样适用:a?b,b?a?乘法分配率对向量的数量积一样适用:a?(b,c),a?b,1a?c5. 平面向量基本定理:(λ,μ为数量)平面内,用不共线向量e1,e2表示任意向量a,有且只有一组λ,μ使得a,λe1,μe2当基底e1?e2时,用e1,e2表示a的方法称为正交分解其中e1,e2称为一组基底,当|e1|,|e2|,1时可以以e1,e2方向为x轴,y轴正方向,建立平面直角坐标系。

若a,λe1,μe2,则a的坐标为(λ, μ),记作a,(λ, μ)6. 向量共线问题的常用公式:?两a,b向量共线&lt;,&gt; a,λb?若A,B,C共线,与一点P构成的向量PA,PB,PC有PB,λPA,μPC&lt;,&gt; λ,μ,17. 向量垂直的常用公式:a?b,0(这里0是数量) &lt;,&gt; a?b7. 向量中的坐标问题:(已知a,(xa, ya),b,(xb, yb)(坐标中的a,b均为下标))?向量0,(0, 0) ?λa,(λxa, λya)?a?b,xaxb,yayb ?a‖b &lt;,&gt; xayb,xbya,0 即 xayb,xbya ?a?b&lt;,&gt; xaxb,yayb,02百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆3。

向量的积计算公式

向量的积计算公式

向量的积计算公式一、向量的数量积(点积)1. 定义。

- 对于两个非零向量→a=(a_1,a_2,a_3)和→b=(b_1,b_2,b_3),它们的数量积→a·→b是一个标量。

2. 计算公式(在空间直角坐标系下)- →a·→b=a_1b_1 + a_2b_2+a_3b_3。

- 例如,若→a=(1,2,3),→b=(4, - 5,6),则→a·→b=1×4+2×(-5)+3×6 = 4 - 10 + 18=12。

3. 几何意义。

- →a·→b=|→a||→b|cosθ,其中θ是→a与→b的夹角。

- 可以用来计算向量的夹角cosθ=(→a·→b)/(|→a||→b|),或者判断两个向量是否垂直(当→a·→b = 0时,→a⊥→b)。

二、向量的向量积(叉积)1. 定义。

- 向量→a与→b的向量积→a×→b是一个向量。

2. 计算公式(在空间直角坐标系下)- 若→a=(a_1,a_2,a_3),→b=(b_1,b_2,b_3),则→a×→b=<=ft|begin{array}{ccc}→i→j→k a_1a_2a_3 b_1b_2b_3end{arra y}right|- 其中→i,→j,→k分别是x,y,z轴正方向的单位向量。

- 具体计算为→a×→b=(a_2b_3 - a_3b_2)→i+(a_3b_1 - a_1b_3)→j+(a_1b_2 - a_2b_1)→k。

- 例如,若→a=(1,2,3),→b=(4,5,6),则→a×→b=<=ft|begin{array}{ccc}→i→j→k 123 456end{array}right|=(2×6 - 3×5)→i+(3×4 - 1×6)→j+(1×5 - 2×4)→k=(- 3)→i+6→j+(-3)→k=(-3,6,-3)3. 几何意义。

向量的乘法运算公式

向量的乘法运算公式

向量的乘法运算公式向量有很多种乘法运算,包括数量积、向量积和混合积等。

在本文中,我将详细介绍这些向量乘法运算的公式及其应用。

一、数量积1.1定义数量积是两个向量的乘积,结果是一个数。

它的定义如下:设有两个向量A和B,它们的数量积定义为:A·B = ,A,·,B,·cosθ其中,A·B表示A和B的数量积,A,和,B,分别表示向量A和B的模长,θ表示A和B之间的夹角。

1.2公式(1)两向量平行时,数量积为:A·B=,A,·,B(2)简化公式:对于i、j、k三个单位向量,有:i·i=j·j=k·k=1i·j=j·k=k·i=0(3)余弦定理:对于非零向量A和B,有:A - B,^2 = ,A,^2 + ,B,^2 - 2,A,B,cosθ1.3应用数量积在几何学和物理学中都有广泛的应用。

(1)求向量的模长:,A,=√(A·A)(2)求两个向量之间的夹角:cosθ = A·B / (,A,·,B,)θ = arccos(A·B / (,A,·,B,))(3)求向量的投影:设A为向量,B为单位向量。

