高中数学解析几何压轴题

合集下载

高中数学解析几何小题压轴题题库题(适用培优)

高中数学解析几何小题压轴题题库题(适用培优)

解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是( ) A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是( ) A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线 ,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D .11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( ) A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为( )A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有( )条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=( )A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为( )A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B 两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为( )A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为( )①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为( )A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为( )A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB 的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为( )A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有( )组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是( )A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则( )A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点, 与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。

解析几何小题压轴题题库题(适用培优)

解析几何小题压轴题题库题(适用培优)

解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是()A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是()A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D . 11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( )A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有()条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是()A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=()A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为()A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为()A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为()①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为()A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有()组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是()A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则()A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点,与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

高中数学解析几何压轴题

高中数学解析几何压轴题

专业资料整理分享高中数学解析几何压轴题一.选择题1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B ∠PFR=∠QFR C.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1C.D.e2+15.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.156.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4xB.y2=4x(x≠0)C.y2=﹣4xD.y2=﹣4x(x≠0)9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22B.20C.18D.1611.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()A.B.(,+∞)C.D.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.8D.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4C.0或4D.0或﹣41.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则PN∥MQ,,又由双曲线第二定义可知=,3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,B C D,,,4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一2B D,∴M((的坐标代入,可得5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最由题意可得:椭圆的焦点分别是两圆(的焦点分别是两圆(6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()B C D=(+解:∵若(+)e==7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()B C D==8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足、的坐∥∥22+=1(y≠0)B+=1(y≠0)C﹣=1(y≠0)D﹣=1(y≠0)=2,根据抛物线定义可得(10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()B C D,,再利用余弦定理,即可求得|=2|=,12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()BD,+∞)解:曲线=,k′=,<k≤13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=B C=,14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()B C D,=的中点坐标是()﹣,,m=15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值根据双曲线上存在两点(﹣,,∴b=,m二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.)根据椭圆的离心率为kk'==,利用,即可求直,且经过点(的标准方程为…(,及=则有,的最小值为17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.S S S S,故.=•≤15,所以(﹣在双曲线上,所以,所以=,﹣==,则S=5.﹣=,﹣﹣的取值范围为18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.,可得:中,,所以,(﹣,(﹣:.,圆的方程为(<=ty=y=3×[+4×[=<19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.•=并与椭圆联立,利用韦达定理求﹣•=x'2+2b2﹣a2(﹣a≤x≤a),••.,=0,=+=++20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.b=,知==,,==,=+4当且仅当21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k 的取值范围..所以,得(的中垂线为,由,的中点为,即,得,,∴,④…(根据导数知识易得.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.的大小,求出)由时,轨迹是双曲线,焦点为,离心率时,轨迹是椭圆,焦点为,离心率时,轨迹是椭圆,焦点为,离心率>;b≤23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.⇒代入①即得的方程为的坐标为.的方程为,得,得,当且仅当,即,的面积的最小值为24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.则.=.又由sin60°=a,平方整理得<φ<分)=..所以•φ=θ<φ<时,θ=φ<时,点4,则..<φ<)分)= sinφ=aφ=时,点θ=φ<25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.的方程为,解得的方程为.故点,的直线方程为得,.,则,同理可得,的斜率的直线方程为,由.,得.此时,的距离为,===.面积的最大值为.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?)依题意,可知椭圆的方程为:x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有x+1∴椭圆的方程为:),=﹣=(x++,cosθ(cosθ≠0)≤x=cosθ≤,,﹣得:|AB|=|BC|=|=||==+1≥3(当且仅当,即当时,以<a≤27.如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).(1)若l经过点F,求弦长|PQ|的最小值;(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T①求证:②求的取值范围.,消去,|PQ|=,消去可取一切不相等的正数∴)==28.过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1 (1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程;(2)过点A、B分别作圆C的切线BD、AE,试求|AB|2﹣|AE|2﹣|BD|2的取值范围.,则过点的切线方程为:相切,坐标为的方程为:29.已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.(1)求弦长MN;(2)设AM=l1,AN=l2,求的取值范围.所以.所以θ=45°时,原式有最大值从而30.已知以动点P为圆心的圆与直线y=﹣相切,且与圆x2+(y﹣)2=外切.(Ⅰ)求动P的轨迹C的方程;(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.(1)求直线L斜率k的取值范围;(2)设椭圆E的方程为+=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若=0,求E离心率的范围.相切,且与圆﹣外切,建立方程,即可求动)求出直线方程代入抛物线和椭圆方程,由,则有的斜率为﹣∴|k|>∴k<﹣>﹣﹣,>恒成立,方程②的判别式,∴>)+1=><<。

