初二上册数学复习题

合集下载

人教版八年级数学上册 第12章 全等三角形 章末复习测试题(二)

人教版八年级数学上册 第12章 全等三角形 章末复习测试题(二)

第12章全等三角形章末复习测试题(二)一.选择题1.不能说明两个三角形全等的条件是()A.三边对应相等B.两边及其夹角对应相等C.两角及其夹边对应相等D.三角对应相等2.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′3.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个4.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 5.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D 6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC8.一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A.ASA B.AAS C.SAS D.SSS9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA10.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S311.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE ⊥BD,交BD的延长线于点E,若BD=8,则CE=.13.如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.14.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.已知:如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于点E,若两平行线间的距离为6,则OE=.17.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).18.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.21.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.参考答案一.选择题1.解:A、三边对应相等,符合SSS,能推出两个三角形全等;B、两边及其夹角对应相等,符合SAS,能推出两个三角形全等;C、两角及其夹边对应相等,符合ASA,能推出两个三角形全等;D、三角对应相等满足AAA,不能推出全等三角形,是错误的.故选:D.2.解:A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.3.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.4.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.5.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.7.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.8.解:这片碎玻璃的两个角和这两个角所夹的边确定,从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.9.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.10.解:四边形ABCD,四个内角平分线交于一点P,则P是该四边形内切圆的圆心,如图,可将四边形分成8个三角形,面积分别是a、a、b、b、c、c、d、d,则S1=a+d,S2=a+b,S3=b+c,S4=c+d,∴S1+S3=a+b+c+d=S2+S4,故选:A.二.填空题(共6小题)11.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5 ∴x+y=11.故答案为:11.12.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.13.解:如右图,AB=3,AC=2,AD是BC上的中线,延长AD到E,使DE=AD,连接BE,∵AD=DE,∠ADC=∠EDB,BD=CD,∴△ADC≌△EDB(SAS),∴BE=AC=2,在△ABE中,BE﹣AB<AE<AB+BE,即1<2AD<5,解得<AD<,又∵AD是整数,∴AD=1或2,故答案为:1或2.14.解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.16.解:作OF⊥AB,OG⊥CD,∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∵FG=6,∴OE=3,故答案为3.三.解答题(共5小题)17.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.18.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)19.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.21.证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.。

八年级数学上册复习题12

八年级数学上册复习题12

布置作业
《原创新课堂》第35-36页
谢谢
边形ABCD是一个筝形,其中AD=CD,AB=CB.小明
在探究筝形的性质时,得到如下结论:①AC⊥BD;
②AO=CO=
结论有( D
)
1 2
Байду номын сангаас
AC;③△ABD≌△CBD.其中正确的
A.0个 B.1个
C.2个
D.3个
3、根据下列已知条件,能唯一画出△ABC的是( C )
A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30° C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6
例题
例1、如图1,E、F分别为线段AC上的两个动点,且 DE⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE,BD 交AC于M点。 (1)求证:BD与EF互相平分; (2)当E、F两点移动至图2所示的位置时,其余条件 不变,上述结论是否成立?若成立,给予证明。
原创新课堂第33页第7题
例 2、如图,在四边形 ABCD 中,AB=AD, ∠B+∠D=180°,E,F 分别是边 BC,CD 上的点,且∠EAF=12∠BAD. 求证:EF=BE+FD.
复习题12
方法指引
证明两个三角形全等的基本思路:
(1)已知两边---(2)已知一边一角---
找第三边 (SSS) 找夹角 (SAS) 找是否有直 (HL) 角
已知一边和它的邻角
已知一边和它的对角
找这边的另一个邻角(ASA)
找这个角的另一个边(SAS) 找这边的对角 (AAS) 找一角(AAS)
已知角是直角,找一边(HL)
4、如图,有两个长度相同的滑梯(即BC=EF), 左边滑梯的高度AC与右边滑梯水平方向的长度DF相

初二数学试题及答案上册

初二数学试题及答案上册

初二数学试题及答案上册一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于该数本身,那么这个数可以是:A. 0B. 1C. -1D. 0和13. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是:A. 240cm³B. 180cm³C. 120cm³D. 100cm³4. 下列哪个表达式等于2?A. (-1)²B. 3 - 5C. 4 ÷ 2D. 2³5. 一个数的60%加上这个数本身,和是这个数的:A. 160%B. 100%C. 120%D. 80%6. 一个等腰三角形的两个底角相等,顶角是80°,那么底角的度数是:A. 50°B. 70°C. 80°D. 90°7. 一个数除以3的余数是2,除以5的余数是1,这个数最小是:A. 11B. 17C. 21D. 268. 下列哪个选项是不等式2x + 5 > 11的解?A. x > 3B. x > 2C. x > 1D. x < 39. 一个数的1/4加上这个数的1/2,和是这个数的:A. 3/4B. 9/4C. 5/4D. 7/410. 一个正方形的面积是64cm²,它的周长是:A. 32cmB. 48cmC. 64cmD. 16cm二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。

12. 一本书的价格是35元,打8折后的价格是______元。

13. 一个长方体的体积公式是______(长×宽×高)。

14. 一个数的1/3与它的2/3的和是这个数的______。

15. 一个等边三角形的每个内角的度数是______°。

三、解答题(共50分)16. (10分)解方程组:\( \begin{cases} 2x + 3y = 11 \\ x - 2y = 4 \end{cases} \)17. (15分)小明和小红合伙买了一些文具,小明出了总钱数的2/5,小红出了28元。