则A在B上的投影为:A_B = ,A,·cosθ其中,θ为A和B的夹角。

二、向量积2.1定义向量积(叉乘)是两个向量的乘积,结果是一个向量。

它的定义如下:设有两个向量A和B,它们的向量积定义为:A ×B = ,A,·,B,·sinθ·n其中,A×B表示A和B的向量积,A,和,B,分别表示向量A和B的模长,θ表示A和B之间的夹角,n为垂直于A和B所在平面的单位向量。

2.2公式(1)A和B的向量积为:A ×B = ,A,·,B,·sinθ·n(2)A和B的向量积的模长为:A × B, = ,A,·,B,·sinθ(3)A和B的向量积的方向由右手定则确定:握住右手,让四指从A旋转到B所经过的角度为θ,则大拇指的方向就是A×B的方向。

向量的向量积公式

向量的向量积公式

向量的向量积公式
向量的向量积(又称为叉乘、矢量积或外积)在三维空间中定义为两个向量的乘积得到的向量。

设给定空间中有向量a和向量b,它们的向量积可表示为a×b。

向量a×b的模长等于a和b构成的平行四边形的面积,且方向垂直于这个平行四边形所在的平面。

向量积的计算公式为:
a×b = (a2b3 - a3b2)i - (a1b3 - a3b1)j + (a1b2 - a2b1)k 其中i、j和k分别代表空间直角坐标系的三个单位向量。

除了以上的向量积计算公式,对于四维及更高维空间中的向量积没有明确的定义。

向量积具有的一些性质包括:交换律不成立(即
a×b不等于b×a),但满足双线性性(即对于任意实数c,有
(a+b)×c = a×c + b×c以及c(a+b)× = ca× + cb×)。

向量积在物理学、几何学和工程学中具有重要的应用,包括计算平面或空间中的面积、计算力矩和角动量等。

拓展到更高维度的向量
积通常被称为外积,但具体的定义和性质会根据空间维度的不同而有所变化。

高数向量积的运算公式

高数向量积的运算公式

高数向量积的运算公式
高数中,向量积是一种重要的运算方式,它可以帮助我们快速求解向量的模长、方向等问题。

向量积的运算公式有很多,其中比较常用的包括叉积、点积、向量的模长等。

下面简单介绍一下这些公式: 1. 叉积公式:向量a和向量b的叉积公式为:a×
b=(a2b3-a3b2)i+(a3b1-a1b3)j+(a1b2-a2b1)k,其中i、j、k分别表示三个坐标轴方向的单位向量。

2. 点积公式:向量a和向量b的点积公式为:a·b=|a||b|cos θ,其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