专题18 解析几何(选填压轴题)(教师版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题18 解析几何(选填压轴题)(教师版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题18解析几何(选填压轴题)一、单选题1.(2021·河南高三月考(理))已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是()A.13B.12【答案】C 【详解】由题意知,()1,0F c -,()2,0F c ,直线l 为x a =-,设直线1MF ,2MF 的倾斜角分别为α,β,由椭圆的对称性,不妨设M 为第二象限的点,即(),M a t -,()0t >,则tan tc aα=-,tan tc aβ-=+.12F MF βα∠=- ,()12222222tan tan 222tan tan 1tan tan 21t t ct c c cc a c a F MF t b t b b b t c a t βαβααβ---+-∴∠=-====≤==++-+-,当且仅当2b t t=,即t b =时取等号,又12tan F MF ∠得最大值为tan 60c b =︒=c ∴=,即2223c c a =-,整理得c a =C故选:C.2.(2021·山东肥城·高三模拟预测)已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是()A.1B.C.D.2【答案】B 【详解】由题可知:22:(1)(2)2C x y -+-= ,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d ==所以AB 长度的最小值为()212d +=+,故选:B.3.(2021·丽水外国语实验学校高三期末)如图,在棱长为1的正方体1111ABCD A B C D -中,E 是线段1B C 的中点,F 是棱11A D 上的动点,P 为线段1BD 上的动点,则PE PF +的最小值是()B.12C.6D.2【答案】C 【详解】在11D C 上取点1F 使得111D F D F =,由对称性可知1PF PF =.连接1BC ,则11BC B C E = ,点P 、E 、1F 都在平面11BC D 内,且111BC C D ⊥,11=1C D ,1BC =在11Rt BC D 所在平面内,以11C D 为x 轴,1C B 为y 轴建立平面直角坐标系如图所示.则1(1,0)D,B,0,2E ⎛ ⎝⎭,所以直线1BD的方程为1x =.设点E 关于直线1BD 的对称点为(,)E m n ',则22122n m n m ⎧⎪=⎪⎪⎨⎪⎪+=⎪⎩,解得236m n ⎧=⎪⎪⎨⎪=⎪⎩,即2,36E ⎛' ⎝⎭.因此,1116PE PF PE PF PE PF E F ''+=+=+≥≥所以,当且仅当1,,E P F '三点共线且111E F C D '⊥时,PE PF +有最小值6.故选:C.4.(2021·四川成都七中高三三模(理))已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=()A.15B.25C.35D.45【详解】由双曲线方程知,12a =,b =,2c =,设2MF x =,则11MF x =+,12F F 120MF MF →→⋅=,则22(1)13x x ++=,解得2x =或-3(舍),设折叠后点1F 达到F 点,如图所示,作FA MN ⊥于A 点,易知FA ⊥平面12MF F ,1FAN F AN ≅ ,1F A MA ⊥,设1F MN α∠=,则22F MN πα∠=-,在1Rt MAF 中,13sin FA F A α==,3cos MA α=,在2MAF 中,由余弦定理知,222222222cos (3cos )423cos 2sin AF MA MF MA MF F MN ααα=+-⋅∠=+-⨯⨯29cos 6sin 24αα=-+,则2222222(3sin )9cos 6sin 24136sin 27FF AF AF αααα=+=+-+=-≥,当且仅当sin 21α=,即4πα=时,等号成立,折叠后点1F ,2F 距离最小.此时MN 为12F MF ∠的角平分线,由角平分线定理知,112232F N MF NF MF ==,则11235F N F F →→=,35λ=故选:C5.(2021·安徽师范大学附属中学高三开学考试(理))已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点,M N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是()A.当01e <<时,2πα<B.当0e <2πα>C.当12e <<23πα>1e <<时,34πα>【详解】不失一般性,设M 在x 轴上方,N 在x 轴下方,设直线AM 的斜率为1k ,倾斜角为θ,直线AN 的斜率为2k ,倾斜角为β,则210,0k k ><,,2πθπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且()0,απθβπ=-+∈.又()2121tan tan tan tan 1+tan tan 1k k k k βθαπθββθ--=-+==+.又直线AM 的方程为()1y k x a =-,由()12222y k x a x a y a ⎧=-⎨+=⎩可得22232422111(1)20a k x a k x a k a +-+-=,故42212211M a k a x a a k -⨯=+,所以3212211Ma k ax a k -=+,故122121M ak y a k -=+,同理3222221N a k ax a k -=+,故222221N ak y a k -=+,因为,,M F N 共线,故21222221323221222221221111ak ak a k a k a k a a k ac ca k a k --++=--++++,整理得到()()()()21212210a a c k k k k c a k k +-+--=即()122c ak k a a c -=+,若01e <<,()()122211c a e k k a a c a e --==++,因为()1211,011e e e -=-∈-++,21a >,故121k k >-,所以2121tan 01k k k k α-=>+,故2πα<.6.(2021·全国高三专题练习)已知过抛物线24y x =的焦点F 的直线与抛物线交于点A 、B ,若A 、B 两点在准线上的射影分别为M 、N ,线段MN 的中点为C ,则下列叙述不正确的是()A.AC BC⊥B.四边形AMCF 的面积等于AC MF ⋅C.AF BF AF BF +=⋅D.直线AC 与抛物线相切【答案】B 【详解】如图,由题意可得()1,0F ,抛物线的准线方程为1x =-.设211,4y A y ⎛⎫ ⎪⎝⎭、222,4y B y ⎛⎫⎪⎝⎭,设直线AB 的方程为1x ty =+,联立214x ty y x=+⎧⎨=⎩,可得2440y ty --=,利用根与系数的关系得124y y =-,因为线段MN 的中点为C ,所以121,2y y C +⎛⎫- ⎪⎝⎭,所以21121,42y y y CA ⎛⎫-=+ ⎪⎝⎭ ,22211,42y y y CB ⎛⎫-=+ ⎪⎝⎭ ,所以,()()2222121212121111210444162y y y y y y y yCA CB -⎛⎫⎛⎫⋅=++-=++=-+= ⎪⎪⎝⎭⎝⎭,所以,AC BC ⊥,A 选项正确;对于B 选项,因为()11,M y -,所以()12,MF y =-,所以()2112112220222y y y y y yCA MF -⋅=+-=+= ,所以AC MF ⊥,所以四边形AMCF 的面积等于12AC BF ⋅,B 选项错误;对于C 选项,根据抛物线的定义知2114y AF AM ==+,2214y BF BN ==+,所以221224y y AF BF ++=+,22222222121212121112441644y y y y y y y y AF BF ⎛⎫⎛⎫++⋅=++=++=+ ⎪⎪⎝⎭⎝⎭,所以,AF BF AF BF +=⋅,C 选项正确;对于D 选项,直线AC 的斜率为()12111212221111422224414ACy y y y y y y k y y y y ⎛⎫++ ⎪--⎝⎭====+++,抛物线24y x =在点A 处的切线方程为2114y y y k x ⎛⎫-=- ⎪⎝⎭,联立211244y y y k x y x⎧⎛⎫-=-⎪ ⎪⎨⎝⎭⎪=⎩,消去x 可得2211440ky y y ky -+-=,由题意可得()211016440k k y ky ≠⎧⎪⎨∆=--=⎪⎩,可得12ky =,即12k y =,则AC k k =.所以,直线AC 与抛物线24y x =相切,D 选项正确.故选:B.7.(2021·全国高三模拟预测(理))如图,已知双曲线()222210x y b a a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b,则双曲线的离心率为()A.53B.54C.43D.32【答案】A 【详解】设双曲线的左、右焦点分别为1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为b y x a=,可得直线2AF 的方程为()b y x c a =-,与双曲线22221(0)x yb a a b-=>>联立,可得22(2c a A c +,22()2b a c ac-,设1||AF m =,2||AF n =,由三角形的等面积法可得2211()(2)22422b b c a m n c c ac -⨯++=⨯⋅,化简可得2442c m n a c a+=--,①由双曲线的定义可得2m n a -=,②在三角形12AF F 中22()sin 2b c a n acθ-=,(θ为直线2AF 的倾斜角),由tan baθ=,22sin cos 1θθ+=,可得sin b cθ==,可得222c a n a-=,③由①②③化简可得223250c ac a --=,即为(35)()0c a c a -+=,可得35c a =,则53ce a==.故选:A.8.(2021·湖南天心·长郡中学高三二模)已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是()B.3C.2D.1【答案】B 【详解】解:A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',记d 为直线EB '与AC 之间的距离,则MT NT M TNT M N d ''+=+≥≥,由//B E D C '',d 为E 到平面ACD '的距离,因为111111333D ACE ACE V S '-=⨯⨯==⨯⨯= ,而21346D ACE E ACD V V d d ''--==⨯⨯⨯=,故3d =,故选:B.9.(2021·贵州贵阳·高三模拟预测(理))在平面内,已知动点P 与两定点,A B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB =,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =()A.12B.13C.14D.15【答案】D 【详解】如图,在平面PAB 中,作MPN MAP ∠=∠,交AB 于点N ,则MPN NAP ∠=∠,又因PNM ANP ∠=∠,所以PNM ANP ,所以2PN AN PA MN PN MP ===22,2AN MN PN =,所以22AM AN MN PN =-=.因为112AM AB ==,所以2,1PN MN ==,所以B、N 重合且2BP PN ==所以点P 落在以B 2作BH AC ⊥于H ,则222BH AB ==因为1AA ⊥面ABC ,所以1AA ⊥BH ,又因为1AA AC A = ,所以BH ⊥面11AA CC ,所以B 到面11AA CC 的距离为=2=BH BP ,所以球面与面11AA CC 相切,而122BB π=>所以球面不会与面111A B C 相交,则31142833V BP π== ,111=222222V AB BC AA ππ⨯⨯⨯=⨯⨯=三棱柱,所以2125222=33V V V πππ=-=-三棱柱,所以12V V =15.故选:D.10.(2021·吉林高三月考(理))已知双曲线C :22197x y -=的左焦点为F ,过原点的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,则14FA FB-的取值范围是()A.13,67⎡⎫-⎪⎢⎣⎭B.13,67⎡⎤-⎢⎥⎣⎦C.1,06⎡⎫-⎪⎢⎣⎭D.1,6⎡⎫-+∞⎪⎢⎣⎭【答案】B 【详解】设FA r =,则1r c a ≥-=.设双曲线的右焦点为F ',由对称性可知BF FA r '==,则26FB r a r =+=+,所以14146FA FB r r -=-+.令21463()66r f r r r r r -=-=++,[1,)r ∈+∞,则222223(412)3(2)(6)()(6)(6)r r r r f r r r r r --+-'==++,令()0f r '=得6r =,当(1,6)x ∈时,()0f r '<,()f r 单调递减;当(6,)x ∈+∞时,()0f r '>,()f r 单调递增.所以min 1()(6)6f r f ==-,又当(6,)x ∈+∞时()0f r <,所以max 3()(1)7f r f ==.故14FA FB -的取值范围是13,67⎡⎤-⎢⎥⎣⎦.故选:B.11.(2021·浙江高三月考)如图,椭圆22:143x y C +=,P 是直线4x =-上一点,过点P 作椭圆C 的两条切线PA ,PB ,直线AB 与OP 交于点M ,则sin PMB ∠的最小值是()437B.86565721032【答案】A 【详解】设11(,)A x y 若A 在椭圆的上半部分,则2314xy =-22332214144x x y x x ⎛⎫- ⎪⎝⎭'=---A 在椭圆上,2211143x y +=,111211334414x x x x y y x ===--'.∴过A 点的切线方程是11113()4x y y x x y -=--,221111343412x x y y x y +=+=,即11143x x y y+=,同理可证当A 在下半圆时,过A 的切线方程也是11143x x y y+=,A 是椭圆的左右顶点时,切线方程也是.∴无论A 在椭圆的何处,切线方程都是11143x x y y +=.