初二上数学期末专题复习试题及答案全套

初二上数学期末专题复习试题及答案全套

最新初二上数学期末专题复习试题及答案全套一.类比归纳专题:三角形中内、外角的有关计算——全方位求角度◆类型一已知角的关系,直接利用内角和或结合方程思想1.在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于()A.50°B.55°C.45°D.40°2.在△ABC中,已知∠A=2∠B=3∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定3.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.4.如图,△ABC中,∠B=26°,∠C=70°,AD平分∠BAC,AE⊥BC于E,EF⊥AD 于F,求∠DEF的度数.◆类型二综合内外角的性质5.如图,BD、CD分别平分∠ABC和∠ACE,∠A=60°,则∠D的度数是()A.20°B.30°C.40°D.60°第5题图第6题图6.如图,∠B=20°,∠A=∠C=40°,则∠CDE的度数为________.7.如图,AD平分∠BAC,∠EAD=∠EDA.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.◆类型三在三角板或直尺中求角度8.将一副三角板按如图所示摆放,图中∠α的度数是()A.120°B.105°C.90°D.75°9.将两个含30°和45°的直角三角板如图放置,则∠α的度数是()A.10°B.15°C.20°D.25°10.一副三角板如图所示叠放在一起,则图中∠α的度数是________.11.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为________.◆类型四与平行线结合12.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=75°,∠B=40°,则∠ACE 的度数为()A.35°B.40°C.115°D.145°13.如图,AB∥CD,直线PQ分别交AB、CD于点F、E,EG是∠DEF的平分线,交AB于点G.若∠PF A=40°,那么∠EGB等于()A.80°B.100°C.110°D.120°14.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE=________.15.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD 交BC于G,EH⊥BE交BC于H,∠HEG=55°.(1)求∠BFD的度数;(2)若∠BAD=∠EBC,∠C=44°,求∠BAC的度数.◆类型五与截取或折叠相关16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2B.2∠A=∠1-∠2C.3∠A=2∠1-∠2D.3∠A=2(∠1-∠2)17.如图,Rt△ABC中,∠ACB=90°,∠A=52°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=________.第17题图第18题图18.在△ABC中,∠B=70°,若沿图中虚线剪去∠B,则∠1+∠2等于________.19.如图.(1)将△ABC纸片沿DE折叠成图①,此时点A落在四边形BCDE内部,则∠A与∠1、∠2之间有一种数量关系保持不变,请找出这种数量关系并说明理由.(2)若折成图②或图③,即点A落在BE或CD上时,分别写出∠A与∠2、∠A与∠1之间的关系式(不必证明);(3)若折成图④,写出∠A与∠1、∠2之间的关系式(不必证明).参考答案与解析1.C 2.C3.解:设∠A =x ,则∠C =∠ABC =2x .根据三角形内角和为180°知∠C +∠ABC +∠A =180°,即2x +2x +x =180°,∴x =36°,∴∠C =2x =72°.在Rt △BDC 中,∠DBC =90°-∠C =90°-72°=18°.方法点拨:三角形中给出的条件含比例且不易直接求出时,一般需要设未知数,根据三角形的内角和列方程求解.4.解:∵△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42°.在△ACE 中,∠CAE =90°-∠C =90°-70°=20°,∴∠DAE =∠DAC -∠CAE =42°-20°=22°.∵∠DEF +∠AEF =∠AEF +∠DAE =90°,∴∠DEF =∠DAE =22°.5.B 6.80°7.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵∠EAD =∠EDA ,∴∠EAC =∠EAD -∠CAD =∠EDA -∠BAD =∠B ;(2)解:设∠CAD =x °,则∠E =3x °.由(1)知∠EAC =∠B =50°,∴∠EAD =∠EDA =(x +50)°.在△EAD 中,∵∠E +∠EAD +∠EDA =180°,∴3x °+2(x +50)°=180°,解得x =16.∴∠E =48°.8.B 9.B 10.75° 11.35° 12.C 13.C 14.15° 15.解:(1)∵EH ⊥BE ,∴∠BEH =90°.∵∠HEG =55°,∴∠BEG =∠BEH -∠HEG =35°.又∵EG ∥AD ,∴∠BFD =∠BEG =35°;(2)∵∠BFD =∠BAD +∠ABE ,∠BAD =∠EBC ,∴∠BFD =∠EBC +∠ABE =∠ABC .由(1)可知∠BFD =35°,∴∠ABC =35°.∵∠C =44°,∴∠BAC =180°-∠ABC -∠C =180°-35°-44°=101°.16.B 17.14° 18.250°19.解:(1)延长BE 、CD ,交于点P ,则△BCP 即为折叠前的三角形.由折叠的性质知∠DAE =∠DPE .连接AP .由三角形的外角性质知∠1=∠EAP +∠EP A ,∠2=∠DAP +∠DP A ,则∠1+∠2=∠DAE +∠DPE =2∠DAE ,即∠1+∠2=2∠A ;(2)图②中,∠2=2∠A ;图③中,∠1=2∠A ; (3)图④中,∠2-∠1=2∠A .二.类比归纳专题:与三角形的高、角平分线有关的计算模型模型1:求同一顶点的角平分线与高线的夹角的度数1.如图,AD ,AE 分别是△ABC 的高和角平分线. (1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.模型2:求两内角平分线的夹角的度数 2.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O .若∠BOC =120°,则∠A =_____.3.如图,△ABC 中,点P 是∠ABC ,∠ACB 的平分线的交点. (1)若∠A =80°,求∠BPC 的度数.(2)有位同学在解答(1)后得出∠BPC =90°+12∠A 的规律,你认为正确吗?请给出理由.模型3:求一内角平分线与一外角平分线的夹角的度数4.如图,在△ABC 中,BA 1平分∠ABC ,CA 1平分∠ACD ,BA 1,CA 1相交于点A 1. (1)求证:∠A 1=12∠A ;(2)如图,继续作∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;作∠A 2BC 和∠A 2CD 的平分线交于点A 3,得∠A 3……依此得到∠A 2017,若∠A =α,则∠A 2017=_____________.模型4:求两外角平分线的夹角的度数【方法5】5.(1)如图,BO 平分△ABC 的外角∠CBD ,CO 平分△ABC 的外角∠BCE ,则∠BOC 与∠A 的关系为____________;(2)请就(1)中的结论进行证明.参考答案与解析1.解:(1)∵∠B =40°,∠C =60°,∴∠BAC =180°-∠B -∠C =180°-40°-60°=80°.∵AE 是角平分线,∴∠BAE =12∠BAC =12×80°=40°.∵AD 是高,∴∠BAD =90°-∠B=90°-40°=50°,∴∠DAE =∠BAD -∠BAE =50°-40°=10°.(2)∠DAE =12(β-α),证明如下:∵∠B =α,∠C =β(α<β),∴∠BAC =180°-(α+β).∵AE是角平分线,∴∠BAE =12∠BAC =90°-12(α+β).∵AD 是高,∴∠BAD =90°-∠B =90°-α,∴∠DAE =∠BAD -∠BAE =90°-α-⎣⎡⎦⎤90°-12(α+β)=12(β-α). 2.60°3.解:(1)∵BP ,CP 为角平分线,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=12(180°-∠A )=12×(180°-80°)=50°,∴∠BPC =180°-(∠PBC +∠PCB )=180°-50°=130°. (2)正确,理由如下:∵BP ,CP 为角平分线,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A ,∴∠BPC =180°-(∠PBC +∠PCB )=180°-⎝⎛⎭⎫90°-12∠A =90°+12∠A . 4.(1)证明:∵CA 1平分∠ACD ,∴∠A 1CD =12∠ACD =12(∠A +∠ABC ).又∵∠A 1CD=∠A 1+∠A 1BC ,∴∠A 1+∠A 1BC =12(∠A +∠ABC ).∵BA 1平分∠ABC ,∴∠A 1BC =12∠ABC ,∴12∠ABC +∠A 1=12(∠A +∠ABC ),∴∠A 1=12∠A .(2)α22017 5.(1)∠BOC =90°-12∠A(2)证明:如图,∵BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的平分线,∴∠DBC =2∠1=∠ACB +∠A ,∠ECB =2∠2=∠ABC +∠A ,∴2∠1+2∠2=2∠A +∠ABC +∠ACB =∠A +180°,∴∠1+∠2=12∠A +90°.又∵∠1+∠2+∠BOC =180°,∴∠BOC =180°-(∠1+∠2)=90°-12∠A .三. 解题技巧专题:利用全等解决问题的模型与技巧——明模型,先观察,再猜想,后证◆类型一 全等三角形的基本模型1.如图,AC =AD ,BC =BD ,∠A =50°,∠B =90°,则∠C =________.第1题图 第2题图2.如图,锐角△ABC 的高AD ,BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为_________.3.如图,点A ,D ,C ,E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =6,则CD 的长为 ( )A .2B .4C .4.5D .34.如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一直线上,连接BD 交AC 于点F .(1)求证:△BAD ≌△CAE ;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.◆类型二证明线段间的等量关系一、等线段代换5.如图,Rt△ABC中,AB=AC,∠BAC=90°,直线l为经过点A的任一直线,BD⊥l 于D,CE⊥l于E,若BD>CE,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD,DE,CE之间的数量关系如何?请说明理由.二、截长补短法6.如图,在四边形ABDE中,C是BD边的中点,若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系,并证明.三、倍长中线法7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8B.2<AD<14C.1<AD<7D.无法确定参考答案与解析1.110° 2.3 3.A4.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD =∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:BD⊥CE.理由如下:由(1)可知△BAD≌△CAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.又∵∠AFB=∠DFC,∴∠ACE+∠DFC=90°,∴∠BDC=90°,即BD⊥CE.5.解:(1)AD=CE.理由如下:∵BD⊥l于D,CE⊥l于E,∴∠BDA=∠AEC=90°,∴∠CAE+∠ACE=90°.∵∠BAC=∠90°,∴∠BAD+∠CAE=90°,∴∠BAD=∠ACE.又∵AB=AC,∴△ABD≌△CAE(AAS),∴AD=CE.(2)BD=DE+CE.理由如下:由(1)可知△ABD≌△CAE,∴BD=AE,AD=CE.又∵AE =DE+AD,∴BD=DE+CE.6.解:AE=AB+DE.证明如下:如图,在AE上截取AF=AB,并连接CF.∵AC平分∠BAE,∴∠BAC=∠CAF.又∵AC=AC,∴△BAC≌△F AC(SAS),∴BC=FC,∠ACB=∠ACF.∵∠ACE=90°,∴∠ACF+∠FCE=90°,∠ACB+∠DCE=90°,∴∠FCE=∠DCE.又∵C为BD的中点,∴BC=DC,∴DC=FC.又∵CE=CE,∴△FCE≌△DCE(SAS),∴DE =FE,∴AE=AF+FE=AB+DE.7.C四.难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗类型一动点变化1.如图,Rt△ABC中,∠C=90°,AC=6,BC=3,PQ=AB,点P与点Q分别在AC 和AC的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.3.(2016·达州中考)△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为_______;②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二图形变换4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.参考答案与解析1.3或6解析:∵△ABC和△APQ全等,AB=PQ,∴有△ABC≌△QP A或△ABC≌△PQA.当△ABC≌△QP A时,则有AP=BC=3;当△ABC≌△PQA时,则有AP =AC=6,∴当AP=3或6时,△ABC和△APQ全等,故答案为3或6.2.2或3解析:当BD=PC时,△BPD与△CQP全等.∵点D为AB的中点,∴BD=12AB =6cm ,∴PC =6cm ,∴BP =8-6=2(cm).∵点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,∴运动时间为1s.∵△DBP ≌△PCQ ,∴CQ =BP =2cm ,∴v =2÷1=2(cm/s); 当BD =CQ 时,△BDP ≌△QCP .∴PB =PQ ,∠B =∠CQP .又∵∠B =∠C ,∴∠C =∠CQP ,∴PQ =PC ,∴PB =PC .∵BD =6cm ,BC =8cm ,PB =PC ,∴QC =6cm ,∴BP =4cm ,∴运动时间为4÷2=2(s),∴v =6÷2=3(cm/s),故答案为2或3.3.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下: ∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF . 在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB=CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .4.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE (HL),∴BF =DE .在△BFO 和△DEO 中,⎩⎪⎨⎪⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,∴△BFO ≌△DEO (AAS),∴OE =OF .(2)结论依然成立.理由如下:∵AE =CF ,∴AE -EF =CF -EF ,∴AF =CE .同(1)可得△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.5.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS).(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.5.易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100°B.40°C.40°或100°D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.80°,80°D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四 一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A ,B ,请在此点阵图中找一个阵点C ,使得以点A ,B ,C 为顶点的三角形是等腰三角形,则符合条件的C 点有_____个.参考答案与解析1.C2.不正确 没考虑三角形三边关系3.解:设腰长为x cm ,①腰长与腰长的一半是6cm 时,x +12x =6,解得x =4,∴底边长=10-12×4=8(cm).∵4+4=8,∴4cm 、4cm 、8cm 不能组成三角形;②腰长与腰长的一半是10cm 时,x +12x =10,解得x =203,∴底边长=6-12×203=83(cm),∴三角形的三边长为203cm 、203cm 、83cm ,能组成三角形.综上所述,三角形的腰长为203cm ,底边长为83cm.4.C 5.D 6.120°或20° 7.C 8.70°或20° 9.x 或90-x 解析:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x .故答案为x 或90-x .10.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在其外部.如图①所示,得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.11.A 12.56.解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一 利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC 中,AB =AC ,AE ⊥BE 于点E ,且BE =12BC ,若∠EAB =20°,则∠BAC =__________.2.如图,在△ABC 中,AB =AC ,D 为BC 边的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .(1)求证:DE =DF ; (2)若∠A =90°,图中与DE 相等的有哪些线段(不说明理由)?3.如图,△ABC 中,AC =2AB ,AD 平分∠BAC 交BC 于D ,E 是AD 上一点,且EA =EC ,求证:EB ⊥AB .二、构造等腰三角形4.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为( )A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm25.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等6.(2016·铜仁中考)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等7.如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案与解析1.40°2.(1)证明:如图,连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠F AD.又∵DE⊥AB,DF⊥AC,∴DE=DF.(2)解:若∠BAC =90°,图中与DE 相等的有线段DF ,AE ,AF ,BE ,CF .3.证明:如图,作EF ⊥AC 于F .∵EA =EC ,∴AF =FC =12AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°.∴EB ⊥AB .4.B5.证明:如图,延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE =∠CBE .又∵BE =BE ,∴△BME ≌△BCE (ASA),∴EM =EC =12MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .6.证明:如图,连接CD .∵AC =BC ,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°.∵∠ACB =90°,∴∠BCD =∠ACD =45°,∴∠B =180°-∠CDB -∠BCD =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠BDF ,∴△ECD ≌△FBD (ASA),∴DE =DF .7.证明:如图,在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠DEC =180°-∠DEB =72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∴∠CDE=∠DEB -∠ACB =180°-36°=72°,∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .8.(1)证明:如图,过P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∠AFP =60°,∴△APF 是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ ,∴△PFD ≌△QCD (ASA),∴PD =DQ .(2)解:∵△APF 是等边三角形,PE ⊥AC ,∴AE =EF .∵△PFD ≌△QCD ,∴CD =DF ,∴DE =EF +DF =12AC .又∵AC =1,∴DE =12.7.类比归纳专题:证明线段相等的基本思路——理条件、定思路,几何证明也容易◆类型一 已知“边的关系”或“边角关系”用全等1.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足,求证:(1)AC =AD ; (2)CF =DF .2.如图,∠C =90°,BC =AC ,D 、E 分别在BC 和AC 上,且BD =CE ,M 是AB 的中点.求证:△MDE 是等腰三角形.◆类型二 已知角度关系或线与线之间的位置关系用“等角对等边”3.如图,在△ABC 中,CE 、CF 分别平分∠ACB 和△ACB 的外角∠ACG ,EF ∥BC 交AC 于点D ,求证:DE =DF .4.(2015-2016·孝南区期末)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD 于H,交AB于N.(1)求证:AN=AC;(2)试判断BN与CD的数量关系,并说明理由.◆类型三已知角平分线、垂直或垂直平分用相应的性质5.如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D 作DE⊥AB,DF⊥AC,求证:BE=CF .6.如图,在△ABC中,∠C=90°,AD 是∠BAC的平分线,DE⊥AB于E,F在AC 上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB .参考答案与解析1.证明:(1)在△ABC 和△AED 中,AB =AE ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED ,∴AC =AD ;(2)在Rt △ACF 和Rt △ADF 中,AC =AD ,AF =AF ,∴△ACF ≌△ADF ,∴CF =DF . 2.证明:连接CM ,则BM =CM ,且CM ⊥MB ,∴∠B =∠MCE =45°,∴BM =AM =CM .在△MBD 和△MCE 中,BM =CM ,∠B =∠MCE ,BD =CE ,∴△MBD ≌△MCE ,∴DM =EM ,∴△MDE 是等腰三角形.3.证明:∵CE 是△ABC 的角平分线,∴∠ACE =∠BCE .∵CF 为△ABC 外角∠ACG 的平分线,∴∠ACF =∠GCF .∵EF ∥BC ,∴∠GCF =∠F ,∠BCE =∠CEF .∴∠ACE =∠CEF ,∠F =∠DCF ,∴CD =ED ,CD =DF ,∴DE =DF .4.(1)证明:∵CN ⊥AD ,∴∠AHN =∠AHC =90°.又∵AD 平分∠BAC ,∴∠NAH =∠CAH .又∵在△ANH 和△ACH 中,∠AHN +∠NAH +∠ANH =180°,∠AHC +∠CAH +∠ACH =180°∴∠ANH =∠ACH ,∴AN =AC ;(2)解:BN =CD .理由如下:连接ND .在△AND 和△ACD 中,⎩⎪⎨⎪⎧AN =AC ,∠NAD =CAD ,AD =AD ,∴△AND ≌△ACD (SAS),∴DN =DC ,∠AND =∠ACD .又∵∠ACB =2∠B ,∴∠AND =2∠B .又∵△BND 中,∠AND =∠B +∠NDB ,∴∠B =∠NDB ,∴NB =ND ,∴BN =CD .5.证明:连接BD 、CD .∵AD 是∠F AE 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∵DG 是BC 的垂直平分线,∴BD =CD .∴Rt △CDF ≌Rt △BDE .∴BE =CF .6.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CFD ≌Rt △EBD (HL).∴CF =EB ;(2)在Rt △ADC 和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .8.解题技巧专题:乘法公式的灵活运用——计算技巧多,先观察,再计算,事半功倍◆类型一 利用乘法公式进行简便运算1.计算102×98的结果是( ) A .9995 B .9896 C .9996 D .99972.计算20152-2014×2016的结果是( )A .-2B .-1C .0D .1 3.计算:(1)512=____________; (2)298×302=____________. 4.运用公式简便计算:(1)4013×3923; (2)100022522-2482.5.阅读下列材料:某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.请借鉴该同学的经验,计算下面式子的值:⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215.◆类型二 利用乘法公式的变式求值 6.若a -b =12,且a 2-b 2=14,则a +b的值为( )A .-12 B.12C .1D .27.若a -b =1,ab =2,则(a +b )2的值为( )A .-9B .9C .±9D .38.已知x +1x =5,那么x 2+1x 2的值为( )A .10B .23C .25D .279.若m +n =1,则代数式m 2-n 2+2n 的值为1.10.(2016·巴中中考)若a +b =3,ab =2,则(a -b )2=__________.11.阅读:已知a +b =-4,ab =3,求a 2+b 2的值.解:∵a +b =-4,ab =3,∴a 2+b 2=(a +b )2-2ab =(-4)2-2×3=10.请你根据上述解题思路解答下面问题: (1)已知a -b =-3,ab =-2,求(a +b )(a 2-b 2)的值;(2)已知a -c -b =-10,(a -b )c =-12,求(a -b )2+c 2的值.参考答案与解析1.C 2.D3.(1)2601 (2)899964.解:(1)原式=⎝⎛⎭⎫40+13⎝⎛⎭⎫40-13=402-⎝⎛⎭⎫132=159989; (2)原式=10002(250+2)2-(250-2)2=100022502+2×250×2+22-(2502-2×250×2+22)=100022000=500. 5.解:⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215=2×⎝⎛⎭⎫1-12⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215=2×⎝⎛⎭⎫1-1216+1215=2-1215+1215=2. 6.B 7.B 8.B 9.1 10.111.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(2)∵a -c -b =-10,(a -b )c =-12,∴(a -b )2+c 2=[(a -b )-c ]2+2(a -b )c =(-10)2+2×(-12)=76.9.解题技巧专题:选择合适的方法因式分解——学会选择最优方法◆类型一 一步(提公因式或套公式)分解因式 1.(2016·宁德中考)下列分解因式正确的是( ) A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)2 2.分解因式:(1)3x 3y 3-x 2y 3+2x 4y ;(2)2(x +y )2-(y +x )3.◆类型二 两步(先提后套或二次分解)分解因式2.3.(2016·梅州中考)分解因式a 2b -b 3,结果正确的是( )A.b(a+b)(a-b) B.b(a-b)2C.b(a2-b2) D.b(a+b)24.分解因式:(1)-2a3+12a2-18a;(2)(x2+1)2-4x2.*◆类型三特殊的因式分解法(分组分解法、十字相乘法、配方法)5.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n).(1)试完成下面填空:x2-y2-2y-1=x2-(y2+2y+1)=______________________=______________________;(2)试用上述方法分解因式:a2-2ab-ac+bc+b2.6.阅读与思考:将式子x2-x-6分解因式.这个式子的常数项-6=2×(-3),一次项系数-1=2+(-3),这个过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示,这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:x2+7x-18;【方法22】(2)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是__________________7.阅读:分解因式x2+2x-3.解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).上述因式分解的方法可以称之为配方法.请体会配方法的特点,然后用配方法分解因式:(1)x2-4x+3; (2)4x2+12x-7.参考答案与解析1.C2.解:(1)原式=x2y(3xy2-y2+2x2);(2)原式=(x+y)2·[2-(x+y)]=(x+y)2·(2-x-y).3.A4.解:(1)原式=-2a(a2-6a+9)=-2a(a-3)2;(2)原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x-1)2.5.解:(1)x2-(y+1)2(x+y+1)(x-y-1)(2)原式=(a2-2ab+b2)-(ac-bc)=(a-b)2-c(a-b)=(a-b)(a-b-c).6.解:(1)原式=(x+9)(x-2).(2)7,-7,2,-2解析:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值分别是-8+1=-7;-1+8=7;-2+4=2;-4+2=-2.7.解:(1)原式=x2-4x+4-4+3=(x2-4x+4)-1=(x-2)2-1=(x-2+1)(x-2-1)=(x-1)(x-3);(2)原式=4x2+12x+9-9-7=(4x2+12x+9)-16=(2x+3)2-16=(2x+3+4)(2x+3-4)=(2x+7)(2x-1).10.易错专题:分式中常见的陷阱——易错全方位归纳,各个击破◆类型一 分式值为0时求值,忽略分母不为01.分式x 2-4x -2的值等于0时,x 的值为( )A .±2B .2C .-2 D. 22.要使m 2-9m 2-6m +9的值为0,则m 的值为( )A .3B .-3C .±3D .不存在3.若分式3-|x |x +3的值为零,则x 的值为_________.◆类型二 自主取值再求值时,忽略分母或除式不能为04.(2016·安顺中考)先化简,再求值:⎝⎛⎭⎫1-1x +1÷x -2x +1,从-1,2,3中选择一个适当的数作为x 值代入.5.(2016·巴中中考)先化简:x 2+xx 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.◆类型三 无解时忽略分式方程化为一次方程后未知数系数为0的情况6.★若关于x 的分式方程2m +x x -3-1=2x 无解,则m 的值为( )A .-32 B .1C .-32或2D .-12或-327.已知关于x 的分式方程ax +1-2a -x -1x 2+x=0无解,求a 的值.◆类型四 已知方程根的情况求参数的取值范围,应舍去公分母为0时参数的值8.(2016·齐齐哈尔中考)若关于x 的分式方程x x -2=2-m 2-x的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,39.已知关于x 的分式方程a -xx +1=1的解为负数,求a 的取值范围.参考答案与解析1.C 2.B 3.34.解:原式=x x +1·x +1x -2=x x -2,当x =3时,原式=33-2=3(x 不能取-1和2).5.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,(x -1)x ≠0,x +1≠0,即x ≠-1,0,1.又∵-2<x ≤2且x 为整数,∴x =2.∴原式=222-1=4.6.D 解析:方程两边同乘x (x -3),得x (2m +x )-x (x -3)=2(x -3),化简得(2m +1)x=-6,解得x =-62m +1.由分式方程无解,得x =0或x =3或2m +1=0.当x =0时,-62m +1=0,解得m =-12;当x =3时,-62m +1=3,解得m =-32;当2m +1=0时,m =-12.故m 的值为-12或-32.故选D.7.解:去分母得ax -2a +x +1=0,分两种情况讨论:①分式方程有增根,由x (x +1)=0,得x =-1或0,当x =-1时,-a -2a -1+1=0,解得a =0;当x =0时,-2a +1=0,解得a =12;②方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a +1=0,a =-1.综上可知a =0或12或-1.8.C 解析:方程两边都乘以x -2,得x =2(x -2)+m ,解得x =4-m .由题意得⎩⎪⎨⎪⎧x >0,x -2≠0,即⎩⎪⎨⎪⎧4-m >0,4-m -2≠0,解得m <4且m ≠2,∴满足条件的正整数m 的值为1和3.故选C.9.解:由a -x x +1=1,解得x =a -12.由题意得⎩⎨⎧a -12<0,a -12+1≠0,∴a <1且a ≠-1.11.解题技巧专题:分式运算中的技巧——观特点,定顺序,灵活计算◆类型一 按常规步骤运算1.计算1x -1x -y 的结果是( )A .-yx (x -y ) B .2x +y x (x -y )C .2x -y x (x -y )D .y x (x -y ) 2.化简m m +3+6m 2-9÷2m -3的结果是________.3.(2015-2016·祁阳县校级期中)先化简,再求值:2a +1a 2-1·a 2-2a +1a 2-a -1a +1,其中a =-12.◆类型二 先约分再化简4.化简:a 2-1a 2+2a +1÷a 2-aa +1=________.5.化简求值:(a -3)·9-a 2a 2-6a +9=________,当a =-3时,该代数式的值为________.6.先化简,再求值:x 2-2x +1x 2-1÷⎝⎛⎭⎫1-3x +1,其中x =0.◆类型三 混合运算中灵活运用分配律7.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( )A .1x 2+1B .1x 2-1C .x 2+1D .x 2-18.化简:⎝⎛⎭⎫2a -1-1a +1·(a 2-1)=________. 9.先化简,再求值:12x -1x +y ·⎝⎛⎭⎫x 2-y 2+x +y 2x ,其中x =2,y =3.◆类型四 分式化简求值注意整体代入 10.若xy -x +y =0且xy ≠0,则分式1x -1y 的值为( )A .1xyB .xyC .1D .-1 11.已知:a 2-3a +1=0,则a +1a -2的值为( )A .5+1B .1C .-1D .-512.先化简,再求值:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-xx 2+2x +1,其中x 满足x 2-x -1=0.参考答案与解析1.A 2.13.解:原式=2a +1(a +1)(a -1)·(a -1)2a (a -1)-1a +1=2a +1a (a +1)-1a +1=a +1a (a +1)=1a. 当a =-12时,原式=-2.4.1a5.-a -3 0 6.解:原式=x -1x +1÷x -2x +1=x -1x -2.当x =0时,原式=12.7.C 8.a +39.解:原式=12x -x 2-y 2x +y -12x =-x +y .当x =2,y =3时,原式=1.10.D 11.B12.解:原式=x2-1-x2+2xx(x+1)·(x+1)2x(2x-1)=x+1x2.∵x2-x-1=0,∴x2=x+1,∴原式=1.。