3. 向量模长公式:向量a的模长公式为:|a|=√(a1+a2+a3),其中a1、a2、a3分别表示向量a在三个坐标轴方向上的分量。

以上就是高数向量积的运算公式,这些公式在向量的求解中非常实用,可以大大简化计算过程,提高计算效率。

同时,掌握这些公式也是学习高数的重要一步。

- 1 -。

学案6:2.3.3 向量数量积的坐标运算与度量公式

学案6:2.3.3 向量数量积的坐标运算与度量公式

2.3.3 向量数量积的坐标运算与度量公式新知初探1.向量数量积及向量垂直的坐标表示设a=(a1,a2),b=(b1,b2)(1)数量积a·b=.(2)若a,b为非零向量,a⊥b⇔.点睛记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.三个重要公式(1)向量的长度公式:已知a=(a1,a2),则|a|=a21+a22.(2)两点间的距离公式:A(x1,y1),B(x2,y2),则|AB|=(x2-x1)2+(y2-y1)2.(3)向量的夹角公式:a=(a1,a2),b=(b1,b2),则cos〈a,b〉=a1b1+a2b2a21+a22b21+b22.小试身手1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.()(2)若a=(a1,a2),b=(b1,b2),则a⊥b⇔a1b1+a2b2=0.()(3)若两个非零向量的夹角θ满足cos θ<0,则两向量的夹角θ一定是钝角.()2.已知a=(-3,4),b=(5,2),则a·b的值是()A.23B.7C.-23D.-73.已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是() A.{2,3}B.{-1,6} C.{2}D.{6}4.已知a=(1,3),b=(-2,0),则|a+b|=________.课堂讲练题型一平面向量数量积的坐标运算典例(1)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2(2)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB=(1,-2),AD=(2,1),则AD·AC=()A.5 B.4C.3D.2类题通法数量积坐标运算的两条途径进行向量的数量积运算,前提是牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.活学活用已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.题型二向量的模的问题典例(1)设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=() A. 5 B.10C.25D.10(2)已知点A(1,-2),若向量AB与a=(2,3)同向,|AB|=213,则点B的坐标是________.类题通法求向量的模的两种基本策略(1)字母表示下的运算:利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.活学活用1.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值为________.2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 题型三 向量的夹角和垂直问题典例 (1)已知a =(3,2),b =(-1,2),(a +λb )⊥b ,则实数λ=________.(2)已知a =(2,1),b =(-1,-1),c =a +k b ,d =a +b ,c 与d 的夹角为π4,则实数k 的值为________. 类题通法解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a ·b 以及|a ||b |,再由cos θ=a ·b|a ||b |求出cos θ,也可由坐标表示cos θ=a 1b 1+a 2b 2a 21+a 22b 21+b 22直接求出cos θ.由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π. (2)由于0≤θ≤π,利用cos θ=a ·b|a ||b |来判断角θ时,要注意cos θ<0有两种情况:一是θ是钝角,二是θ=π;cos θ>0也有两种情况:一是θ为锐角,二是θ=0.活学活用 已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.题型四 求解平面向量的数量积典例 已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,求AB ·BC +BC ·CA +CA ·AB 的值. 类题通法的值为________.参考答案新知初探1.(1)a1b1+a2b2(2)a1b1+a2b2=0小试身手1.【答案】(1)× (2)× (3)× 2.【答案】D 3.【答案】C 4.【答案】2 课堂讲练题型一 平面向量数量积的坐标运算 典例 【答案】 (1)C (2)A【解析】 (1)a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1.(2)由AC =AB +AD =(1,-2)+(2,1)=(3,-1),得AD ·AC =(2,1)·(3,-1)=5. 活学活用解:(1)因为a 与b 同向,又b =(1,2), 所以a =λb =(λ,2λ).又a ·b =10,所以1·λ+2·2λ=10,解得λ=2>0. 因为λ=2符合a 与b 同向的条件,所以a =(2,4). (2)因为b ·c =1×2+2×(-1)=0, 所以(b ·c )·a =0·a =0. 题型二 向量的模的问题 典例 【答案】 (1)B (2)(5,4)【解析】 (1)由⎩⎪⎨⎪⎧ a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧ 2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧x =2,y =-2.∴a =(2,1),b =(1,-2),a +b =(3,-1). ∴|a +b |=10.(2)由题意可设AB =λa (λ>0), ∴AB =(2λ,3λ).又|AB |=213,∴(2λ)2+(3λ)2=(213)2,解得λ=2或-2(舍去). ∴AB =(4,6).又A (1,-2),∴B (5,4). 活学活用 1.【答案】2+3【解析】2a -b =(2cos θ-3,2sin θ), |2a -b |=(2cos θ-3)2+(2sin θ)2 =4cos 2θ-43cos θ+3+4sin 2θ=7-43cos θ,当且仅当cos θ=-1时,|2a -b |取最大值2+ 3. 2.【答案】82【解析】∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6,∴c =a -(a ·b )b =(2,4)-6(-1,2)=(2,4)-(-6,12)=(8,-8), ∴|c |=82+(-8)2=8 2. 题型三 向量的夹角和垂直问题 典例 【答案】 (1)-15 (2)32【解析】 (1)∵a =(3,2),b =(-1,2), ∴a +λb =(3-λ,2+2λ). 又∵(a +λb )⊥b , ∴(a +λb )·b =0,即(3-λ)×(-1)+2×(2+2λ)=0, 解得λ=-15.(2)c =a +k b =(2-k,1-k ),d =a +b =(1,0), 由cos π4=22得(2-k )×1+(1-k )×0(2-k )2+(1-k )2·12+02=22,∴(2-k )2=(k -1)2,∴k =32.活学活用 解:(1)∵a ∥b ,∴3x =4×9,∴x =12. ∵a ⊥c ,∴3×4+4y =0,∴y =-3, ∴b =(9,12),c =(4,-3).(2)m =2a -b =(6,8)-(9,12)=(-3,-4), n =a +c =(3,4)+(4,-3)=(7,1). 设m ,n 的夹角为θ,则cos θ=m ·n |m ||n |=-3×7+(-4)×1(-3)2+(-4)272+12=-25252=-22.∵θ∈[0,π],∴θ=3π4,即m ,n 的夹角为3π4.题型四 求解平面向量的数量积 典例 解:法一 定义法如图,根据题意可得△ABC 为直角三角形,且B =π2,cos A =35,cos C =45,∴AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =4×5cos(π-C )+5×3cos(π-A ) =-20cos C -15cos A =-20×45-15×35=-25. [法二 坐标法]如图,建立平面直角坐标系,则A (3,0),B (0,0),C (0,4).