设22(,)B x y ,则过B 点的切线方程是22143x x y y +=,P 在直线4x =-,设(4,)P m -,则由两切线都过P 点∴11221313y m x y m x ⎧-+=⎪⎪⎨⎪-+=⎪⎩,∴直线AB 方程是13my x -+=,易知直线AB 过定点(1,0)-,该定点为椭圆左焦点F .直线OP 方程为4m y x =-,则由134my x m y x ⎧-+=⎪⎪⎨⎪=-⎪⎩,得221212312x m m y m ⎧=-⎪⎪+⎨⎪=⎪+⎩,即22123,1212m M m m ⎛⎫- ⎪++⎝⎭,3AB k m=,4(1)3PF m m k ==----,1AB PF k k =-,∴PF AB ⊥,PF =PM =∴2sin PFPMB PM =7===≥=.当且仅当22144m m =,即m =±时等号成立.故选:A.12.(2021·吉林长春·高三模拟预测(理))已知F 是椭圆2222+1(0)x y a b a b=>>的一个焦点,若直线y kx =与椭圆相交于,A B 两点,且60AFB ∠=︒,则椭圆离心率的取值范围是()A.(1)2B.(02,C.1(0)2,D.1(1)2,【答案】A 【详解】如图设1,F F 分别为椭圆的左、右焦点,设直线y kx =与椭圆相交于,A B ,连接11,,,AF AF BF BF .根据椭圆的对称性可得:四边形1AF BF 为平行四边形.由椭圆的定义有:12,AF AF a +=12,FF c =1120F AF ∠=︒由余弦定理有:2221112cos120FF AF AF AF AF =+-⋅︒即()()2221211142AF AF c AF AF AF AF AF AF ⎛⎫+=+-⋅≥+- ⎪⎝⎭所以()221222214432AF AF c AF AFa a a⎛⎫+≥+-=-= ⎝⎭当且仅当1AF AF =时取等号,又y kx =的斜率存在,故A B ,不可能在y 轴上.所以等号不能成立,即即2234c a >,所以12e >>故选:A13.(2021·山西阳泉·高三期末(理))已知双曲线()2222100x y a b a b-=>,>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,则此双曲线的标准方程可能为()A.x 2212y -=1B.22134x y -=C.221169x y -=D.221916x y -=【答案】D 【详解】解:由题可知,1212F A F F F A →→→=-+,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,即为2221210F F F F A F F A →→→→⎛⎫+⋅ ⎛⎫-+⎪⎝ ⎭⎪⎭=⎝,可得21222F AF F →→=,即有221||||2AF F F c ==,由双曲线的定义可知122AF AF a -=,可得1||22AF a c =+,由于过F 2的直线斜率为247,所以在等腰三角形12AF F 中,2124tan 7AF F ∠=-,则217cos 25AF F ∠=-,由余弦定理得:22221744(22)cos 25222c c a c AF F c c+-+∠=-= ,化简得:35c a =,即35a c =,45b c =,可得:3:4a b =,22:9:16a b =,所以此双曲线的标准方程可能为:221916x y -=.故选:D.14.(2021·全国高三专题练习(理))已知O 为坐标原点,抛物线()220C y px p =>:上一点A 到焦点F 的距离为4,若点M 为抛物线C 准线上的动点,给出以下命题:①当MAF △为正三角形时,p 的值为2;②存在M 点,使得0MF MA -=;③若3MF FA =,则p 等于3;④OM MA +的最小值为p 等于4或12.其中正确的是()A.①③④B.②③C.①③D.②③④【答案】C 【详解】对于①,当MAF △为正三角形时,如下图所示,抛物线的准线交x 轴于N ,4AF AM MF ===,由抛物线定义可知AF AM =,则AM 与准线垂直,所以60AMF AFM ∠=∠= ,则30FMN ∠= ,所以12NF MF =,而NF p =,即122p MF ==,所以①正确;对于②,假设存在M 点,使得0MF MA -= ,即MA MF =,所以M 点为AF 的中点,由抛物线图像与性质可知,A 为抛物线上一点,F 为焦点,线段AF 在y 轴右侧,点M 在抛物线C 准线上,在y 轴左侧,因而M 不可能为AF 的中点,所以②错误;对于③,若3MF FA =,则:3:4MF MA =,作AE 垂直于准线并交于E ,准线交x 轴于N ,如下图所示:由抛物线定义可知4AE AF ==,根据相似三角形中对应线段成比例可知MF FN MAAE=,即344p =,解得3p =,所以③正确;对于④,作O 关于准线的对称点O ',连接AO '交准线于M ,作AD 垂直于准线并交于D ,作AH 垂直于x 轴并交于H ,如下图所示:根据对称性可知,此时AO '即为OM MA +的最小值,由抛物线定义可知4AD AF ==,所以A 的横坐标为42p -,代入抛物线可知22242A p y AHp ⎛⎫==- ⎪⎝⎭,OM MA AO +='的最小值为1342pO H NH O N '=+'=+,则22O O AHA H '='+,即(224241322p p p ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,化简可得216480p p -+=,即()()4120p p --=,解得4p =或12p =,当p =12时,不满足点A 到焦点F 的距离为4,所以④错误;综上所述,正确的为①③.故选:C.15.(2021·全国高三专题练习(理))关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是()A.{}5B.{}1-C.()0,1D.(){}0,11- 【答案】D 【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B ,得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m ,故此圆的圆心为(﹣m ,0),半径122x x r -==,又圆心O 1到A 的距离O 1A=,解得m =﹣1,综上:m ∈(0,1)∪{﹣1}.故选:D.16.(2021·信阳市实验高级中学高三开学考试(理))在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r=()A.12C.12-D.2【答案】D 【详解】根据抛物线的定义,点2O 到点F 的距离与到直线1AB 的距离相等,其中点2O 到点F 的距离即半径2r ,也即点2O 到面11CDD C 的距离,点2O 到直线1AB 的距离即点2O 到面11ABB A 的距离,因此球2O 内切于正方体,不妨设21r =,两个球心12O O ,和两球的切点F 均在体对角线1AC 上,两个球在平面11ABC D 处的截面如图所示,则122212AC O F r AO ===,221AF AO O F =-.又因为111AF AO O F r =+=+,因此)111r=,得12r =-所以122r r =-故选:D17.(2021·信阳市实验高级中学高三开学考试(理))过抛物线()220y px p =>的焦点F作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=()A.54B.43C.32D.2【答案】C 【详解】如图,设准线与x 轴的交点为M ,过点F 作FC AH ⊥.由抛物线定义知AF AH =,所以AHF AFH α∠=∠=,2FAH OFB πα∠=-=∠,()()cos 2cos 2MF pBF παπα==--,()()()tan tan sin 2sin 2sin 2CF CH p AF ααπαπαπα===---,所以()2tan tan tan 13tan 2tan 222AFBF αααπαα-====--.故选:C18.(2021·西工大附中分校高三模拟预测(理))设1F ,2F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点()0,2P x a 为双曲线上一点,若12PF F ∆的重心和内心的连线与x 轴垂直,则双曲线的离心率为A.2【答案】A 【详解】画出图形如图所示,设12PF F ∆的重心和内心分别为,G I ,且圆I 与12PF F ∆的三边1212,,F F PF PF 分别切于点,,M Q N ,由切线的性质可得1122||||,||||,||||PN PQ F Q F M F N F M ===.不妨设点()0,2P x a 在第一象限内,∵G 是12PF F ∆的重心,O 为12F F 的中点,∴1||||3OG OF =,∴G 点坐标为02(,33x a .由双曲线的定义可得121212||||2||||||||PF PF a F Q F N F M F M -==-=-,又12||||2F M F M c +=,∴12||,||F M c a F M c a =+=-,∴M 为双曲线的右顶点.又I 是12PF F ∆的内心,∴12IM F F ⊥.设点I 的坐标为(,)I I x y ,则I x a =.由题意得GI x ⊥轴,∴3x a =,故03x a =,∴点P 坐标为()3,2a a .∵点P 在双曲线22221(0,0)x y a b a b-=>>上,∴22222294491a a a a b b -=-=,整理得2212b a =,∴2c e a ==.故选A .19.(2021·河西·天津市新华中学高三月考)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆与C 的渐近线在第一象限的交点为P ,且122PF PF b -=.设C 的离心率为e ,则2e =A.12B.12+【答案】B 【详解】由题意12F P F P ⊥,则222212124F P F P F F c +==①,又122PF PF b -=②,2①-②得12PF PF =22a ,∵P 在渐近线上且OP c =,设A 为双曲线右顶点,如图,则PA b =,且12PA F F ⊥,由1212PF PF F F PA =得222a cb =,于是422222()a b c c c a ==-,变形为4210e e --=,解得212e =(12舍去),故选B.20.(2021·陕西西安·高新一中高三二模(理))我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知1F 、2F 是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当1260F PF ∠=时,这一对相关曲线中双曲线的离心率是C.3D.2【答案】A 【详解】设椭圆的长半轴长为1a ,椭圆的离心率为1e ,则11c e a =,11c a e =.双曲线的实半轴长为a ,双曲线的离心率为e ,c e a =,c a e=,设1PF x =,2PF y =(x >0)y >,则2222242cos60c x y xy x y xy =+-=+- ,当点P 被看作是椭圆上的点时,有()22214343c x y xy a xy =+-=-,当点P 被看作是双曲线上的点时,有24c =()224x y xy a xy -+=+,两式联立消去xy 得222143c a a =+,即222143c c c e e ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以2211134e e ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,又11e e =,所以2234e e+=,整理得42430e e -+=,解得23e =或21e =(舍去),所以e =故选A.二、多选题21.(2021·广东茂名·高三月考)已知曲线C :1x x y y +=,则下列结论正确的是()A.直线0x y +=与曲线C 没有公共点B.直线x y m +=与曲线C 最多有三个公共点C.当直线x y m +=与曲线C 有且只有两个不同公共点()111,P x y ,()222,P x y 时,12x x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭D.当直线x y m +=与曲线C 有公共点时,记公共点为()*,()i i P x y i N ∈.则1ni i x =∑的取值范围为(【答案】ACD 【详解】由题设得:曲线C 为()()()22222210,010,010,0x y x y x y x y y x x y ⎧+=≥≥⎪-=><⎨⎪-=<>⎩,A:由0x y +=是221x y -=和221y x -=的渐近线,且0x y +=与()2210,0y x y x +=≥≥没有公共点,故正确;B:由A 中的分析知:x y m +=与曲线C 最多有两个公共点,故错误;C:由图可知,若x y m +=与曲线C 有两个公共点或一个公共点,当0m <<x y m +=与曲线C 有两个公共点()111,P x y ,()222,P x y ,由对称性知,()111,P x y ,()222,P x y 关于直线y x =对称,则12y x =,∴1211x x x y =,(1)当01m <<时,120x x -∞<<.(2)当12m ≤<时,由12x x ≠,则21112112122x y x x x y +=<=.(3)当2m =l 与曲线C 只有一个公共点,不合题意.(4)当2m >0m ≤时,直线l 与曲线C 无公共点,综上可知,C 正确;D:由C 的分析,02m <<x y m +=与曲线C 有且只有两个不同公共点,则12111nii xx x x y m ==+=+=∑,即102ni i x =<∑.当2m =x y m +=与曲线C 只有一个公共点,此点为2222⎛⎫⎪ ⎪⎝⎭.此时(111222ni x x ===∑.故正确.故选:ACD.22.(2021·江苏鼓楼·南京市第二十九中学高三开学考试)已知F 为抛物线C :22y px =(0p >)的焦点,下列结论正确的是()A.抛物线2y ax =的的焦点到其准线的距离为12a.B.已知抛物线C 与直线l :4320x y p --=在第一、四象限分别交于,A B 两点,若||||AF FB λ=,则4λ=.C.过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于D ,E 两点,则四边形ADBE 面积的最小值为28p .D.若过焦点F 的直线l 与抛物线C 相交于,M N 两点,过点,M N 分别作抛物线C 的切线1l ,2l ,切线1l 与2l 相交于点P ,则点P 在定直线上.