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
∴△ABD≌△C'DB (HL) ,
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,

∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;

初中数学人教版八年级上册第十二章 全等三角形单元复习-章节测试习题(2)

初中数学人教版八年级上册第十二章 全等三角形单元复习-章节测试习题(2)

章节测试题1.【题文】如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.【答案】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解答【分析】由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.【解答】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).2.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20米.【分析】已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.【解答】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)3.【题文】我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD. 对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【答案】证明见解答.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.4.【题文】已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【答案】(1)证明见解答(2)证明见解答【分析】(1)由SAS证明△ADB≌△AEC,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)在△ADB和△AEC中,∴△ADB≌△AEC∴BD=CE(2)∵∴即又△ADB≌△AEC∴180°-即.5.【题文】如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【答案】(1)FE=FD(2)答案见解答【分析】(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.【解答】(1)FE与FD之间的数量关系为:FE=FD.理由:如图,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°-60°-60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论FE=FD仍然成立.如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.6.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的概念即可得出答案.【解答】A、面积相等,但图形不一定完全重合,故错误,B、两个长方形,图形不一定完全重合,故错误;C、全等图形∵完全重合,∴形状一定相同,故正确,D、两个正方形,面积不相等,也不是全等图形,故答案选C.7.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】根据全等三角形对应角相等可知∠α是a、c边的夹角,然后写出即可.【解答】∵两个三角形全等,∴∠α的度数是50°.选D.8.【答题】如图,在下列条件中,不能证明△ABD≌△ACD的是().A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.【解答】∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.选D.9.【答题】如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A. SASB. ASAC. AASD. HL【答案】D【分析】本题考查了直角三角形全等的判定.【解答】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),选D.10.【答题】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD等于()A. 6cmB. 8cmC. 10cmD. 4cm【答案】B【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=3cm,CD=AB=5cm,∴BD=BC+CD=3+5=8cm,故答案选B.11.【答题】如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A. AD=BCB. ∠DAB=∠CBAC. △ACE≌△BDED. AC=CE【答案】D【分析】本题考查了全等三角形的判定与性质.【解答】在和中,,∴≌,∴,正确,,正确,在和中,,∴在≌,∴正确.无从得证.选.12.【答题】如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】B【分析】本题考查了全等三角形的应用.【解答】解:如图,连接AB,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE选B13.【答题】如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC =()A. 120°B. 125°C. 130°D. 140°【答案】A【分析】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).在△BOC中利用三角形的内角和定理可求得∠BOC.【解答】∵O到三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).∵∠A=60°,∴∠OBC+∠OCB=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.选A.14.【答题】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A. 12B. 6C. 7D. 8【答案】B【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△DEF=S△DGH,然后列式求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△DEF=S△DGH,∵△ADG和△AED的面积分别为40和28,∴△EDF的面积=×(40-28)=6.选B.15.【答题】如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. ①②③④B. ①②④C. ①②③D. ②③④【答案】A【分析】根据等腰三角形、全等三角形的判定与性质即可得到答案.【解答】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.16.【答题】已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=______.【答案】20°【分析】根据全等三角形的基本性质即可得到答案.【解答】∵△ADF≌△CBE,∴∠BCE=∠DAF=∠A=20°,故答案为20°.17.【答题】如图,△ABC≌△CDA,则AB与CD的位置关系是______.【答案】AB∥CD【分析】根据全等三角形的性质得出边和角的关系,进一步可得到AB与CD的关系即可得到答案.【解答】∵△ABC≌△CDA,则∠ACD=∠BAC,∴AB∥CD,故答案为AB∥CD.18.【答题】如图,在中,点A的坐标为,点B的坐标为,点C 的坐标为,点D在第二象限,且与全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【分析】本题考查了全等三角形的性质、点的坐标.【解答】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC 全等.故答案为(-4,2)或(-4,3).19.【答题】如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用______判定.【答案】AAS【分析】根据全等三角形的判定从而得到答案.【解答】已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS,故答案为AAS.20.【答题】如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是______.【答案】①②④【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,AB=AD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故④正确∴BC=DC,故②正确;故答案为①②④.。