∴AB =(-3,0),BC =(0,4),CA =(3,-4). ∴AB ·BC =-3×0+0×4=0,BC ·CA =0×3+4×(-4)=-16,CA ·AB =3×(-3)+(-4)×0=-9.∴AB ·BC +BC ·CA +CA ·AB =0-16-9=-25. [法三 转化法]∵|AB |=3,|BC |=4,|AC |=5, ∴AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB =CA ·(AB +BC ) =CA ·AC =-|AC |2=-25. 活学活用 【答案】45【解析】法一:以O 为坐标原点,OA ,OC 所在的直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,则由已知条件,可得OD =⎝⎛⎭⎫1,12,OE =⎝⎛⎭⎫12,1.故cos ∠DOE OD OE OD OE =1×12+12×152×52=45.法二:∵OD =OA +AD =OA +12OC ,OE =OC +CE =OC +12OA ,∴|v |=52,|OE |=52, OD ·OE =12OA 2+12OC 2=1, ∴cos ∠DOE OD OE OD OE =45.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x --=所以=||要点核心解读1.向量数量积的运算律a b b a ⋅=⋅)1((交换律);)()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律).2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c B A ⋅=⋅== ,)(00/c b a c OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+ ,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此 ①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a ==则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c c b b a c b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 - 3所示,若,,b BC a AB ==则=CA ,B ,b a D b a -=+由+==a b a ||||||,b 可知,60o ABC =∠b 与B D 所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值. 于是,4||,5||==b a 且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k 解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,Q BP C ⋅有最大值?[解析] 由三角形法则构造B 及C 的数量积转化为实数范围内求最大值,,,B C A AP =+-=即,--=--=A A C---=⋅∴C B ().(.⋅+⋅-=A .)()22.r AP -⋅=⋅+- =-+)(AC AB AP =⋅+-⋅r AC ..2..cos ||.||2AP r A AC AB +-.cos 2+-=r A bc ⋅当与CB 同向时,CB AP ⋅最大为.||.||ra =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..Q P C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:C Q B P 与 的夹角θ为何值时,.⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k AC AB ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(B C ,0k A AC B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标, 考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角. [解析] 解法一:根据,|||||,|||22b a b a ==有 又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a ab a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -=得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B OA b OB a OA 0,,、以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠ 这时,,0b a b a -=+= 而|,|||||b a b a -== 即 .||||||BA OB OA ==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30=∠AOC 即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围, 考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b,0231213=⨯-⨯=⋅b a 故有.b a ⊥由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a 即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433tt k -=故 ,47)2(41)34(41222-+=-+=+t t t tt k 即当2-=t 时,t t k 2+有最小值为⋅-47[点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对 3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题: ①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ).)14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a =+=|2|,1||),0b a b 则( ).3.A 32.B4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-O ().(,0)2=-OA 则△ABC 的形状为( ). A .正三角形 B .等腰三角形 C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(B ),6,4(==O OA 且,OB //,C 0AC OA ⊥则向量=C 0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ).||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //.8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足=PA PM 则2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ 11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x 12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a 三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||o b a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-= (1)求||tb a +的最小值及相应的t 值; (2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明:;)1(EF PA = .)2(EF PA ⊥16.平面内有向量)1,2(),1,5(),7,1(===O 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

相关文档
最新文档