【答案】BCD【详解】A:抛物线2y ax =的的焦点到其准线的距离为12a,故A 错误;B:联立243202x y p y px--=⎧⎨=⎩,则22163440x px p -+=,解得12,28px x p ==,由题意可知25||2222p p p AF x p =+=+= ,15||2828p p p pFB x =+=+= ,故55428p p=⨯,所以4λ=,故B 正确;C:由题意可知直线1l ,2l 的斜率均存在,且不为0,设直线1:2pl x my =+,联立222p x my y px⎧=+⎪⎨⎪=⎩,则2220y pmy p --=,设两交点为()()1122,,,A x y B x y ,结合韦达定理122y y pm +=,所以()()21212221AB x x p m y y p p m =++=++=+;同理2121DE p m ⎛⎫=+ ⎪⎝⎭,所以()22111212122ADBE S AB DE p m p m ⎛⎫=⋅=⨯+⨯+ ⎪⎝⎭222122p m m ⎛⎫=++ ⎪⎝⎭222p ⎛⎫≥+ ⎪ ⎪⎝⎭28p =,当且仅当1m =±时,等号成立;所以四边形ADBE 面积的最小值为28p ,故C 正确;D:设221212,,,22y y M y N y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,不妨设120,0y y ><因为22y px =(0p >),若0y >,则y =y ',所以在点M1p y =,因此在M 处的切线方程为21112y p y y x y p ⎛⎫-=- ⎪⎝⎭,即112y p y x y =+,同理在N 处的切线方程为222y py x y =+,则112222y py x y y py x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得122y y x p=,因为直线MN 过点F ,所以122212002222y y y y p p p p --=--,即212y y p =-,所以2p x =-,故点P 在定直线2px =-上,故D 正确;故选:BCD.23.(2021·全国高三模拟预测)已知点F 为椭圆2222:1x y C a b+=(0a b >>)的左焦点,过原点O 的直线l 交椭圆于P ,Q 两点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 分别为1k ,2k ,椭圆的离心率为e ,若3PF QF =,23PFQ π∠=,则()A.4e =B.4e =C.12916k k =-D.12916k k =【答案】AC 【详解】设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFQF '为平行四边形,则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒,所以42PF PF PF a ''+==,则12PF a '=,32PF a =.由余弦定理可得()22222931122cos60244222a c PF PF PF PF a a a ''=+-⋅=+-⨯⋅⋅°,所以22716c a =,所以椭圆的离心率e ==.设()00,M x y ,()11,P x y ,则()11,Q x y --,01101y y k x x -=-,01201y y k x x +=+,所以220101011222010101y y y y y y k k x x x x x x -+-=⋅=-+-,又2200221x y a b +=,2211221x y a b +=,相减可得2220122201y y b x x a -=--.因为22716c a =,所以22916b a =,所以12916k k =-.故选:AC.24.(2021·全国高三专题练习(理))已知抛物线2:(0)C y mx m =>的焦点为(4,0)F ,直线l 经过点F 交C 于A ,B 两点,交y 轴于点P ,若2PB BF →→=,则()A.8m =B.点B 的坐标为8,3⎛ ⎝⎭C.50||3AB =D.弦AB 的中点到y 轴的距离为133【答案】CD 【详解】由于(4,0)F 得到16m =,故A 错误;抛物线方程为216y x =,过B 点作BD 垂直于y 轴,垂足为D 点,则//BD OF ,因为2PB BF →→=,所以23PB BD PFOF==,所以83BD =,即83B x =,代入抛物线方程216y x =,解得B y =B 错误;不妨取点B 的坐标为8,3⎛ ⎝⎭,所以直线AB 的方程为:4)y x =-,联立抛物线方程得到:2326480x x -+=,韦达定理可知:12263x x +=,由抛物线的弦长公式可知:12268350|38|AB x x ++=+==,故C 正确;弦AB 的中点到y 轴的距离为121323x x +=,故D 正确;故选:CD.25.(2021·江苏南通·高三模拟预测)已知双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,O 为坐标原点,圆222:5O x y a +=+,P 是双曲线C 与圆O 的一个交点,且21tan 3PF F ∠=,则下列结论中正确的有()A.双曲线CB.点1FC.21PF F ∆的面积为D.双曲线C 上任意一点到两条渐近线的距离之积为2【答案】ABD 【详解】解:∵双曲线222:105()x y C a a -=>,∴225c a =+,又圆222:5O x y a +=+,∴圆O 的半径为c ,∴12||F F 为圆O 的直径,∴122F PF π∠=,故作图如下:对于A ,∵21tan 3PF F ∠=,∴1212tan 3PF PF F PF ∠==,∴123||PF PF =,令20||()PF m m =>,则1||3PF m =,∴()22221231||0F F m m m =+=,∴12||2F F c ==,又12||22m PF PF a -==,∴双曲线C的离心率2222c e a m ===,故A 正确;对于B,由于()1,0F c -到渐近线y =的距离d ===B 正确;对于C,由离心率2e a ==得2103a =,21025533c =+=,∴122||F F c ===,∴2||m PF ==,1||3PF m ==,∴21PF F的面积为152=,故C 错误;对于D,由2103a =得双曲线C 的方程为:2211053x y -=,故其两条渐近线方程为y =0=,设(),M p q 为双曲线C 上任意一点,则2211053q p -=,即223211010p q -=①,(),M p q到两条渐近线的距离1d =,2d =,∴22123210255p q d d -====,故D 正确;故选:ABD.26.(2021·广东汕头·高三二模)已知抛物线方程为24x y =,直线:220l x y --=,点00(,)P x y 为直线l 上一动点,过点P 作抛物线的两条切线,切点为,A B ,则以下选项正确的是()A.当00x =时,直线AB 方程为1y =B.直线AB 过定点()0,1C.AB 中点轨迹为抛物线D.PAB ∆的面积的最小值为2【答案】ACD 【详解】解析:214y x =Q ,12y x '∴=,设11(,)A x y ,22(,)B x y 则1111:()2PA y y x x x -=-,即211111111222y x x x y x x y =-+=-,同理221:2PB y x x y =-,PA PB 、都过点00(,)P x y ,010102021212y x x y y x x y⎧=-⎪⎪∴⎨⎪=-⎪⎩∴直线001:2AB y x x y =-,即0012y x x y =-,当000,1x y ==-时,:1AB y =.故A 正确;00112y x =- ,01:(1)12AB y x x ∴=-+,∴直线AB 过定点(1,1),故B 错误;联立021(1)124y x x x y⎧=-+⎪⎨⎪=⎩,消去y 得2002240x x x x -+-=,1202x x x ∴+=,12024x x x ⋅=-,212002y y x x +=-+,A B ∴、中点坐标为200011(,1)22x x x -+,故其轨迹方程为211122y x x =-+,故C正确;AB ==d2001122S x x ∴=-+∴当01x =时,min 2S =,故D 正确;故选:ACD 三、填空题27.(2021·浙江高三模拟预测)设正四面体ABCD 的棱长是1,E 、F 分别是棱AD 、BC 的中点,P 是平面ABC 内的动点.当直线EF 、DP 所成的角恒为θ时,点P 的轨迹是抛物线,此时AP 的最小值是______.【详解】设点D 在底面ABC 的射影点为O ,连接OA,则132sin3OA π==,OD =以点O 为坐标原点,CB 、AO 、OD uuu r分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系,则30,3A ⎛⎫- ⎪ ⎪⎝⎭、13,026B ⎛⎫ ⎪ ⎪⎝⎭、13,26C ⎛⎫- ⎪ ⎪⎝⎭、63D ⎛⎫ ⎪ ⎪⎝⎭、360,66E ⎛⎫- ⎪ ⎪⎝⎭、30,6F ⎛⎫⎪ ⎪⎝⎭,设点(),,0P x y ,则3636EF ⎛⎫=- ⎪ ⎪⎝⎭ ,6,,3DP x y ⎛⎫= ⎪ ⎪⎝⎭,223133cos 2223y DP EFDP EFx y θ+⋅==⋅++整理可得2222121231cos 23399x y y y θ⎛⎫++=+ ⎪⎝⎭,由题意可知,方程2222121231cos 2339x y y y θ⎛⎫++=+ ⎪⎝⎭表示的曲线为抛物线,所以211cos 23θ=,故22cos 3θ=,即有2122313999x y ++,可得23326y x =,则()22222423335331344242AP x y x x x x ⎛⎫=++++=++≥ ⎪ ⎪⎝⎭当且仅当0x =时,等号成立,故AP 323228.(2021·全国高三开学考试(理))设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.【答案】2【详解】设1||(0)F B k k =>,则1||3AF k =,||4AB k =,2||23AF a k ∴=-,2||2BF a k =-.23cos 5AF B ∠= ,在2ABF 中,由余弦定理得,22222222||||||2||||cos AB AF BF AF BF AF B =+-⋅∠,2226(4)(23)(2)(23)(2)5k a k a k a k a k ∴=-+----,化简可得()(3)0a k a k +-=,而0a k +>,故3a k =,21||||3AF AF k ∴==,2||5BF k =,22222||||||BF AF AB ∴=+,12AF AF ∴⊥,∴12AF F △是等腰直角三角形,2c a ∴=,∴椭圆的离心率c e a ==,故答案为:2.29.(2021·黑龙江大庆中学高三模拟预测(理))已知圆22:1C x y +=,点(,2)M t ,若C上存在两点,A B 满足2MA AB = ,则实数t 的取值范围___________【答案】⎡⎣【详解】由题意,可得如下示意图,令(,)A x y ,由2MA AB = 知:332(,)22x t y B --,又,A B 在C 上,∴22221(3)(32)144x y x t y +=--+=⎧⎪⎨⎪⎩,整理得22221{24339x y t x y +=⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即两圆有公共点,∴两圆的圆心距离为243t d +=,半径分别为1、23,故当1533d ≤≤时符合题意,∴2021t ≤≤,即t ∈[21,21]-.故答案为:[21,21].30.(2021·全国高三专题练习(理))焦点为F 的抛物线21:4C y x =与圆()()2222:10C x y R R -+=>交于A 、B 两点,其中A 点横坐标为A x ,方程()22224,1,A A y x x x x y R x x ⎧=≤⎪⎨-+=>⎪⎩的曲线记为Γ,C 是圆2C 与x 轴的交点,O 是坐标原点.有下面的四个命题,请选出所有正确的命题:_________.①对于给定的角()0,απ∈,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠>;②对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<;③对于任意R ,该曲线有且仅有一个内接正△O P Q ;④当2021R >时,存在面积大于2021的内接正△O P Q .【答案】①②③【详解】联立抛物线与圆的方程,消去y 得22(1)4x x R -+=,即22(1)x R +=,而0R >且0x ≥,∴11R x =+≥,即A 、B 横坐标与半径R 的关系,∵抛物线与圆有两个交点,即11R x =+>,∴当2,1R x ==时,AFB πα∠=>,①正确;∵由题意知:,A B 关于x 轴对称,则对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R 使得圆弧 ACB 所对的圆心角AFB α∠<,即只需存在R 使)3AFB π∠∈(0,即可.∴令||2210sin 212A y AFB x x R R x ∠<==<,则10x x ->23x >+23x <,1、当0743x <<-AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,23x >+x →+∞时0AFB ∠→︒,故AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,∴7x >+07x <<-10sin 22AFB ∠<<即)3AFB π∠∈(0,,所以对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<,故②正确;由OP OQ =,于是PQ x ⊥轴,直线::OP y x =,同理:OQ y =,∴,OP OQ 与Γ分别都只有一个交点,即对于任意R ,该曲线有且仅有一个内接正△O P Q ,③正确;当1R =时,如下图示,抛物线1C 与圆2C 只有一个交点且交点为原点,不符合题意,但此时1||||sin 23OPQ S OP OQ π==∴当113R <≤时,,OP OQ 与Γ的交点在圆2C 上,OPQ S 会一直增大,如下图示,直到13R =,即,P Q 与A 、B 重合分别为(12,、(12,-,此时1||||sin 23OPQ S OP OQ π==∴OPQ S ∈ (4.当13R >时,,OP OQ 与Γ的交点在抛物线1C 上,R 的变化对OPQ S 没有影响,如下图示,OPQ S =∴④错误.。