初二数学上册试题及答案解析

初二数学上册试题及答案解析

初二数学上册试题及答案解析一、选择题(每题2分,共10分)1. 下列哪个选项不是实数?A. √2B. -3C. πD. i2. 一个数的平方根是它自己,这个数是:A. 0B. 1C. -1D. 23. 直线y=2x+3与x轴的交点坐标是:A. (0, 3)B. (0, 2)C. (-3/2, 0)D. (3/2, 0)4. 一个正数的倒数是:A. 它自己B. 它的平方C. 1除以它D. 它的立方5. 以下哪个不等式是正确的?A. 2 > 3B. 2 < 3C. 2 ≥ 3D. 2 ≤ 3答案解析:1. 正确答案是D。

i是虚数单位,不是实数。

2. 正确答案是A。

0的平方根是0。

3. 正确答案是C。

将y=0代入直线方程,解得x=-3/2。

4. 正确答案是C。

一个正数的倒数是1除以它。

5. 正确答案是B。

2小于3。

二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身或它的相反数,这个数是______。

7. 如果a+b=10,a-b=2,那么a²-b²=______。

8. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。

9. 如果一个数的立方等于它本身,那么这个数是______。

10. 一个二次方程x²-5x+6=0的根是______。

答案解析:6. 这个数是0或正数。

7. 根据差平方公式,a²-b²=(a+b)(a-b)=10*2=20。

8. 根据勾股定理,斜边长是√(3²+4²)=5。

9. 这个数是0或1或-1。

10. 因式分解x²-5x+6=(x-2)(x-3),所以根是2和3。

三、解答题(每题5分,共20分)11. 解不等式:2x-3 < 5。

12. 已知一个三角形的两边长分别是5和7,第三边长是整数,求第三边的可能长度。

答案解析:11. 首先将不等式2x-3 < 5移项,得到2x < 8,然后除以2,得到x < 4。

人教版八年级上册数学整册复习试题及答案

人教版八年级上册数学整册复习试题及答案

八年级上学期数学整册复习题一、选择题(每小题3分,共30分): 1.下列运算正确的是( )A .4= -2B .3-=3C .24±=D .39=3 2.计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 6 3.若式子5-x 在实数范围内有意义,则x 的取值范围是( )A .x>5B .x ≥5C .x ≠5D .x ≥0 4.如图所示,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C ,∠BAD=∠ABCB .∠BAD=∠ABC ,∠ABD=∠BAC C .BD=AC ,∠BAD=∠ABCD .AD=BC ,BD=AC5.下列“表情”中属于轴对称图形的是( )A .B .C .D .6.在下列个数:6、10049、、π1、7、11131、327中无理数的个数是( ) A .2 B .3 C .4 D .57.下列图形中,以方程y-2x-2=0的解为坐标的点组成的图像是( )(第4题图)DCBACB 000012-12-2112xxxy yyy x8.任意给定一个非零实数,按下列程序计算,最后输出的结果是( )A .mB .m+1C .m-1D .m 2 9.如图,是某工程队在“村村通”工程中修筑的公路长度(m )与时间(天)之间的关系图象,根据图象提供的信息,可知道公路的长度为( )米. A .504 B .432 C .324 D .72010.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0)、(5,0)、(2,3),则顶点C 的坐标为( )A .(3,7)B .(5,3)C .(7,3)D .(8,2) 二、填空题(每小题3分,共18分): 11.若x-2+y 2=0,那么x+y= .12.若某数的平方根为a+3和2a-15,则a= . 平方结果+2÷m-mm(第10题图)DCBA 0y x14.如图,已知:在同一平面内将△ABC 绕B 点旋转到△A /BC /的位置时,AA /∥BC ,∠ABC=70°,∠CBC /为 . 15.如图,已知函数y=2x+b 和y=ax-3的图象交于点P (-2,-5),则根据图象可得不等式2x+b>ax-3的解集是 . 16.如图,在△ABC 中,∠C=25°,AD ⊥BC ,垂足为D ,且AB+BD=CD ,则∠BAC 的度数是 .三、解答题(本大题8个小题,共72分): 17.(10分)计算与化简:(1)化简:)1(18--π0)12(21214-+-; (2)计算:(x-8y )(x-y ).18.(10分)分解因式:(1)-a 2+6ab-9b 2; (2)(p-4)(p+1)+3p.(第14题图)AC /CBA /(第15题图)CB D A(第16题图)19.(7分)先化简,再求值:(a 2b-2ab 2-b 3)÷b-(a+b )(a-b ),其中a=21,b= -1.20.(7分)如果52a 3++-b b a 为a-3b 的算术平方根,1221---b a a 为1-a 2的立方根,求2a-3b 的平方根.21.(8分)如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AC 于点D ,垂足为E ,若∠A=30°,CD=2. (1)求∠BDC 的度数; (2)求BD 的长. (第21题图)DCBEA22.(8分)如图,在平面直角坐标系中,点P (x ,y )是第一象限直线y=-x+6上的点,点A (5,0),O 是坐标原点,△PAO 的面积为S. (1)求s 与x 的函数关系式,并写出x 的取值范围; (2)探究:当P 点运动到什么位置时△PAO 的面积为10.23.(10分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋. 为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元3.52.332售价(元/个)成本(元/个)BA24.(12分)如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点,OA 、OB 的长度分别为a 、b ,且满足a 2-2ab+b 2=0. (1)判断△AOB 的形状;(2)如图②,正比例函数y=kx(k<0)的图象与直线AB 交于点Q ,过A 、B 两点分别作AM⊥OQ 于M ,BN ⊥OQ 于N ,若AM=9,BN=4,求MN 的长. (3)如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系写出你的结论并证明.x(第24题图③)x(第24题图②)(第24题图①)x参考答案: 一、选择题:. 二、填空题:11.2; ; ; ; >-2; . 三、解答题:17.(1)解原式=321222212-+--=23223-; (2)解:(x-8y )(x-y )=x 2-xy-8xy+8y 2=x 2-9xy+8y 2.18.(1)原式=-(a 2-6ab+9b 2)=-(a-3b )2; (2)原式=p 2-3p-4+3p=p 2-4=(p+2)(p-2). 19.解原式=a 2-2ab-b 2-(a 2-b 2)=a 2-2ab-b 2-a 2+b 2=-2ab , 将a=21,b=-1代入上式得:原式=-2×21×(-1)=1. 20.解:由题意得:⎩⎨⎧=--=++312252b a b a ,解得:⎩⎨⎧-==21b a ,∴2a-3b=8,∴±22832±=±=-b a .21.(1)∵DE 垂直平分AB ,∴DA=DB ,∴∠DBE=∠A=30°,∴∠BDC=60°; (2)在Rt △BDC 中,∵∠BDC=60°,∴∠DBC=30°,∴BD=2CD=4.22.解:(1)s=-25x+15(0<x<6);(2)由-25x+15=10,得:x=2,∴P 点的坐标为(2,4). 23.解:(1)根据题意得:y=()x+()(4500-x )=+2250;(2)根据题意得:2x+3(4500-x )≦10000,解得:x ≧3500元. ∵k=<0,∴y 随x 的增大而减小,∴当x=3500时,y=×3500+2250=1550.答:该厂每天至多获利1550元.24.解:(1)等腰直角三角形.∵a 2-2ab+b 2=0,∴(a-b )2=0,∴a=b ;∵∠AOB=90o ,∴△AOB 为等腰直角三角形;(2)∵∠MOA+∠MAO=90o ,∠MOA+∠MOB=90o ,∴∠MAO=∠MOB ,∵AM ⊥OQ ,BN ⊥OQ ,∴∠AMO=∠BNO=90o ,在△MAO 和△BON 中,有:⎪⎩⎪⎨⎧=∠=∠∠=∠OB OA BNO AMO MOBMAO ,∴△MAO ≌△NOB ,∴OM=BN ,AM=ON ,OM=BN ,∴MN=ON-OM=AM-BN=5;(3)PO=PD ,且PO ⊥PD. 延长DP 到点C ,使DP=PC ,连结OP 、OD 、OC 、BC , 在△DEP 和△OBP 中,有:⎪⎩⎪⎨⎧=∠=∠=PB PE CPB DPE PC DP ,∴△DEP ≌△CBP ,∴CB=DE=DA ,∠DEP=∠CBP=135o ;在△OAD 和△OBC 中,有:⎪⎩⎪⎨⎧=∠=∠=OB OA CBO DAO CB DA ,∴△OAD ≌△OBC ,∴OD=OC ,∠AOD=∠COB ,∴△DOC 为等腰直角三角形, ∴PO=PD ,且PO ⊥PD.。

八年级上册数学期中复习试题大全

八年级上册数学期中复习试题大全

八年级上册数学期中复习试题大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

下面是为大家整理的关于八年级上册数学期中复习试题,希望对您有所帮助!八年级数学期中复习试卷一.选择题1.如图所示,图中不是轴对称图形的是( )2、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( )A.4个B.3个C.2个D.1个3、下列图形是轴对称图形的有( )A:1个 B:2个 C:3个 D:4个4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72°B.36°C.60°D.82°5.已知A,B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个5.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于( )A.70°B.50°C.40°D.20°6.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F•,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF7.三角形中,到三边距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点。

8.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF; ③CD=DN;④△ACN≌△ABM,其中正确的有( )A.1个B.2个C.3个D.4个9.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B. AM‖CN C.AB=CD D. AM=CN11.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是( )A.80° B:40° C:60° D:120°12.如图:OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3㎝,则CE的长度为( )A.2㎝ B.3㎝ C.4㎝ D.5㎝13.点M(—1,2)关于y轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)14.等腰三角形的一边长是6,另一边长是12,则周长为( )A.24B.30C.24或30D.1815.如图:DE是 ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则 EBC的周长为( )厘米 A.16 B.18 C.26 D.2816.下列关于等边三角形的说法正确的有( )①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形。

2023-2024学年沪科新版八年级上册数学期中复习试卷(含解析)

2023-2024学年沪科新版八年级上册数学期中复习试卷(含解析)

2023-2024学年沪科新版八年级上册数学期中复习试卷一.选择题(共10小题,满分40分,每小题4分)1.若m是任意实数,则点M(m2+2,﹣2)在第( )象限.A.一B.二C.三D.四2.一本笔记本5元,买x本共付y元,则常量和变量分别是( )A.常量:5;变量:x B.常量:5;变量:yC.常量:5;变量:x,y D.常量:x,y;变量:53.点P是平面直角坐标系中的一点,将点P向左平移3个单位长度,再向下平移4个单位长度,得到点P′的坐标是(﹣2,1),则点P的坐标是( )A.(1,5)B.(﹣1,﹣3)C.(﹣5,﹣3)D.(﹣1,5)4.对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是( )x……﹣10123y……﹣214810……A.1B.4C.8D.105.三角形两边长2、3,则最短边x的取值范围是( )A.1<x<5B.2<x<3C.1<x≤2D.3≤x<56.如图,将一个三角形剪去一个角后,∠1+∠2=240°,则∠A等于( )A.45°B.60°C.75°D.80°7.下列语句中是命题的是( )A.作线段AB=CD B.两直线平行C.对顶角相等D.连接AB8.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A.B.1C.D.29.如图所示,一次函数y=kx+b(k,b是常数,k≠0)与正比例函数y=mx(m是常数,m ≠0)的图象相交于点M(1,2),下列判断错误的是( )A.关于x的方程mx=kx+b的解是x=1B.关于x的不等式mx<kx+b的解集是x>1C.当x<0时,函数y=kx+b的值比函数y=mx的值大D.关于x,y的方程组的解是10.如图,已知直线AB分别交坐标轴于A(2,0)、B(0,﹣6)两点直线上任意一点P (x,y),设点P到x轴和y轴的距离分别是m和n,则m+n的最小值为( )A.2B.3C.5D.6二.填空题(共4小题,满分20分,每小题5分)11.若实数x、y满足:y=++,则xy= .12.将点P(﹣3,2)向上平移4个单位,向左平移1个单位后得到点的坐标是( , ).13.一次函数y=2x+3和y=x﹣的图象交于点A( , ),则方程组的解是 .14.在△ABC中,∠C=90°,∠A=45°,c2=18,则a= .三.解答题(共9小题,满分90分)15.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+5,b﹣2).(1)在平面直角坐标系内描出点A、B、C,并画出△ABC;(2)直接写出点A1,B1,C1的坐标;(3)在图中画出△A1B1C1.16.如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C(﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.17.已知函数y=(2﹣m)x+2n﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?18.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值;(3)求该直线上到x轴距离为3的点的坐标.19.在同一平面直角坐标系内作出一次函数和的图象,直线与直线的交点坐标是多少?你能据此求出方程组的解吗?20.如图,已知点O是△ABC的两条角平分线的交点.(1)若∠A=30°,则∠BOC的大小是 ;(2)若∠A=60°,则∠BOC=的大小是 ;(3)若∠A=80°,则∠BOC的大小是 ;(4)若∠A=n°,猜想∠BOC的大小,并用所学过的知识说明理由.21.如图,P为△ABC内一点,说明AB+AC>PB+PC的理由.22.(1)如图(1)所示,在三角形ABC中,∠ABC,∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图(2)所示,∠A′B′C′和∠A′C′B′的邻补角的平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)由(1)(2)两题可知∠BOC与∠B′O′C′有怎样的数量关系?若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?请说明理由.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵m2≥0,∴m2+2≥2,∴点M(m2+2,﹣2)在第四象限.故选:D.2.解:一本笔记本5元,买x本共付y元,则5是常量,x、y是变量.故选:C.3.解:设点P的坐标是(x,y),∵将点P向左平移3个单位长度,再向下平移4个单位长度,可得P的对应点坐标为(x ﹣3,y﹣4),∵得到点P′的坐标是(﹣2,1),∴x﹣3=﹣2,y﹣4=1,∴x=1,y=5,∴P的坐标是(1,5),故选:A.4.解:∵(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,当x=2时,y=7≠8∴这个计算有误的函数值是8,故选:C.5.解:∵三角形的两边长分别为2、3,且x是最短边,∴3﹣2<x≤2,即1<x≤2.故选:C.6.解:∵∠1+∠2=240°,∴∠B+∠C=360°﹣(∠1+∠2)=120°,∴∠A=180°﹣(∠B+∠C)=60°,故选:B.7.解:A、作线段AB=CD,没有做出判断,不是命题;B、两直线平行,没有做出判断,不是命题;C、对顶角相等,是命题;D、连接AB,没有做出判断,不是命题;故选:C.8.解:∵BE=CE,∴BE=BC,∵S△ABC=9,∴S△ABE=S△ABC=×9=4.5.∵AD=2BD,S△ABC=9,∴S△BCD=S△ABC=×9=3,∵S△ABE﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+SS四边形BEFD)=S△ADF﹣S△CEF,即S△ADF﹣S△CEF=S△ABE﹣S△BCD=4.5﹣3=1.5.故选:C.9.解:∵一次函数y=kx+b(k,b是常数,k≠0)与正比例函数y=mx(m是常数,m≠0)的图象相交于点M(1,2),∴关于x的方程mx=kx+b的解是x=1,选项A判断正确,不符合题意;关于x的不等式mx<kx+b的解集是x<1,选项B判断错误,符合题意;当x<0时,函数y=kx+b的值比函数y=mx的值大,选项C判断正确,不符合题意;关于x,y的方程组的解是,选项D判断正确,不符合题意;故选:B.10.解:设直线AB的解析式为:y=kx+b将A(2,0)、B(0,﹣6)代入得:解得:∴直线AB的解析式为y=3x﹣6∵P(x,y)是直线AB上任意一点∴m=|3x﹣6|,n=|x|∴m+n=|3x﹣6|+|x|∴①当点P(x,y)满足x≥2时,m+n=4x﹣6≥2;②当点P(x,y)满足0<x<2时,m+n=6﹣2x,此时2<m+n<6;③当点P(x,y)满足x≤0时,m+n=6﹣4x≥6;综上,m+n≥2∴m+n的最小值为2故选:A.二.填空题(共4小题,满分20分,每小题5分)11.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.12.解:P(﹣3,2)向上平移4个单位,向左平移1个单位后,∴﹣3﹣1=﹣4,2+4=6,∴得到点的坐标是(﹣4,6),故答案为:(﹣4,6).13.解:如图,一次函数y=2x+3和y=x﹣的图象交于点A(﹣3,﹣3),则方程组的解是.故答案为﹣3,﹣3,.14.解:在△ABC中,∠C=90°,∠A=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣45°﹣90°=45°=∠A,∴△ABC为等腰直角三角形,∴a=b.又∵a2+b2=c2,即2a2=18,解得:a1=3,a2=﹣3(不符合题意,舍去),∴a的值为3.故答案为:3.三.解答题(共9小题,满分90分)15.解:(1)如图所示,△ABC即为所求.(2)A1的坐标为(2,1),B1的坐标为(0,﹣1),C1的坐标为(3,﹣2);(3)如图所示,△A1B1C1即为所求.16.解:在中,当y=0时,,∴x=6,∴点A的坐标为(6,0),∴OA=6,当x=0时,y=﹣3,∴点B的坐标为(0,﹣3),把点C(﹣4,n)代入得,∴点C的坐标为(﹣4,﹣5),过点C作CD⊥x轴于点D,则CD=5,∴.17.解:(1)由题意得,2﹣m≠0,解得m≠2;(2)由题意得,2﹣m≠0且2n﹣3=0,解得m≠2且n=.18.解:(1)设y﹣3=k(4x﹣2),把x=1,y=5代入得5﹣3=k(4×1﹣2),解得k=1,所以y﹣3=4x﹣2,所以y与x的函数关系式为y=4x+1;(2)当x=﹣2时,y=4×(﹣2)+1=﹣7;(3)当y=3时,4x+1=3,解得x=;当y=﹣3时,4x+1=﹣3,解得x=﹣1,所以直线y=4x+1到x轴距离为3的点的坐标为(,3)或(﹣1,﹣3).19.解:由图知:两函数图象的交点为(,﹣),所以待求方程组的解为.20.解:∠BOC=∠A+90°.∵如图,在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,∵BO,CO分别是∠ABC和∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠BOC+∠ABC+∠ACB=180°,又∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴∠BOC=∠A+90°,∴若∠A=n°,∠BOC=n°+90°,由此可得问题(1),(2),(3),(4)的答案,故答案为:105°,120°,130°.21.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.22.解:(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°;∵∠ABC,∠ACB的平分线相交于点O,∴∠1+∠2=(∠ABC+∠ACB)=70°,∴∠BOC=180°﹣70°=110°.(2)∵∠A'=40°,∠D'B'C'=∠A'+∠A'C'B',∠E'C'B'=∠A'+∠A'B'C',∴∠D'B'C'+∠E'C'B'=∠A'+∠A'C'B'+∠A'+∠A'B'C'=180°+40°=220°;∵∠ABC,∠ACB的平分线相交于点O,∴∠1+∠2=(∠D'B'C'+∠E'C'B')=110°,∴∠B'O'C'=180°﹣110°=70°.(3)由(1)(2)两题可知∠BOC与∠B′O′C′的数量关系为,∠BOC+∠B'O'C'=180°,当∠A=∠A′=n°时,∠BOC+∠B'O'C'=180°,理由如下:由(1)知,∠BOC=180°﹣(∠1+∠2),∠1+∠2=(∠ABC+∠ACB),∴∠BOC=180°﹣(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠BOC=180°﹣(180°﹣∠A)=90°+∠A=90°+n°,由(1)知,∠B'O'C'=180°﹣(∠1+∠2),∠1+∠2=(∠D'B'C'+∠E'C'B'),∴∠B'O'C'=180°﹣(∠D'B'C'+∠E'C'B'),又∵∠D'B'C'+∠E'C'B'=∠A'+∠A'C'B'+∠A'+∠A'B'C'=180°+∠A',∴∠B'O'C'=180°﹣(180°+∠A')=90°﹣∠A'=90°﹣n°,∴∠BOC+∠B'O'C'=90°+n°+90°﹣n°=180°,∴当∠A=∠A′=n°时,∠BOC+∠B′O′C′=180°.23.解:(1)由题意得,解得0<k<2,∴k的取值范围是0<k<2;(2)依题意,得k=a,∴y2=kx﹣k+1,∵对任意实数x,y1<y2都成立,∴2k﹣4<﹣k+1,解得k<,∵0<k<2,∴k的取值范围是0<k.。

八年级上册数学复习题带答案

八年级上册数学复习题带答案

八年级上册数学复习题带答案课后及时的做复习题可以极大程度的积累八年级数学上册的知识。

下面给大家分享一些八年级上册数学的复习题带答案,大家快来跟一起欣赏吧。

八年级上册数学复习题一、选择题(每题3分,共30分)1.如图,下列图案中是轴对称图形的是( )A.(1)、(2)B.(1)、(3)C.(1)、(4)D.(2)、(3)2.在3.14、、、、、0.2020020002这六个数中,无理数有( )A.1个B.2个C.3个D.4个3.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为( )A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)4. 已知正比例函数y=kx (k 0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是下列选项中的( )5.根据下列已知条件,能唯一画出△ABC的是( )A.AB=5,BC=3,AC=8B.AB=4,BC=3,A=30C. A=60 ,B=45 ,AB=4D. C=90 ,AB=66.已知等腰三角形的一个内角等于50 ,则该三角形的一个底角的余角是( )A.25B.40 或30C.25 或40D.507.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是( )A B C D8.设0A. B. C.k D.9.下列命题①如果a、b、c为一组勾股数,那么3a、4b、5c 仍是勾股数;②含有30 角的直角三角形的三边长之比是3∶4∶5;③如果一个三角形的三边是,,,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(c a = b),那么a2∶b2∶c2=1∶1∶2;⑤无限小数是无理数。

其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图所示,函数y1=|x|和y2= x+ 的图象相交于(-1,1),(2,2)两点,当y1 y2时,x的取值范围是( )A.x -1B.-1C.x 2D.x -1或x 2二、填空题(每空3分,共24分)11. =_________ 。

初二(上)数学复习《勾股定理》解答题专练(含解析)

初二(上)数学复习《勾股定理》解答题专练(含解析)