高三数学解析几何压轴题训练——直线与圆

高三数学解析几何压轴题训练——直线与圆

高三数学解析几何压轴题训练——直线与圆一、选择题1.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=18,过圆心(6,6)作直线x +y -2=0的垂线,垂线所在直线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上.又(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为2,圆心坐标为(2,2),所以半径最小的圆的标准方程为(x -2)2+(y -2)2=2.2.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为C (2,1),半径r =2,因此2+a -1=0,a =-1,即A (-4,-1),|AB |=|AC |2-r 2=(2+4)2+(1+1)2-4=6.3.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512 B.⎝⎛⎦⎤13,34 C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞ 解析:选C 注意到y ≥1,曲线y =1+4-x 2是圆x 2+(y -1)2=4在直线y =1的上方部分的半圆.又直线kx -y -2k +4=0⇒y -4=k (x -2)知恒过定点A (2,4).如图,由B (-2,1),知k AB =4-12-(-2)=34,当直线与圆相切时,|-1-2k +4|k 2+(-1)2=2,解得k =512,故实数k 的取值范围是⎝⎛⎦⎤512,34.4.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6D .2解析:选B 根据约束条件画出可行域如图中阴影部分所示.设点P 到圆心的距离为d ,求|AB |的最小值等价于求d 的最大值,易知d max =12+32=10,所以|AB |min =214-10=4.5.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .100解析:选B 设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得D =-8,E =6,F =0.所以圆M 的方程为x 2+y 2-8x +6y =0, 即(x -4)2+(y +3)2=25.令y=0,得x2-8x=0,解得x=0或x=8.令x=0,得y2+6y=0,解得y=0或y=-6.所以S(8,0),T(0,-6).而圆心(4,-3)在直线ST上,所以PS⊥PT.即|PS|2+|PT|2=(2r)2=100.所以|PS|·|PT|≤12(|PS|2+|PT|2)=50.所以(|PS|·|PT|)max=50.6.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0解析:选B当直线l的斜率不存在时,直线l的方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0.7.若过点P(2,1)的直线l与圆C:x2+y2+2x-4y-7=0相交于两点A,B,且∠ACB =60°(其中C为圆心),则直线l的方程是()A.4x-3y-5=0 B.x=2或4x-3y-5=0C.4x-3y+5=0 D.x=2或4x-3y+5=0解析:选B由题意可得,圆C的圆心为C(-1,2),半径为23,因为∠ACB=60°,所以△ABC为正三角形,边长为23,所以圆心C到直线l的距离为3.若直线l的斜率不存在,则直线l的方程为x=2,与圆相交且圆心C到直线l的距离为3,满足条件;若直线l的斜率存在,不妨设l:y-1=k(x-2),则圆心C到直线l的距离d=|3k+1|k2+1=3,解得k=43,所以此时直线l 的方程为4x -3y -5=0. 8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2.当k >2时,|OA ―→+OB ―→|>33|AB ―→|.又直线与圆x 2+y 2=4有两个不同的交点,故k <22,综上,k 的取值范围为[2,22).9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0间距等于1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求的圆的半径的取值范围是(4,6).10.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 法一:(排除法)由圆心在x 轴上,可排除A 、B ,又圆过(0,1)点,故圆的半径大于1,排除D ,选C.法二:(待定系数法)设圆的方程为(x -a )2+y 2=r 2,圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43.11.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,|PO |=2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴|PO |min =|MO |-1,|PO |max =|MO |+1, ∵|MO |=a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,则l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12,则圆心到直线PQ 的距离d =|1-2k |1+k 2,又|PQ |=29-d 2,所以S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.二、填空题13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:法一:由题意,设M (2+cos θ,2+sin θ),则N (2+cos θ,-2-sin θ),将N 的坐标代入kx +y +3=0,可得sin θ-k cos θ=2k +1.因为sin θ-k cos θ=k 2+1sin(θ-φ),其中tan φ=k ,所以|2k +1|≤k 2+1,即3k 2+4k ≤0,解得-43≤k ≤0,故k 的最小值为-43. 法二:圆(x -2)2+(y -2)2=1关于x 轴对称的圆的方程为(x -2)2+(y +2)2=1. 问题转化为直线kx +y +3=0与圆(x -2)2+(y +2)2=1有公共点N . 所以|2k -2+3|k 2+1≤1,即|2k +1|≤k 2+1,解得-43≤k ≤0,故k 的最小值为-43.答案:-4314.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析:如图所示,∵直线AB 的方程为x -3y +6=0, ∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:415.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的距离为322,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2.答案:3+ 216.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两条平行直线和圆有一个,两个或三个不同的公共点,则称两条平行线和圆“相切”,已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆x 2+y 2+2x -4=0相切,则a 的取值范围是________.解析:圆的标准方程为(x +1)2+y 2=5, 圆心(-1,0),r =5,两直线分别与圆相切时对应的a 的边界值为:|-2+a 2+1|5=5时,a =±6; |a -2|5=5时,a =-3或a =7, 所以a 的边界值分别为-3,7,±6.由题意可知,两平行直线中必有一条与圆相切,另一条与圆相离,相切,相交三种情况都满足题意,故a ∈[]-3,-6∪[]6,7.答案:[]-3,-6∪[]6,7。

高考数学压轴大题解析几何

高考数学压轴大题解析几何

高考数学压轴大题-解析几何1. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.I 求双曲线C 的离心率e 的取值范围:II 设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.解:I 由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得1-a 2x 2+2a 2x -2a 2=0. ① 双曲线的离心率II 设)1,0(),,(),,(2211P y x B y x A由于x 1+x 2都是方程①的根,且1-a 2≠0,2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.Ⅰ求椭圆C 的方程;Ⅱ过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆O 为原点的面积的最大值及相应的直线l 的方程.解:Ⅰ设椭圆的长轴为2a ,a 2=+22==c =2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x Ⅱ 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -即 044)32(22=--+my y m . 由韦达定理得:∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t ∴221y y -=41448)12(482++=+tt t t .又令tt t f 14)(+=, 易知)(t f 在1,+∞上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316∴OMN S ∆ 的面积有最大值332.直线l 的方程为1-=x .3. 椭圆E 的中心在原点O,焦点在x 轴上,离心率e过点C 1,0的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ 2λ≥.Ⅰ若λ为常数,试用直线l 的斜率kk ≠0表示三角形OAB 的面积. Ⅱ若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.Ⅲ若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a ba >b >0,由e =caa 2=b 2c 2得a 2=3 b 2,故椭圆方程为x 2+3y 2= 3b 2. ① Ⅰ∵直线l :y = kx +1交椭圆于Ax 1,y 1,Bx 2,y 2两点,并且CA =BC λ λ≥2, ∴x 11,y 1 =λ1x 2,y 2, 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ②把y = kx 1代入椭圆方程,得3k 21x 26k 2x 3k 23b 2= 0, 且 k 2 3b 21b 2>0 ,∴x 1x 2= 22631k k +, ③x 1x 2=2223331k b k -+, ④∴O A B S ∆=12|y 1y 2| =12|λ1|·| y 2| =|1|2λ+·| k |·| x 21|.联立②、③得x 21=22(1)(31)k λ-+,∴O A B S ∆=11λλ+-·2||31k k + k ≠0.ⅡO AB S ∆=11λλ+-·2||31k k + =11λλ+-·113||||k k + ≤11λλ+-λ≥2. 当且仅当3| k | =1||k ,即k=,O AB S ∆取得最大值,此时x 1x 2= 1. 又∵x 11= λ x 21,∴x 1=11λ-,x 2= 1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合故此时椭圆的方程为x 2+3y 2=221(1)λλ+-λ≥2.Ⅲ由②、③联立得:x 1=22(1)(31)k λλ--+1, x 2=22(1)(31)k λ-+1,将x 1,x 2代入④,得23b =224(1)(31)k λλ-+1.由k 2=λ1得23b =24(1)(32)λλλ-- 1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1符合时,椭圆短半轴长取得最大值, 此时椭圆方程为x 2 3y 2 = 3.4. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. I 求椭圆的离心率;II 设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:I 设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得II 证明:由I 知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由I 知.21,23,23222221c b c a c x x ===+又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.5. 已知椭圆2212x y +=的左焦点为F,O 为坐标原点.I 求过点O 、F,并且与椭圆的左准线l 相切的圆的方程;II 设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G,求点G 横坐标的取值范围.解:I 222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上;设1(,),2M t -则圆半径由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=II 设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F,∴方程有两个不等实根; 记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得∴点G 横坐标的取值范围为1(,0).2-6. 已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为 I 证明线段AB 是圆C 的直径;II 当圆C 的圆心到直线X-2Y=0的距离的最小值为5时,求p 的值; I 证明1:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=设Mx,y 是以线段AB 为直径的圆上的任意一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--= 整理得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 证明2:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=12120x x y y ∴⋅+⋅= (1)设x,y 是以线段AB 为直径的圆上则 即2112211(,)y y y y x x x x x x x x --⋅=-≠≠-- 去分母得: 1212()()()()0x x x x y y y y --+--=点11122122(,),(,),(,)(,)x y x y x y x y 满足上方程,展开并将1代入得: 故线段AB 是圆C 的直径 证明3:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅= 12120x x y y ∴⋅+⋅= (1)以线段AB 为直径的圆的方程为展开并将1代入得: 221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 II 解法1:设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x-2y=0的距离为d,则当y=p 时,d=2p ∴=. 解法2: 设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =-设直线x-2y+m=0到直线x-2y=0则2m =± 因为x-2y+2=0与222y px p =-无公共点,所以当x-2y-2=0与222y px p =-仅有一个公共点时,该点到直线x-2y=0将2代入3得222220y py p p -+-= 2244(22)0p p p ∴∆=--= 解法3: 设圆C 的圆心为Cx,y,则 圆心C 到直线x-2y=0的距离为d,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅= 当122y y p +=时,d=2p ∴=.11、如图设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.1若6ED DF =,求k 的值; 2求四边形AEBF 面积的最大值. 11.Ⅰ解:依题设得椭圆的方程为2214xy +=, 直线AB EF ,的方程分别为22x y +=,(y kx k => 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中1x < 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=, 解得23k =或38k =. 6分 Ⅱ解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为. 12分解法二:由题设,1BO =,2AO =. 设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+9分===当222x y =时,上式取等号.所以S的最大值为 12分12、已知椭圆(222:13x y E a a +=>的离心率12e =. 直线x t =0t >与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .1 求椭圆E 的方程;2 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.12、1解:∵椭圆()222:133x y E a a+=>的离心率12e =, 12=. …… 2分 解得2a =. ∴ 椭圆E 的方程为22143x y +=. …… 4分 2解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分 ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即0t <<.∴弦长||AB ===. …… 8分∴ABC ∆的面积12S =⋅ …… 9分7=. …… 12分=,即7t =时,等号成立. ∴ ABC ∆. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即07t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得2y =±,∴弦长||AB =. …… 8分 ∴ABC ∆的面积12S =⋅ …… 9分7=. ……12分=,即7t=时,等号成立. ∴ABC∆.15、已知椭圆∑:12222=+byax>>ba的上顶点为)1,0(P,过∑的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆∑上,该菱形对角线BD所在直线的斜率为1-.⑴求椭圆∑的方程;⑵当直线BD过点)0,1(时,求直线AC的方程;⑶本问只作参考......,.不计入总分.....当3π=∠ABC时,求菱形ABCD面积的最大值.15、解:⑴依题意,1=b……1分,解12222=+byac……2分,得aby2||=……3分,所以122=ab,2=a……4分,椭圆∑的方程为1422=+yx……5分;⑵直线BD:1)1(1+-=-⨯-=xxy……7分,设AC:bxy+=……8分,由方程组⎪⎩⎪⎨⎧=++=1422yxbxy得0)1(24522=-++bbxx……9分,当05)1(454)2(222>-=-⨯⨯-=∆bbb时……10分,),(11yxA、),(22yxC的中点坐标为54221bxx-=+,5222121bbxxyy=++=+……12分,ABCD是菱形,所以AC的中点在BD上,所以1545+=bb……13分,解得35-=b,满足052>-=∆b,所以AC的方程为35-=xy……14分;⑶本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用因为四边形ABCD为菱形,且3π=∠ABC,所以BCACAB==,所以菱形ABCD的面积223ACS⨯=,由⑵可得2122122122122)(2)(2)()(xxxxyyxxAC+=-=-+-=222212532532)1(548)58(28bbbxx⨯-=-⨯⨯--⨯=-,因为5||<b,所以当且仅当0=b时,菱形ABCD的面积取得最大值,最大值为531653223=⨯;。