初二(上)数学复习《勾股定理》解答题专练1.(2017秋•常熟一中期中)如图所示,OA⊥OB,OA=45cm,OB=15cm,一机器人在B 处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点C处截住了小球,求机器人行走的路程BC.2.(2018秋•吴江区期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC 的长.3.(2018秋•吴江区期中)如图,在△ABC中,AB=4,BC=5,AC=3,动点P从点C出发,沿着CB运动,速度为每秒1个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:(1)求BC上的高;(2)当t为何值时,△ACP为等腰三角形?4.(2018秋•相城区期中)如图,矩形ABCD中,AB=8cm,BC=16cm如果将该矩形沿对角线BD折叠,求图中阴影部分的面积.5.(2018秋•太仓市期中)如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?6.(2018秋•太仓市期中)如图,在Rt△ABC中,∠ACB=90°,AB=2,BC=2,点D 为斜边AB的中点,连接CD,将△BCD沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,使点A与点E重合,求折痕DF的长.7.(2018秋•高新区期中)如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.8.(2018秋•高新区期中/13年苏州期末)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)9.(2018秋•高新区期中)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P 从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.10.(2016秋•工业园区期中)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.11.(2017秋•苏州期中)已知:如图,在四边形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.(1)求证:AB⊥BC.(2)若AB=5CD,AD=21,求四边形ABCD的周长.12.(2016秋•相城区期中)如图,在四边形ABCD中,∠BAD=∠DBC=90°,若AD=4cm,AB=3cm,BC=12cm,求CD的长及四边形ABCD的面积.13.(2016秋•相城区期中)已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点(1)求证:△ACE≌△ABD;(2)求证:DE2=BD2+CD2.14.(2017秋•高新区期中)如图,在直角坐标系中,长方形纸片ABCD的边AB∥CO,点B 坐标为(8,4),若把图形按如图所示折叠,使B、D两点重合,折痕为EF.(1)求证:△DEF为等腰三角形;(2)求折痕EF的长.答案与解析1.(2017秋•常熟一中期中)如图所示,OA⊥OB,OA=45cm,OB=15cm,一机器人在B 处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点C处截住了小球,求机器人行走的路程BC.【分析】小球滚动的速度与机器人行走的速度相等,运动时间相等,得出BC=AC,由勾股定理可求得BC的长.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,即BC=CA,设AC为x,则OC=(45﹣x),由勾股定理可知OB2+OC2=BC2,又∵OA=45,OB=15,把它代入关系式152+(45﹣x)2=x2,解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.【点评】本题考查了勾股定理的应用,理解题意找出等量关系是解题关键,再由勾股定理即可得到答案.2.(2019春•谢家集区期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.3.(2018秋•吴江区期中)如图,在△ABC中,AB=4,BC=5,AC=3,动点P从点C出发,沿着CB运动,速度为每秒1个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:(1)求BC上的高;(2)当t为何值时,△ACP为等腰三角形?【分析】(1)直接利用勾股定的逆定理得出△ABC是直角三角形,进而利用三角形面积得出答案;(2)分别利用①当AP=AC时,②当AC=CP′时,③当AP″=CP″时,结合锐角三角函数关系得出答案.【解答】解:(1)∵32+42=52,∴△ABC是直角三角形,设BC上的高为x,则×AB×AC=×BC×x,∴×3×4=×5x,解得:x=2.4,故BC边上高为2.4;(2)①当AP=AC时,过A作AD⊥BC,则CD=DP,∵cos C==,∴CD=AC cos C=3×=,∴CP=2CD=,∵P的速度为每秒1个单位,∴t=;②当AC=CP′时,∵AC=3,∴CP′=3,∴t=3;③当AP″=CP″时,过P″作P″E⊥AC,∵AC=3,AP″=CP″,∴EC=1.5,∵CP″===2.5,则t=2.5.综上所述:t=s或3s或2.5s.【点评】此题主要考查了勾股定定理以及逆定理、锐角三角函数关系,正确利用分类讨论求解是解题关键.4.(2018秋•相城区期中)如图,矩形ABCD中,AB=8cm,BC=16cm如果将该矩形沿对角线BD折叠,求图中阴影部分的面积.【分析】根据轴对称的性质及矩形的性质就可以得出BE=DE,由勾股定理就可以得出DE的值,由三角形的面积公式就可以求出结论.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8cm,BC=AD=16cm,AD∥BC,∠A=90°,∴∠EDB=∠CBD.∵折叠∴△CBD≌△C′BD,∴∠EBD=∠CBD,∴∠EBD=∠EDB,∴BE=DE.设DE为x,则AE=16﹣x,BE=x,由勾股定理,得AB2+AE2=BE2.∴64+(16﹣DE)2=DE2.∴DE=10∴图中阴影部分的面积=×DE×AB=40(cm2)【点评】本题考查了轴对称的性质的运用,矩形的性质的运用,勾股定理的运用,解答时运用轴对称的性质求解是关键.5.(2018秋•太仓市期中)如图,有一公路AB和一铁路CD在点A处交汇,且∠BAD=30°,在公路的点P处有一所学校(学校看作点P,点P与公路AB的距离忽略不计),AP=320米,火车行驶时,火车周围200米以内会受到噪音的影响,现有一列动车在铁路CD上沿AD方向行驶,该动车车身长200米,动车的速度为180千米/时,那么在该动车行驶过程中.(1)学校P是否会受到噪声的影响?说明理由;(2)如果受噪声影响,那么学校P受影响的时间为多少秒?【分析】(1)如图作PH⊥CD于H.求出PH与200比较即可;(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,求出EF的长即可解决问题;【解答】解:(1)如图作PH⊥CD于H.在Rt△APH中,∵∠P AH=30°,P A=320m,∴PH=P A=160m,∵160<200,∴学校P会受到噪声的影响.(2)当PE=PF=200时,动车在线段EF上时,受噪声影响,∵EF=2FH==240m,180千米/时=50米/秒∵=8.8秒,答:学校P受影响的时间为8.8秒.【点评】本题考查勾股定理、解直角三角形、路程、速度.时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,注意统一单位.6.(2018秋•太仓市期中)如图,在Rt△ABC中,∠ACB=90°,AB=2,BC=2,点D 为斜边AB的中点,连接CD,将△BCD沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,使点A与点E重合,求折痕DF的长.【分析】只要证明△CDF∽△ACB,可得=,由此求出DF即可;【解答】解:在Rt△ACB中,∵AB=2,BC=2,∠ACB=90°,∴AC==4,∵AD=DB,∴CD=DA=DB=,∴∠DCA=∠A,∵∠CDB=∠CDE,∠FDE=∠FDA,∴∠CDF=90°,∴∠CDF=∠ACB,∴△CDF∽△ACB,∴=,∴=,∴DF=.(方法二:设AF=EF=x,在Rt△CEF中,利用勾股定理求出x,再在Rt△DCF中,求出DF即可)【点评】本题考查翻折变换、直角三角形斜边中线的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题.7.(2018春•花都区期末)如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.【分析】(1)由AD⊥BC可得出∠ADB=90°,在Rt△ABD中,利用勾股定理即可求出AD的长;(2)由AD⊥BC、∠ACD=45°可得出△ACD为等腰直角三角形,结合AD的长度可得出CD、AC的长度,再利用周长的定理即可求出△ABC的周长.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,∴C△ABC=AB+BD+CD+AC=24+6.【点评】本题考查了勾股定理、等腰直角三角形以及三角形的周长,解题的关键是:(1)在Rt△ABD中利用勾股定理求出AD的长;(2)根据等腰直角三角形的性质求出CD、AC的长.8.(2015秋•宝山区期末)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)【分析】(1)连接FD,根据三角形中线的定义求出CD、CE,再根据三角形的中位线平行于第三边并且等于第三边的一半可得FD=AC,然后分别利用勾股定理列式求出AD2、CF2、BE2即可得证;(2)设两直角边分别为a、b,根据(1)的思路求出AD2、CF2、BE2,再根据勾股定理列出方程表示出a、b的关系,然后用a表示出AD、CF、BE,再进行判断即可.【解答】(1)证明:如图,连接FD,∵AD、BE、CF分别是三边上的中线,∴CD=BC=,CE=AC=,FD=AC=,由勾股定理得,AD2=AC2+CD2=12+()2=,CF2=CD2+FD2=()2+()2=,BE2=BC2+CE2=()2+()2=,∵+=,∴AD2+CF2=BE2;(2)解:设两直角边分别为a、b,∵AD、BE、CF分别是三边上的中线,∴CD=a,CE=b,FD=AC=a,由勾股定理得,AD2=AC2+CD2=b2+(a)2=a2+b2,CF2=CD2+FD2=(a)2+(b)2=a2+b2,BE2=BC2+CE2=a2+(b)2=a2+b2,不妨设:AD2+CF2=BE2,∴a2+b2+a2+b2=a2+b2,整理得,a2=2b2,∴AD=b,CF=b,BE=b,∴CF:AD:BE=1::,∵没有整数是和的倍数,∴不存在这样的Rt△ABC.当CF2+BE2=AD2时,同法可证.CF显然不能作为斜边,此种情形不存在.综上所述,不存在这样的Rt△ABC.【点评】本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,用两条直角边分别表示出三条中线的平方是解题的关键,也是本题的难点.9.(2017秋•连云区期末)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P 从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得P A=PB,此时P A=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得P A=PB,此时P A=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,P A=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,CP=2t,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.10.(2017秋•东台市期中)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【分析】(1)由题意得,我渔政船与不明船只行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)利用第(1)题中的BC=AC设BC=x海里,则AC=x海里.在直角三角形BOC 中,BC=x海里、OC=(45﹣x)海里,利用勾股定理列出方程152+(45﹣x)2=x2,解得即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45﹣x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.【点评】本题考查了线段的垂直平分线的性质以及勾股定理的应用,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.11.(2017秋•苏州期中)已知:如图,在四边形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.(1)求证:AB⊥BC.(2)若AB=5CD,AD=21,求四边形ABCD的周长.【分析】(1)理由勾股定理的逆定理证明∠ABC=90°即可;(2)设CD=k,则AB=BC=5k,由∠ABC=90°,可得AC2=50k2,在Rt△ACD中,根据AC2=CD2+AD2,构建方程即可解决问题;【解答】(1)证明:连接AC.∵CD⊥AD,∴AD2+CD2=AC2,∵AD2+CD2=2AB2,AB=BC,∴AC2=AB2+BC2,∴∠ABC=90°,∴AB⊥BC.(2)设CD=k,则AB=BC=5k,∵∠ABC=90°,∴AC2=50k2,在Rt△ACD中,∵AC2=CD2+AD2,∴50k2=212+k2,∴k=3,∴CD=3,AB=BC=15,∴四边形ABCD的周长=AB+BC+AD+CD=54.【点评】本题考查勾股定理以及逆定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.12.(2016秋•相城区期中)如图,在四边形ABCD中,∠BAD=∠DBC=90°,若AD=4cm,AB=3cm,BC=12cm,求CD的长及四边形ABCD的面积.【分析】先根据勾股定理求出BD的长度,然后可根据勾股定理求出CD的长度,分别求出△ABD和△BCD的面积,即可求得四边形ABCD的面积.【解答】解:在Rt△ABD中,BD===5(cm),在Rt△BCD中,CD===13(cm),S四边形ABCD=S△ABD+S△BCD=×3×4+×5×12=36(cm2),即四边形ABCD的面积为36cm2.【点评】本题考查了勾股定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.(2016秋•相城区期中)已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点(1)求证:△ACE≌△ABD;(2)求证:DE2=BD2+CD2.【分析】(1)易证∠EAC=∠DAB,即可证明△ACE≌△ABD;(2)根据(1)中结论可得EC=BD,∠ACE=∠B=45°,即可求得∠ECD=90°,易求得BC得长,即可求得EC的长,在Rt△ECD中,根据勾股定理即可求得DE的长.【解答】(1)证明:∵∠EAC+∠CAD=∠EAD=90°,∠CAD+∠DAB=∠BAC=90°,∴∠EAC=∠DAB,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS);(2)∵△ACE≌△ABD,∴EC=BD,∠ACE=∠B=45°,∴∠ECD=∠ACE+∠ACB=90°,∵等腰直角△ABC中,AC=BC,∴EC=BD=BC﹣CD,∴在Rt△ECD中,DE2=BD2+CD2【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△ACE≌△ABD是解题的关键.14.(2017秋•高新区期中)如图,在直角坐标系中,长方形纸片ABCD的边AB∥CO,点B 坐标为(8,4),若把图形按如图所示折叠,使B、D两点重合,折痕为EF.(1)求证:△DEF为等腰三角形;(2)求折痕EF的长.【分析】(1)由四边形ABCD是矩形,可得AB∥OC,又由折叠的性质可得:∠BEF=∠OEF,即可证得∠OEF=∠OFE,则可得OE=OF;(2)首先设BE=OE=x,则AE=9﹣x,可得方程(8﹣x)2+32=x2,继而求得点E,F 的坐标,即可求得折痕EF的长.【解答】解:(1)∵四边形ABCD是矩形,∴AB∥OC,∴∠BEF=∠OFE,由折叠的性质可得:∠BEF=∠OEF,∴∠OEF=∠OFE,∴OE=OF,∴△DEF是等腰三角形;(2)设BE=OE=x,则AE=8﹣x,在Rt△AEO中,AE2+OA2=OE2,∴(8﹣x)2+42=x2,解得:x=5,∴OF=OE=5,AE=OG=3,∴E(3,4),F(5,0),∴EF==2.【点评】本题考查了翻折变换的性质,等腰三角形的判定与性质,熟记性质并利用勾股定理列出方程是解题的关键.。

人教八年级数学上册期末复习:基础题训练(含解析)

人教八年级数学上册期末复习:基础题训练(含解析)

2022-2023学年人教版八年级数学期末复习基础题训练一、单选题1.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm3.如图,直线m n ∥,1100∠=︒,230∠=︒,则3∠=( )A .70︒B .110︒C .130︒D .150︒4.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,这两个三角形完全一样的依据是( )A .SASB .ASAC .AASD .SSS6.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90B .120C .135D .1807.如图,在△ABD 中,AD =AB ,△DAB =90°,在△ACE 中,AC =AE ,△EAC =90°,CD ,BE 相交于A .4个B .3个C .2个D .1个8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .79.如图,将一个长方形纸条折成如图的形状,若已知△1=110°,则△2为( )A .105°B .110°C .55°D .130°10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD BE ∥,150∠=︒,则2∠的度数是( )A .40︒B .80︒C .90︒D .100︒11.下列运算正确的是( )A .23a a a +=B .()3322a a =C .32a a a ÷=D .23·a a a12.如图所示,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b -=- 13.若多项式21x ax --可分解为()()2x x b -+,则a b +的值为( )A .—2B .—1C .1D .214.化简22222a b a ab b --+的结果是:( ) A .2a b ab- B .a b a b +- C .a b a b -+ D .2a b ab+ 15.把分式+x x y 中的x ,y 都扩大2倍,则分式的值( ) A .扩大2倍 B .扩大4倍 C .缩小一半 D .不变16.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶12千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .304012x x =+B .304012x x =+C .304012x x =-D .304012x x =- 二、填空题17.等腰三角形一边长为5,另一边长为7,则周长为__________.18.如图,△ABC 中,△A =40°,△B =72°,CE 平分△ACB ,CD △AB 于D ,DF △CE ,则△CDF =_________度.19.如图是两个全等的三角形,图中字母表示三角形的边长,则1∠的度数为 __.20.如图,四边形ABCD ,连接BD ,AB △AD ,CE △BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.21.等腰三角形有一个内角为50︒,那么它的顶角的度数为 _____.22.如图,在ABC ∆中,,AB AC 的垂直平分线分别交BC 于点E 、F . 若130BAC ∠=︒则EAF ∠=___________.23.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为_____.24.分解因式:x 2﹣5x ﹣6=_____.25.若分式242a a -+的值为0,则a 的值为______. 26.若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 三、解答题27.一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数.28.解下列方程: (1)122x x =-; (2)127133x x x--=--29.先化简,再求值:2()(2)(2)x y y x y x --+-,其中=1x -,8y =.30.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(1)若△ABC =30°,△ACB =60°,求△DAE 的度数;(2)写出△DAE 与△C ﹣△B 的数量关系 ,并证明你的结论.31.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接,BE BE 平分,ABC AC ∠平分BCF ∠,求A ∠的度数.32.如图,在ABC 中,AB AC =,36A ∠=︒,CD 平分ACB ∠,交AB 于点D ,E 为AC 中点.(1)求证:ACD是等腰三角形;(2)求EDC的度数.参考答案1.B解:设多边形的边数为n .根据题意得:(n −2)×180°=360°,解得:n =4.故选:B .2.C设第三边的长为x ,△ 角形的两边长分别为5cm 和8cm ,△3cm <x <13cm,故选C .3.C设△1的同位角为为△4,△2的对顶角为△5,如图,△m n ∥,△1=100°,△△1=△4=100°,△△2=30°,△2与△5互为对顶角,△△5=△2=30°,△△3=△4+△5=100°+30°=130°,故选:C .4.A以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km , 故选:A .5.B解:由题意得,有两角以及两角的夹边是已知, 因此可以利用ASA 画出一个全等的三角形, 故选:B .6.D解:如图所示:△图中是三个全等三角形,△48,67∠=∠∠=∠,又△三角形ABC 的外角和123456360︒=∠+∠+∠+∠+∠+∠=, 又578180︒∠+∠+∠=,即564180∠+∠+∠=︒, △123360180018︒︒∠+∠+=∠=-︒,故选:D .7.B△90DAB EAC ∠=∠=︒△DAB BAC EAC BAC ∠+∠=∠+∠△在DAC △和BAE 中===AD AB DAC BAE AE AC ∠∠⎧⎪⎨⎪⎩△DAC BAE ≅△DC BE =,①正确ADF ABE ∠=∠△AB ,AE 不确定相等△ABE ∠和AEB ∠不确定相等 △ABD △和ACE △是等腰直角三角形 △45ADB AEC ∠=∠=︒△45BDC ADC ∠=︒-∠,45BEC AEB ∠=︒-∠ △BDC ∠和BEC ∠不确定相等,②错误 △ADF ABE ∠=∠,AOD BOF ∠=∠,90DAB ∠=︒ △90ADF AOD ∠+∠=︒△90ABE BOF ∠+∠=︒△DC BE ⊥,③正确过点AM DC ⊥于点M ,AN BE ⊥于点N △DAC BAE ≅△=AM AN△AF 平分DFE ∠,④正确△①③④正确故选:B .8.D解:△A (-2,5),AD △x 轴, △AD =5,OD =2,△△ABO 为等腰直角三角形, △OA =BO ,△AOB =90°,△△AOD +△DAO =△AOD +△BOE =90°, △△DAO =△BOE ,在△ADO 和△OEB 中,DAO BOE ADO OEB OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADO △△OEB (AAS ),△AD =OE =5,OD =BE =2,△DE =OD +OE =5+2=7.故选:D .9.C解:如图,△纸条的两边互相平行,△△1+△3=180°,△△1=110°,△△3=180°−△1=180°−110°=70°, 根据翻折的性质得,2△2+△3=180°,△△2=()118070552⨯︒-︒=︒, 故选:C .10.B解:延长BC 至G ,如下图所示,由题意得,AF △BE ,AD △BC , △AF∥BE ,△△1=△3.△AD∥BC ,△△3=△4,△△4=△1=50°.△CD∥BE ,△△6=△4=50°.△这条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,△△5=△6=50°,△△2=180°-△5-△6=180°-50°-50°=80°.故选:B .11.C解:A 、a 和2a 不是同类项,无法合并,故本选项错误,不符合题意; B 、()3328a a =,故本选项错误,不符合题意;C 、32a a a ÷=,故本选项正确,符合题意;D 、23a a a -=-,故本选项错误,不符合题意;故选:C12.A解:左边图形的阴影部分的面积=a 2-b 2 右边的图形的面积1222b a a b=(a +b )(a -b ).△()()22a b a b a b -=+-, 故选:A .13.D解:△(x -2)(x +b )=x 2+bx -2x -2b =x 2+(b -2)x -2b =x 2-ax -1,△b -2=-a ,-2b =-1,△b =0.5,a =1.5,△a +b =2.故选:D .14.B解:22222a b a ab b--+()()()2a b a b a b -+=- a b a b +=- 故选:B15.D 解:()22222x x x x x y x y x y x y===++++, 故选:D .16.A解:设甲车的速度为x 千米/小时,则乙车的速度为()12x +千米/小时,由题意得: 304012x x =+ 故选:A .17.17或19△7-5<第三边<7+5,△2<第三边<12,△该三角形是等腰三角形,△第三边为5或7,△周长为5+5+7=17或5+7+7=19,故答案为:17或19.18.74解:△△A =40°,△B =72°,△△ACB =180°-40°-72°=68°,△CE 平分△ACB ,△△BCE =12△ACB =12×68°=34°,△CD △AB 于D ,△△BCD +△B =90°,△△BCD =90°-△B =90°-72°=18°,△△DCE =△BCE -△BCD =34°-18°=16°,△DF △CE ,△△CFD =90°,△△DCF +△CDF =90°,△△CDF =90°-△DCF =90°-16°=74°,故答案为:74.19.70︒或60︒解:如图所示,由三角形内角和定理得,2=1805060=70∠--︒︒︒︒,两个三角形全等,1=2=70∴∠∠︒,或160∠=︒,故答案为:70︒或60︒.20.2 解: AB △AD ,CE △BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD =⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:221.50︒或80︒解:当50︒角为顶角,顶角度数即为50︒;当50︒为底角时,顶角18025080=︒-⨯︒=︒.故答案为:50︒或80︒.22.80︒解:△在ABC ∆中,,AB AC 的垂直平分线分别交BC 于E 、F , △,AE BE AF CF ==,△B BAE ∠=∠,C CAF ∠=∠,△130BAC ∠=︒,△18050B C BAC ︒︒∠+∠=-∠=,△50BAE CAF ︒∠+∠=,△()EAF BAC BAE CAF ∠=∠-∠+∠1305080︒︒︒=-=.故答案为:80︒.23.70解:△长宽分别为a ,b 的长方形的周长为14,面积为10, △a +b =7,ab =10,△()2210770a b ab ab a b +=+=⨯=.故答案为70.24.()()61x x -+解:x 2﹣5x ﹣6()()61x x =-+故答案为:()()61x x -+25.2解;△分式242a a -+的值为0, △24020a a ⎧-=⎨+≠⎩, △2a =,故答案为;2.26.2m >且3m ≠-解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.27.解:设这个多边形的边数是n ,依题意得(2)1803360180n ︒︒︒-⨯=⨯-,261n -=-,7n =.△这个多边形的边数是7.28.(1)解;122x x=- 两边同时乘以()2x x -得:()22x x =-,去括号得:24x x =-,移项得:24x x -=-,合并同类项得:4x -=-,系数化为1得;4x =,经检验,4x =是原方程的解,△原方程的解为4x =;(2)解;127133x x x--=-- 两边同时乘以3x -得:()()1327x x --=--,去括号得:1327x x -+=-+,移项得:2713x x -+=--,合并同类项得:3x =,经检验,3x =不是原方程的解,△原方程无解.29.解:2()(2)(2)x y y x y x --+-,2222(2)(4)x xy y y x =-+--252x xy =-,1x =-,8y =.∴原式5121821=⨯+⨯⨯=.30.解:(1)△△B +△C +△BAC =180°,△ABC =30°,△ACB =60°, △△BAC =180°﹣30°﹣60°=90°.△AE 是△ABC 的角平分线,△△BAE =12 △BAC =45°.△△AEC 为△ABE 的外角,△△AEC =△B +△BAE =30°+45°=75°.△AD 是△ABC 的高,△△ADE =90°.△△DAE =90°﹣△AEC =90°﹣75°=15°.(2)由(1)知,△DAE =90°﹣△AEC =90°﹣(12B BAC∠+∠ )又△△BAC =180°﹣△B ﹣△C .△△DAE =90°﹣△B ﹣12(180°﹣△B ﹣△C ),=12(△C ﹣△B ).31.(1)证明:△E 为AC 中点,△AE CE =,在ADE 和CFE 中,AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩,△ADE CFE ≌,△A ECF ∠=∠,△CF AB ∥;(2)解:由(1)得:A ECF ∠=∠,△AC 平分BCF ∠,△ACB ECF ∠=∠,△ACB A ∠=∠,△50ABC ∠=︒,△()1180652A ABC ∠=︒-∠=︒ 32.(1)△36AB AC A ∠==︒,, △72ACB B ∠∠==︒. △CD 平分ACB ∠, △36ACD DCB ∠∠==︒,36A ∠=︒, △CD AD =,即ACD 是等腰三角形; (2)△点E 是AC 的中点, △AE EC =,△90DEC ∠=︒,△90903654BDE ACD ∠∠=︒-=︒-︒=︒.。

八年级数学上册习题大全

八年级数学上册习题大全

第一章一、填空题(每小题3分,共27分) 1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI _一定全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI __全等.(填“一定”或“不一定”或“一定不”) 2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =__.3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =____. 4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“__”.5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是 _ . 6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角____.7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离."你认为甲的话正确吗?答:____.9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为__. 二、选择题(每小题3分,共24分) 1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF = B .AE AF = C .△APE ≌△APF D .AP PE PF =+2.下列说法中:①如果两个三角形可以依据“AAS"来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等 5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( ) A .5对 B .4对 C .3对 D .2对A D EC B 图1 AD E C B 图2A D O CB 图3 A DO C B 图4 A D C B 图5ADC B 图6E A D C B 图7E FADCB图8 E F A D OC B 图9A DE C B 图10F G A EC 图11B A ′ E ′D7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 三、解答题 (本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和O C 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.3.(本题11分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE CG =;②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?4.(本题12分)填空,完成下列证明过程. 如图14,ABC △中,∠B =∠C ,D,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF . 证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中,∠______=∠______(已证),______=______(已知),∠B =∠C (已知),∴EBD FCE △≌△( ). ∴ED =EF ( ).5.(本题13分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.(本题15分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2 的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.A D E CB 图12 F AD E C B图13 F G A D E C B图14 F图15A DEC B图16 A ′ 21ABDEFA轴对称一.选择题1.下列图形中,不是轴对称图形的是( ) A .H B 。

人教版 八年级上册 数学第13--14章 期末复习题(含答案)

人教版 八年级上册 数学第13--14章 期末复习题(含答案)