压轴题经典题-解析几何部分

压轴题经典题-解析几何部分

压轴题经典题——解析几何部分22.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。

如图,已知直线L :)0(1:12222>>=++=b a by a x C my x 过椭圆的右焦点F ,且交椭圆C 于A 、B 两点,点A 、F 、B 直线2:a x G =上的射影依次为点D 、K 、E 。

(1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线L 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(3)连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由。

22.解:(1)易知)0,1(,332F b b 又=∴=…………2分41222=+=∴=∴c b a c13422=+∴y x C 的方程为椭圆 …………4分(2))1,0(mM y l -轴交于与 0)1(144096)43(012431),(),,(222222211>+=∆=-++∴⎩⎨⎧=-++=m my y m y x my x y x B y x A 由设 321121m y y =+∴(*) …………6分1111111111),1()1,(my y x my x --=∴--=+∴=λλλ又由同理2211my --=λ…………8分38322)11(122121-=--=+--=+∴y y m λλ 3821-=+∴λλ…………10分(3))0,(),0,1(2a k F =先探索,当m=0时,直线L ⊥ox 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 中点N且)0,21(2+a N …………11分猜想:当m 变化时,AE 与BD 相交于定点)0,21(2+a N …………12分证明:设),(),,(),,(),,(12222211y a D y a E y x B y x A 当m 变化时首先AE 过定点N)0)()1()1()2(21)(21(0)21(21)(2121,21)1(0)1(40)1(2)(012222222222222222212121222121222121222222222222222222=+-⋅-=+-⋅-+-⋅-=-+-=----+-=---=---=>>-+=∆=-+++⎩⎨⎧=-++=b m a mb mb a b m a a b m b m a mb a y my y y a my a a y my y y a K K a y K my a y K a b m a b a a b y mb y m b a b a y a x b my x EN AN ENAN 这是而又即∴K AN =K EN ∴A 、N 、E 三点共线同理可得B 、N 、D 三点共线∴AE 与BD 相交于定点)0,21(2+a N …………18分22.(本小题14分)已知椭圆9x 2+2y 2=18上任意一点P ,由P 向x 轴作垂线段PQ ,垂足为Q ,点M 在线段PQ 上,且2=,点M 的轨迹为曲线E.(Ⅰ)求曲线E 的方程;(Ⅱ)若过定点F (0,2)的直线交曲线E 于不同的两点G ,H (点G 在点F ,H 之间),且满足λλ求FH =的取值范围.22.解:(I )设点P (x 0,y 0),是椭圆上一点,则Q (x 0,0),M (x ,y )由已知得:x 0=x ,y 0=3y 代入椭圆方程得9x 2+18y 2=18即x 2+2y 2=2为曲线E 的方程.……………………………………4分 (II )设G (x 1,y 1),H (x 2,y 2)当直线GH 斜率存在时,设直线GH 的斜率为k则直线GH 的方程为:y=kx+2,……………………………………5分代入x 2+2y 2=2,得:(21+k 2)x 2+4kx+3=0 由△>0,解得:k 2>23…………………………………………6分 y x y x k kx x k k x x λ=-=-=+=⋅+-=+又有分),2,(),2,(7)1(213,2142211221221222122121,)1(xx x x x x x x λλλ=⋅+=+∴=∴λλ2122221)1(x x x x x ⋅==++∴……………………………………(2) ∴将(1)代入(2)整理得:λλ22)1()211(316+=+k………………9分分且即分121,331316214,316)1(411316)211(3164,23222 ≠<<∴<++<<+<∴<+<∴>λλλλλλkk又∵0<λ<1,∴31<λ<1………………13分 当直线GH 斜率不存在时,直线GH 的方程为x 31,0== ∴λ=31 ∴所求λ的范围为31≤λ<1…………………………14分 22.(本小题满分14分)已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点.(Ⅰ)若椭圆的离心率为33,焦距为2,求线段AB 的长; (Ⅱ)若向量OA 与向量OB 互相垂直(其中O 为坐标原点),当椭圆的离心率 ]22,21[∈e 时,求椭圆的长轴长的最大值. 22.解:(Ⅰ)33,22,33===a c c e 即 2,322=-==∴c ab a 则 ∴椭圆的方程为12322=+y x …………………………………………………………2分 联立⎪⎩⎪⎨⎧+-==+112322x y y x 消去y 得:03652=--x x 设),(),,(2211y x B y x A 则53,562121-==+x x x x 2122122212214)(])1(1[)()(||x x x x y y x x AB -+-+=-+-=∴538512)56(22=+= ……………………………………………………………6分(Ⅱ)设),(),,(2211y x B y x AOB OA ⊥ 0=⋅∴OB OA ,即02121=+y y x x由⎪⎩⎪⎨⎧+-==+112222x y b y a x 消去y 得0)1(2)(223222=-+-+b a x a x b a 由0)1)((4)2(222222>-+=-=∆b b a a a 整理得122>+b a ……………8分又22222122221)1(2b a b a x x b a a x x +-=+=+1)()1)(1(21212121++-=+-+-=∴x x x x x x y y由02121=+y y x x 得:01)(22121=++-x x x x012)1(22222222=++-+-∴ba ab a b a 整理得:022222=-+b a b a ……………………………………………………10分222222e a a c a b -=-=∴代入上式得221112e a -+= )111(2122e a -+=∴ …………………………………………12分2221≤≤e21412≤≤∴e 431212≤-≤∴e 211342≤-≤∴e 3111372≤-+≤∴e 23672≤≤∴a 适合条件122>+b a 由此得26642≤≤a 62342≤≤∴a 故长轴长的最大值为6 …………………………………………………………… 14分 22.(本小题满分14分)如图,已知圆O :422=+y x 与y 轴正半轴交于点P ,A (-1,0),B (1,0),直线l 与圆O 切于点S (l 不垂直于x 轴),抛物线过A 、B 两点且以l 为准线。

高考数学函数与解析几何压轴题

高考数学函数与解析几何压轴题

函数和解析几何练习1. 已知 f (θ) = a sin θ + b cos θ,θ ∈ [ 0, π ],且1与2 cos 2 θ2 的等差中项大于1与 sin 2 θ2的等比中项的平方.求:(1) 当a = 4, b = 3时,f (θ) 的最大值及相应的 θ 值;(2) 当a > b > 0时,f (θ) 的值域.解:易得1 + 2cos 2θ22 >sin 2θ2,∴ 1 + 2cos 2θ 2 >2 sin 2θ 2 ,即2(cos 2θ 2 -sin 2θ2) > -1,∴ 2cos θ > -1,即cos θ >-12 .∵ θ ∈ [0,π ],∴θ ∈ [0, 2π3 ) . 2分(1)当a = 4,b = 3时,有f(θ ) = 4sin θ + 3cos θ = 5sin(θ + ϕ ) (其中ϕ = arctan 34 ).∵ 0≤θ <2π3,∴ϕ ≤θ + ϕ < 2π3 + ϕ ,而0<ϕ = arctan 34 <π4 .∴ 当θ + ϕ = π2 即θ = π2 -arctan 34时,f(θ )max = 5. 5分(2)由(1)知,当a>b>0时,设 ⎩⎨⎧ x = bcos θ y = asin θ, 则有 x 2b 2 + y2a 2 = 1。

∵ 0≤θ <2π3 , ∴ 0≤y ≤a , -b2 <x ≤b ,其方程表示一段椭圆弧,端点为M(b,0),N(-b 2 , 3 a2 ),但不含N 点。

7分设f(θ ) = x + y = t ,则y = -x + t 为一直线。

将y = -x + t 代入x 2b 2 + y 2a 2= 1可得(a 2 + b 2)x 2-2b 2tx + b 2(t 2-a 2) = 0。

当直线与椭圆相切时,有△ = 4b 4t 2-4b 2(a 2 + b 2)(t 2-a 2) = 4b 2[b 2t 2-(a 2 + b 2) (t 2-a 2)] = 0。