人教版八年级上册第13章轴对称章末综合训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,△ABC是等边三角形,D是AC的中点,DE⊥BC于点E,CE=3,则AB的长为()A.11 B.12 C.13 D.143. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°4. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-55. 如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为()A.20°B.40°C.60°D.80°6. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-737. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 108. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°9. 在平面直角坐标系中,已知在y轴与直线x=3之间有一点M(a,3).如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.110. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°二、填空题11. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD12. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.13. 如图,等腰三角形ABC的底边BC的长为6,面积是24,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为________.14. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.15. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.16. 如图,点E在等边三角形ABC的边BC上,BE=6,射线CD⊥BC于点C,P是射线CD上一动点,F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC的长为________.三、解答题17. 如图,已知△ABC中,D为BC边上一点,且AB=AC=BD,AD=CD,求∠BAC的度数.18. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.19. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.20. 如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴对称的图形是△A1B1C1,△A1B1C1关于直线l对称的图形是△A2B2C2,请直接写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.21. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级上册第13章轴对称章末综合训练-答案一、选择题1. 【答案】 C2. 【答案】B∴∠CDE=30°.∴CD=2CE=6.∵D是AC的中点,∴AC=2CD=12.∴AB=AC=12.3. 【答案】D 当∠B =55°时,可得∠C =55°,∠B =∠C ,△ABC 为等腰三角形;当∠B =40°时,可得∠C =70°=∠A ,△ABC 为等腰三角形.4. 【答案】B5. 【答案】D∵△ABC 是等边三角形,∴∠ACB =60°.∴∠α=∠ACE =∠ACB +∠BCE =60°+20°=80°.6. 【答案】C7. 【答案】C8. 【答案】C∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B =40°.∵∠ACB =180°-∠A -∠B =100°, ∴∠BCG =12∠ACB =50°.9. 【答案】D又∵点M (a ,3)到直线x=3的距离为3-a ,∴3-a=2.∴a=1.10. 【答案】A∴∠E =180°-∠EAB =180°-120°=60°.又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.二、填空题12. 【答案】(2,3)13. 【答案】11 ∵△ABC 是等腰三角形,D 是BC 边的中点, ∴AD ⊥BC.∴S △ABC =12BC·AD =12×6×AD =24,解得AD =8.∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC. ∴MC +DM =MA +DM≥AD. ∴AD 的长为MC +DM 的最小值.∴△CDM 周长的最小值=(MC +DM)+CD =AD +12BC =8+12×6=8+3=11.14. 【答案】615. 【答案】85或14 ∴特征值k=80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.16. 【答案】10如图,作点E 关于直线CD 的对称点G ,过点G 作GF ⊥AB 于点F ,交CD 于点P ,则此时EP +PF 的值最小.∵∠B =60°,∠BFG =90°,∴∠G =30°. ∵BF =7,∴BG =2BF =14.∴EG =8. ∴CE =CG =4.∴AC =BC =10.三、解答题17. 【答案】解:∵AD =CD ,∴设∠DAC =∠C =x°. ∵AB =AC =BD ,∴∠BAD =∠BDA =∠DAC +∠C =2x°, ∠B =∠C =x°.∴∠BAC =3x°.∵∠B +∠BAC +∠C =180°,∴5x =180, 解得x =36.∴∠BAC =3x°=108°.18. 【答案】解:∵∠ADB =30°+40°=70°,AB =BD , ∴∠BAD =∠ADB =70°.∴∠BAC =∠BAD +∠CAD =100°.19. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形, ∴∠CAB =∠CBA =∠C =60°. ∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°. ∴△CDM 是等边三角形. ∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF≌△EBF(ASA).∴DM=BE. ∴CD=BE.(2)∵ED⊥AC,∠CAB=∠CBA=60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF.∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.20. 【答案】解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)如图①,若0<a≤3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(x,0),可得=3,即x=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.如图②,若a>3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(m,0),可得=3,即m=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.综上,PP2的长为6.21. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练一、选择题1. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 52. 计算(x -1)2的结果是() A .x 2-x +1 B .x 2-2x +1 C .x 2-1D .2x -23. 计算(2x +1)(2x -1)的结果为( )A .4x 2-1B .2x 2-1C .4x -1D .4x 2+14. 若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .65. 下列各式中,能用完全平方公式计算的是()A .(x -y )(x +y )B .(x -y )(x -y )C .(x -y )(-x -y )D .-(x +y )(x -y )6. 下列各式中,计算正确的是()A .()222p q p q -=- B .()22222a b a ab b +=++ C .()2242121a a a +=++ D .()2222s t s st t --=-+7. 化简(-2x -3)(3-2x )的结果是( ) A .4x 2-9B .9-4x 2C .-4x 2-9D .4x 2-6x +98. 若(x +a )2=x 2+bx +25,则( )A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =109. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除10. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题11. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号)12. 若x -y =6,xy =7,则x 2+y 2的值等于________.13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 填空:()()22552516a a a b +-=-15. 课本上,公式(a -b )2=a 2-2ab +b 2是由公式(a +b )2=a 2+2ab +b 2推导得出的.已知(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4,则(a -b )4=________________.16. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题17. 计算:(41)(41)a a ---+18. 分解因式:44()()a x a x +--19. 分解因式:42231x x -+;20. 分解因式:222332154810ac cx ax c +--21. 分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】A8. 【答案】D 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】B10. 【答案】B 【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解12. 【答案】50 所以x 2+y 2=(x -y)2+2xy =62+2×7=50.13. 【答案】±314. 【答案】()()2254542516a b a b a b +-=-【解析】()()2254542516a b a b a b +-=-15. 【答案】a 4-4a 3b +6a 2b 2-4ab 3+b 4所以(a -b)4=[a +(-b)]4=a 4+4a 3(-b)+6a 2(-b)2+4a(-b)3+(-b)4=a 4-4a 3b +6a 2b 2-4ab 3+b 4.16. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】228()ax a x +【解析】442222()()()()()()a x a x a x a x a x a x ⎡⎤⎡⎤+--=+--++-⎣⎦⎣⎦[][]22()()()()()()a x a x a x a x a x a x ⎡⎤=+--++-++-⎣⎦222222(22)8()x a a x ax a x =⋅⋅+=+19. 【答案】22(15)(15)x x x x +++-【解析】42422222222312125(1)(5)(15)(15)x x x x x x x x x x x -+=++-=+-=+++-20. 【答案】22(23)(165)c x a c --【解析】222323223215481032101548ac cx ax c ac c cx ax +--=-+- 22222(165)3(516)(23)(165)c a c x c a c x a c =-+-=--21. 【答案】22x x-+(2)(3)【解析】22222222 -+--+-=+-=-+;(3)2(3)(3)(3)(6)(2)(3)x x x x x x x x。

八年级数学(人教版)年级上册学期期中复习01(试题+答案版)及答案

八年级数学(人教版)年级上册学期期中复习01(试题+答案版)及答案

八年级(上)人教版数学期中过关测试01学校:_____________班级:____________ 姓名:______________(时间:120分钟分值:120分)一、选择题(共10小题,每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A.B.C.D.2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF3.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点4.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为( )A.1260°B.1080°C.1620°D.360°6.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去7.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是( )A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短8.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( )A.B.C.D.9.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=102°,则∠EAF为( )A.38°B.40°C.24°D.44°10.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影部分面△ABC积S=( )cm2.A.1B.2C.3D.4二、填空题(共5小题,每小题3分,共15分)11.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为 .12.一个三角形的三边为2、4、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y = .13.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是 三角形.14.如图所示,∠A=∠E,AC⊥BE,AB=EF,BE=18,CF=8,则AC= .15.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数是 .三、解答题(共8小题,共75分)16.(8分)如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.(8分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.18.(9分)已知:如图,∠A=∠D=90°,AC=BD.求证:AB=CD.19.(9分)如图,在△ABC中,∠B=26°,∠BAC=30°,过点A作BC边上的高,交BC的延长线于点D,CE平分∠ACD,交AD于点E.求∠AEC的度数.20.(10分)已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:△OEF是等腰三角形.21.(10分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.22.(10分)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.23.(11分)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.参考答案一、选择题12345678910DBCDBCCBCC二、填空题11.40°或140°12.1013.钝角14.1015.60°三、解答题16.解:设这个多边形的边数为n ,根据题意,得(n ﹣2)•180=360×3+180,解得:n =9.即这个多边形的边数是9.17.解:(1)如图所示:△A 1B 1C 1即为所求,A 1(2,﹣4),B 1(3,﹣1),C 1(﹣2,1).(2)S △ABC =5×5―12×4×5―12×1×3―12×2×5=172.18.证明:连接BC ,∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形.在Rt△ABC和Rt△DCB中,BC=CBAC=DB,∴Rt△ABC≌Rt△DCB(HL).∴AB=CD.19.解:∵∠B=26°,∠BAC=30°,∴∠ACD=56°,∵CE平分∠ACD,∴∠ACE=∠ECD=28°,∵AD⊥BD,∴∠CDE=90°,∴∠AEC=∠ECD+∠D=118°.20.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF和Rt△DCE中,AB=DC BF=CE,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF是等腰三角形.21.解:(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.22.(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,∠A=∠BEC AD=BE∠ADB=∠CBE,∴△ABD≌△ECB(ASA);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.八年级(上)人教版数学期中过关测试01参考答案一、选择题12345678910DBCDBCCBCC二、填空题11.40°或140°12.1013.钝角14.1015.60°三、解答题16.解:设这个多边形的边数为n ,根据题意,得(n ﹣2)•180=360×3+180,解得:n =9.即这个多边形的边数是9.17.解:(1)如图所示:△A 1B 1C 1即为所求,A 1(2,﹣4),B 1(3,﹣1),C 1(﹣2,1).(2)S △ABC =5×5―12×4×5―12×1×3―12×2×5=172.18.证明:连接BC ,∵∠A=∠D=90°,∴△ABC和△DCB都是直角三角形.在Rt△ABC和Rt△DCB中,BC=CBAC=DB,∴Rt△ABC≌Rt△DCB(HL).∴AB=CD.19.解:∵∠B=26°,∠BAC=30°,∴∠ACD=56°,∵CE平分∠ACD,∴∠ACE=∠ECD=28°,∵AD⊥BD,∴∠CDE=90°,∴∠AEC=∠ECD+∠D=118°.20.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF和Rt△DCE中,AB=DC BF=CE,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF是等腰三角形.21.解:(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.22.(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,∠A=∠BEC AD=BE∠ADB=∠CBE,∴△ABD≌△ECB(ASA);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.。

初二数学上册必刷题试卷

初二数学上册必刷题试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √9B. 3.14C. √16D. √22. 已知a、b、c是等差数列的前三项,且a + b + c = 21,则该等差数列的公差是()A. 3B. 6C. 9D. 123. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x + 1)B. y = 1/xC. y = √(x - 2)D. y = √(x^2 - 1)4. 已知三角形ABC的边长分别为3、4、5,那么该三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形5. 在平面直角坐标系中,点P的坐标为(-2, 3),那么点P关于x轴的对称点的坐标是()A. (-2, -3)B. (2, 3)C. (2, -3)D. (-2, 3)6. 下列各式中,分式有()A. 1/2B. 3/4C. 2/3D. 5/67. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 4),那么a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 08. 下列各数中,能被3整除的是()A. 15B. 16C. 18D. 199. 在梯形ABCD中,AD平行于BC,且AD = 6cm,BC = 8cm,梯形的高为4cm,那么梯形ABCD的面积是()A. 24cm^2B. 28cm^2C. 32cm^2D. 36cm^210. 下列各图中,符合三角形内角和定理的是()A.B.C.D.二、填空题(每题5分,共50分)1. 等差数列的第四项是9,公差是2,那么该数列的第一项是______。

2. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 2),则a 的值为______。

3. 在平面直角坐标系中,点A的坐标为(3, -2),点B的坐标为(-3, 2),那么线段AB的长度是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上册数学复习题
1、如图,在∆ABC 中,AB=2,BC=4,∆ABC 的高AD 与CE 的比是 。

A A E
E D
A
B C B C D
B D C
(第1题) (第2题) (第3题)
2、如图,∠ABD=∠DBC ,∠ACD=∠DCB ,∠A=0100,∠D= 。

3、如图,CE 是∆ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,
求证:∠BAC=∠B+2∠E
4、已知一个三角形的两边长分别为3和5,则第三边的取值范围是 。

5、三角形两边长分别为4和11,第三边为3-6m ,则m 的取值范围是 。

6、若等腰三角形的两条边长分别为5cm 和10cm,则它的周长 cm 。

7、等腰三角形的两边长满足4-a +2)9(-b =0,求这个等腰三角形的周长。

8、用一条长为21cm 的细绳围成一个等腰三角形。

(1)如果腰长是底边长的3倍,那么各边的长是多少?
(2)能围成有一边长是5cm 的等腰三角形吗?为什么?
9、一个三角形的两边长分别为4cm和6cm,如果它的第三边是最短边,且是整数,
则这个三角形的周长是 cm;如果它的第三边是最长边,且是整数,则这个
三角形的周长是 cm。

10、如图,D是BC的中点,E是AC的中点,若S∆ADE=1,则S∆ABC= 。

A A A
E E
F
B D
C B C B E D
(第10题) (第11题) C (第14题)
11、如图,在∆ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S∆ABC=42
cm,那么S∆BFE的面积是________2
cm。

12、已知三角形的两边长分别是3和8,则该三角形第三边的长可能是()
A、5
B、10
C、11
D、12
13、一个等腰三角形的两边长分别是3和7,则它的周长为()
A、17
B、15
C、13
D、13或17
9,
14、如图,AB⊥BD于点B,AC⊥CD于点C,且AC与BD交于点E,若AE=5,DE=2,CD=
5则AB的长为。

15、如图,在等腰∆ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成
15和6两部分,求这个等腰三角形的腰长及底边长。

A
D
B C
16、如图,AB//CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分
线相较于点P,求证:∆EFP为直角三角形。

E
A B
P
C D
F
17、如图,在四边形ABCD中,∠A+∠D=a, ∠ABC的平分线与∠BCD的平分线交于点P,求∠P。

D
A
P
B C
18、已知在∆ABC中,∠BAC=0
100.
(1)若∠ABC, ∠ACB的平分线相较于点O,如图1所示,试求∠BOC.
(2)若∠ABC, ∠ACB的三等线分别相交于点O,
O,如图2所示,试求∠BOC。

1
(3)依次类推,若∠ABC, ∠ACB的n等分线自下而上依次相交于点O,
O,2o……
1试探求∠BOC的大小与n的关系,并判断当∠BOC=0
170时,是几等分线相交成的角。

A A
O
1
O O
B C B C
图1 图2。

相关文档
最新文档