压轴题06 解析几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca=1-b 2a 2(0<e <1),双曲线的离心率e =c a=1+b 2a2(e >1).(2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α.(3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C .32D 2.过抛物线C :()220y px p =>的焦点F 的直线交抛物线C 于A ,B 两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线2y =a 的取值范围是()A .[1B .(1C .[2,1D .(14.已知抛物线22y px =的焦点为(2,0),直线4x =与该抛物线交于A ,B 两点,则||AB =()A .4B .C .8D .5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过F C 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN 的面积为,则p =()A .B .4C .D .6.已知圆22:4C x y +=,直线l 经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系22OM =+ (O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A B C .12D8.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C 的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()A.12B .3C 1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,310.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为223B .当3n m =时,曲线2EC .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l 11.已知抛物线2:4C x y =,过焦点F 的直线l 与C 交于()()1122,,,A x y B x y 两点,12,x E >与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF ∠=∠C .90AEB ∠>︒D .π22βα-<12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为y =B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF -2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2CD .32.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P 为C上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=3.若椭圆22:12x y C m +=,则椭圆C 的长轴长为()A .6BC .D .4.已知双曲线22221(0,0)x y a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x=±D .y =5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy 中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO.其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .23C 13D 157.已知椭圆1C 和双曲线2C 的焦点相同,记左、右焦点分别为1F ,2F ,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .68.古希腊数学家阿波罗尼奧斯在研究圆锥曲线时发现了椭圆的光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B .22C 3D 5二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为m y x n=B .当0n m ->>时,E 是椭圆,其离心率为1n e m=+C .当0m n =->时,E 是圆,其圆心为()0,01n-D .当0m ≠,0n =时,E 是两条直线1x m=±10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个11.已知椭圆()222:1039x y C b b+=<<的左、右焦点分别为1F 、2F ,点)3,2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C.当e =1NF NM +的最大值为6D .1211NF NF +的最小值为112.已知P ,Q 是双曲线22221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为b a○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10xy C a b a b+=>>倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.2.已知抛物线C :y 2=2px 的焦点为F (1,0),过F 的直线l 交抛物线C 于A ,B 两点,直线AO ,BO 分别与直线m :x =-2相交于M ,N 两点.(1)求抛物线C 的方程;(2)求证:△ABO 与△MNO 的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离为3(1)求双曲线C 的标准方程;(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系xOy 中,直线l 与y 轴的正半轴及x 轴的负半轴分别相交于,P Q 两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M 关于x 轴对称,延长NP 交㮋圆于点B.(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)

1. 设抛物线的焦点为,点.若线段的中点在抛物线上,则到该抛物线准线的距离为_____________。

(3分)2 .已知m>1,直线,椭圆,分别为椭圆的左、右焦点. (Ⅰ)当直线过右焦点时,求直线的方程;(Ⅱ)设直线与椭圆交于两点,,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.(6分)3已知以原点O为中心,为右焦点的双曲线C的离心率。

(I)求双曲线C的标准方程及其渐近线方程;(II)如题(20)图,已知过点的直线与过点(其中)的直线的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求的面积。

(8分)4.如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.(7分)5.在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。

设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。

(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

(6分)6.如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.(6分)7.设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)(6分)8.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.(6分)9.设F1,F2是椭圆的两个焦点,P是椭圆上的点,且|PF1| : |PF2|=2 : 1,则三角形PF1F2的面积等于______________.(3分)10.在平面直角坐标系XOY中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当取最大值时,点P的横坐标为___________________。

高考数学压轴题:平面解析几何

高考数学压轴题:平面解析几何

高考数学压轴题:平面解析几何一、解答题(共35小题)1.已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C . (Ⅰ)若1k =,且10||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且1273||,(4OP PF PF O ==为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由.3.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.4.已知椭圆2222:1(0)x y C a b a b+=>>2,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线60x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<时,求实数t 取值范围. 7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M 处的切线与椭圆相交所得弦长为57,求椭圆方程.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由. .12.(2019•秦淮区三模)如图,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,以椭圆C左顶点T为圆心作圆222:(2)(0)T x y r r++=>,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求TM TN的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:OR OS为定值.13.(2016•益阳模拟)已知以点(1,2)A-为圆心的圆与直线1:270l x y++=相切.过点(2,0)B-的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与1l相交于点P.()I求圆A的方程;(Ⅱ)当219MN=l的方程;(Ⅲ)BQ BP是否为定值,如果是,求出定值;如果不是,请说明理由.14.(2019•上海)已知椭圆22184x y +=,1F ,2F 为左、右焦点,直线l 过2F 交椭圆于A ,B两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ∠=︒时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F ABF MNS S=,若存在,求出直线l 的方程;若不存在,请说明理由.15.(2019•新课标Ⅲ)已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.16.(2019•新课标Ⅱ)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G . ()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.17.(2019•浙江)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12SS的最小值及此时点G的坐标.18.(2019•新课标Ⅲ)已知曲线2:2xC y=,D为直线12y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以5(0,)2E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.19.(2018•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的离5A的坐标为(,0)b,且||||62FB AB=(Ⅰ)求椭圆的方程;(Ⅱ)设直线:(0)l y kx k=>与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若||52(||4AQAOQ OPQ=∠为原点),求k的值.20.(2018•江苏)如图,在平面直角坐标系xOy中,椭圆C过点1(3,)2,焦点1(3F0),2(3F0),圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若OAB∆26,求直线l的方程.21.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.22.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018•上海)设常数2t >.在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线2:8(0,0)y x x t y Γ=.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP ∆的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.24.(2018•新课标Ⅱ)设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.25.(2017•上海)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.26.(2017•天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.()I 求椭圆的方程和抛物线的方程;()II 设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点(B B 异于)A ,直线BQ 与x 轴相交于点D .若APD ∆,求直线AP 的方程.27.(2017•山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程.(Ⅱ)如图,动直线1:l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上的一点,直线OC的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且||:||2:3MC AB =,M 的半径为||MC ,OS ,OT 是M 的两条切线,切点分别为S ,T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.28.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .29.(2017•新课标Ⅰ)已知椭圆2222:1(0)x y C a b a b+=>>,四点1(1,1)P ,2(0,1)P ,33(1,)P -,43(1,)P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.30.(2016•浙江)如图,设椭圆222:1(1)x C y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a ,k 表示)(Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.31.(2016•天津)设椭圆2221(3)3x y a a +=>的右焦点为F ,右顶点为A .已知113||||||eOF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点(B B不在x轴上),垂直于l的直线与l交于点M,与y 轴于点H,若BF HF⊥,且MOA MAO∠∠,求直线l的斜率的取值范围.32.(2016•四川)已知椭圆2222:1(0)x yE a ba b+=>>的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线:3l y x=-+与椭圆E有且只有一个公共点T.(Ⅰ)求椭圆E的方程及点T的坐标;(Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得2||||||PT PA PBλ=,并求λ的值.33.(2016•山东)平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的离心率是3,抛物线2:2E x y=的焦点F是C的一个顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.()i求证:点M在定直线上;()ii直线l与y轴交于点G,记PFG∆的面积为1S,PDM∆的面积为2S,求12SS的最大值及取得最大值时点P的坐标.34.(2016•新课标Ⅱ)已知椭圆22:13x yEt+=的焦点在x轴上,A是E的左顶点,斜率为(0)k k>的直线交E于A,M两点,点N在E上,MA NA⊥.(Ⅰ)当4t=,||||AM AN=时,求AMN∆的面积;(Ⅱ)当2||||AM AN=时,求k的取值范围.35.(2016•新课标Ⅰ)设圆222150x y x++-=的圆心为A,直线l过点(1,0)B且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明||||EA EB+为定值,并写出点E的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2020年高考数学复习之挑战压轴题(解答题):平面解析几何综合题(35题)参考答案与试题解析一、解答题(共35小题)1.(2016•南昌校级二模)已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C .(Ⅰ)若1k =,且||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程. 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)若1k =,联立直线和椭圆方程,结合相交弦的弦长公式以及||AB =可求实数a 的值;(Ⅱ)根据2AC CB =关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.【解答】解:设1(A x ,1)y ,2(B x ,2)y , (Ⅰ)由2213y x x y a=+⎧⎨+=⎩得24210x x a ++-=, 则1212x x +=-,1214ax x -=,则123|||24AB x x a -=-=2a =. (Ⅱ)由2213y kx x y a=+⎧⎨+=⎩,得22(3)210k x kx a +++-=, 则12223k x x k +=-+,12213ax x k -=+, 由2AC CB =得1(x -,121)2(y x -=,21)y -, 解得122x x =-,代入上式得: 122223k x x x k +=-=-+,则2223kx k =+,1222133||3||||||322323||||AOB k S OC x x x k k k ∆=-====++ 当且仅当23k =时取等号,此时2223k x k =+,22122224222(3)3k x x x k =-=-⨯=-+, 又1221136a ax x k --==+, 则1263a -=-,解得5a =.所以,AOB ∆,此时椭圆的方程为2235x y +=. 【点评】本题主要考查椭圆方程的求解,利用直线方程和椭圆方程构造方程组,转化为根与系数之间的关系是解决本题的关键.2.(2017•河南模拟)已知椭圆2222:1(0)x y C a b a b+=>>,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且123||(4OP PF PF O =为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由. 【考点】3K :椭圆的标准方程;4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】11:计算题;15:综合题;16:压轴题【分析】(1)设出P 的坐标,利用||OP 的值求得0x 和0y 的关系式,同时利用1234PF PF =求得0x 和0y 的另一关系式,进而求得c ,通过椭圆的离心率求得a ,最后利用a ,b 和c 的关系求得b ,则椭圆的方程可得.(2)设出直线l 的方程,与椭圆方程联立消去y ,设1(A x ,1)y ,2(B x ,2)y ,则可利用韦达定理表示出12x x +和12x x ,假设在y 轴上存在定点(0,)M m ,满足题设,则可表示出MA MB ,利用0MA MB =求得m 的值.【解答】解:(1)设0(P x ,0)y ,1(,0)F c -,2(,0)F c ,则由220074OP x y =+=; 由1234PF PF =得00003(,)(,)4c x y c x y -----=,即2220034x y c +-=. 所以1c =又因为222,1c a b a ===所以. 因此所求椭圆的方程为:2212x y +=.(2)动直线l 的方程为:13y kx =-,由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22416(21)039k x kx +--=.设1(A x ,1)y ,2(B x ,2)y . 则121222416,3(21)9(21)k x x x x k k +==-++. 假设在y 轴上存在定点(0,)M m ,满足题设,则1122(,),(,)MA x y m MB x y m =-=-. 21212121212()()()MA MB x x y m y m x x y y m y y m =+--=+-++21212121111()()()3333x x kx kx m kx kx m =+----+-+221212121(1)()()339k x x k m x x m m =+-+++++222216(1)1421()9(21)33(21)39k k k m m m k k +=--++++++ 222218(1)(9615)9(21)m k m m k -++-=+ 由假设得对于任意的,0k R MA MB ∈=恒成立, 即221096150m m m ⎧-=⎨+-=⎩解得1m =.因此,在y 轴上存在定点M ,使得以AB 为直径的圆恒过这个点, 点M 的坐标为(0,1)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和推理的能力.3.(2016•衡阳三模)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】3K :椭圆的标准方程;KH :直线与圆锥曲线的综合 【专题】11:计算题;16:压轴题【分析】(1)由题意知2a =,b c =,22b =,由此可知椭圆方程为22142x y +=.(2)设0(2,)M y ,1(P x ,1)y ,()()110,,2,OP x y OM y ==则,直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=,然后利用根与系数的关系能够推导出OM OP 为定值.(3)设存在(,0)Q m 满足条件,则MQ DP ⊥.2000220048(2,),(,)88y yMQ m y DP y y =--=-++,再由()220022004802088y y MQ DP m y y ⋅=---=++得,由此可知存在(0,0)Q 满足条件.【解答】解:(1)2a =,b c =,222a b c =+,22b ∴=;∴椭圆方程为22142x y +=(4分)(2)(2,0)C -,(2,0)D ,设0(2,)M y ,1(P x ,1)y , ()()110,,2,OP x y OM y ==则直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=(6分)21204(8)128y x y -=-+,∴201202(8)8y x y -=-+,∴012088y y y =+,∴20022002(8)8(,)88y y OP y y -=-++(8分) ∴2220002220004(8)84324888y y y OP OM y y y -+=-+==+++(定值)(10分)(3)设存在(,0)Q m 满足条件,则MQ DP ⊥(11分)2000220048(2,),(,)88y yMQ m y DP y y =--=-++(12分)则由()220022004802088y y MQ DP m y y ⋅=---=++得,从而得0m =∴存在(0,0)Q 满足条件(14分)【点评】本题考查直线和椭圆的位置关系,解题时要认真审题,仔细解答.4.(2016•天津一模)已知椭圆2222:1(0)x y C a b a b+=>>,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N(Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.【考点】1K :圆锥曲线的实际背景及作用;3K :椭圆的标准方程【专题】15:综合题;31:数形结合;34:方程思想;4R :转化法;5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)根据椭圆的简单几何性质,求出a 、b 的值即可;(Ⅱ)当直线l 的斜率存在时,求出直线RA 、RB 的斜率之和即可证明结论成立; (Ⅲ)讨论直线l 的斜率是否存在,利用弦长公式以及转化法、基本不等式等求出||||AB MN 的取值范围.【解答】解:(Ⅰ)因为椭圆C 长轴长等于圆22:(2)4R xy +-=的直径, 所以24a =,2a =; ⋯(1分)2,得22222212c a b e a a -===,所以222142b b a ==,得22b =;⋯(2分)所以椭圆C 的方程为22142x y +=;⋯(3分)(Ⅱ)当直线l 的斜率存在时,设l 的方程为1y kx =+,与22142x y +=联立,消去y ,得22(12)420k x kx ++-=; 设1(A x ,1)y ,2(B x ,2)y , 则122412k x x k +=-+,122212x x k =-+,⋯(5分) 由(0,2)R ,得 121222RA RB y y k k x x --+=+121211kx kx x x --=+12112()k x x =-+ 12122x x k x x +=-2241220212k k k k -+=-=-+.⋯(7分)所以直线RA ,RB 的斜率之和等于零;⋯(8分)(Ⅲ)当直线l的斜率不存在时,||AB =||4MN =,||||8AB MN =;⋯(9分) 当直线l的斜率存在时,||AB =12||x x =-12()x x +4(12k k =-+ 22328k += ||MN ==⋯(11分)所以22328||||12k AB MN k+=+⨯241k +=;因为直线l 过点(0,1)P ,所以直线l 与椭圆C 和圆R 均交于两点, 令212k t +=,则1t , 所以22(21)(21)1||||4242482t t AB MN t t -+==-<, 又2124y t =-在1t 时单调递增, 所以1||||446AB MN =, 当且仅当1t =,0k =等号成立;⋯(13分)综上,||||AB MN 的取值范围是.⋯(14分)【点评】本题考查了圆锥曲线的综合应用问题,也考查了数形结合思想、方程思想的应用问题,考查了计算能力与分析问题、解决问题的能力,是综合性题目.5.(2015•大庆一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.【考点】3K :椭圆的标准方程;4K :椭圆的性质 【专题】11:计算题;15:综合题;16:压轴题【分析】(Ⅰ)由题意知12c e a ==,能够导出2243a b =.再由b C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=,再由根与系数的关系证明直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)分MN 的斜率存在与不存在两种情况讨论,当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.再由根据判别式和根与系数的关系求解OM ON 的取值范围;当过点Q 直线MN 的斜率不存在时,其方程为1x =,易得M 、N 的坐标,进而可得OM ON 的取值范围,综合可得答案. 【解答】解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===.即2243a b =.又因为b =所以24a =,23b =.故椭圆C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-. 由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=.①设点1(B x ,1)y ,2(E x ,2)y ,则1(A x ,1)y -. 直线AE 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.易知△0>.所以22843M N m x x m +=+,2241243M N m x x m -=+,22943M N m y y m =-+.则2225125334344(43)M N M N m OM ON x x y y m m +=+=-=--++. 因为20m ,所以21133044(43)m --<+.所以5[4,)4OM ON ∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N 或3(1,)2M 、3(1,)2N -.此时54OM ON =-.所以OM ON 的取值范围是5[4,]4--.【点评】本题综合考查椭圆的性质及其应用和直线 与椭圆的位置关系,解题时要认真审题,注意公式的灵活运用.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a ba b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<t 取值范围. 【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题【分析】(Ⅰ)由题意知c e a ==所以22222212c a b e a a -===.由此能求出椭圆C 的方程.(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y ,由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=再由根的判别式和嘏达定理进行求解. 【解答】解:(Ⅰ)由题意知2c e a ==,所以22222212c a b e a a -===.即222a b =.(2分)又因为1b ==,所以22a =,故椭圆C 的方程为2212x y +=.(4分)(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y , 由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=.△422644(21)(82)0k k k =-+->,212k <.(6分) 2122812k x x k +=+,21228212k x x k-=+12(OA OB tOP x x +=∴+,12)(y y t x +=,)y , ∴21228(12)x x k x t t k +==+,1212214[()4](12)y y k y k x x k t t t k +-==+-=+ 点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++,22216(12)k t k ∴=+.(8分) 25||PA PB -<,∴12|x x -,∴22121220(1)[()4]9k x x x x ++-< ∴422222648220(1)[4](12)129k k k k k -+-<++,22(41)(1413)0k k ∴-+>,∴214k >.(10分) ∴21142k <<,22216(12)k t k =+,∴222216881212k t k k ==-++, ∴2t -<<2t <<,∴实数t 取值范围为26(2,(,2)-.(12分) 【点评】本题考查椭圆方程的求法和求实数t 取值范围.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用根的判别式和韦达定理进行解题.7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M处的切线与椭圆相交所得弦长为57,求椭圆方程.【考点】4K :椭圆的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)首先,得到点M 的坐标,然后,代入,得到212b a ac =+,从而确定其斜率关系;(Ⅱ)首先,得到1(2A c -,30)(,)2cM c ,然后,可以设外接圆圆心设为0(P x ,0),结合圆的性质建立等式,然后,利用弦长公式求解即可.【解答】解:(Ⅰ)由题意2(,)b M c a-------------(1分)因为1(,0)A a -,所以212b a ac =-------------+(2分)将222b a c =-代入上式并整理得112a c e a -=-=(或2)a c =----------(3分) 所以12e =------------(4分) (Ⅱ)由(Ⅰ)得2a c =,3b c =(或22221)43x y c c+=------------(5分)所以1(2A c -,30)(,)2cM c ,外接圆圆心设为0(P x ,0)由1||||PA PM =222003(2)()()2c x c x c +-+-----------(6分) 解得:08cx =-------------(7分)所以34238PMck c c ==------------+(8分)所以△1A MN 外接圆在M 处切线斜率为34-,设该切线与椭圆另一交点为C则切线MC 方程为33()24c y x c -=--,即3944cy x =-+------------(9分)与椭圆方程2223412x y c +=联立得22718110x cx c -+=------------(10分) 解得1211,7cx c x ==------------(11分)由弦长公式12|||MC x x =-115|77c c -=------------(12分)解得1c =------------(13分)所以椭圆方程为22143x y +=------------(14分)【点评】本题重点考查了椭圆的标准方程、简单几何性质、直线与椭圆的位置关系、弦长公式等知识,属于中档题.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 【考点】KH :直线与圆锥曲线的综合 【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)利用两点间的距离公式可得c ,再利用椭圆的标准方程及其性质即可得出a ,b ;(Ⅱ)把直线l 的方程与椭圆的方程联立可得根与系数的关系,再利用以AB 为直径的圆过椭圆的右顶点D ,可得1AD BD k k =-,即可得出m 与k 的关系,从而得出答案.【解答】解:(Ⅰ)左焦点(,0)c -到点(2,1)P∴=,解得1c =.又12c e a ==,解得2a =,2223b a c ∴=-=. ∴所求椭圆C 的方程为:22143x y +=.(Ⅱ)设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,△22226416(34)(3)0m k k m =-+->,化为2234k m +>.∴122834mkx x k-+=+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+. 以AB 为直径的圆过椭圆的右顶点(2,0)D ,1AD BD k k =-,∴1212122y y x x =---,1212122()40y y x x x x ∴+-++=,∴2222223(4)4(3)1640343434m k m mkk k k --+++=+++. 化为2271640m mk k ++=,解得12m k =-,227km =-.,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0)与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7. 综上可知,直线l 过定点,定点坐标为2(,0)7.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、圆的性质、两点间的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.【考点】4K :椭圆的性质【专题】15:综合题;34:方程思想;49:综合法;5D :圆锥曲线的定义、性质与方程【分析】(1)先由离心率得到a ,b 的关系,再由求出b ,再由直线l 垂直于x 轴时,||AB =求得关于a ,b 的另一方程,联立求得a ,b 的值,则椭圆的标准方程可求;(2)设AB 的方程(1)y k x =-,将直线的方程代入椭圆的方程,消去x 得到关于y 的一元二次方程,再结合根系数的关系,利用向量坐标公式及函数的单调性即可求得直线AB 的斜率的取值范围,从而求得弦长||AB 的取值范围.【解答】解:(1)由题意可得,c e a ==,即2212c a =,∴22212a b a -=,则222a b =,①把1x =代入22221x y a b +=,得y =则2212b a a-=,② 联立①②得:22a =,21b =.∴椭圆C 的方程为2212x y +=;(2)如图,当直线l 的斜率存在时,设直线l 方程为(1)y k x =-, 联立22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,得222(12)20k y ky k ++-=. 设1(A x ,1)y ,2(B x ,2)y ,则21212222,1212k k y y y y k k --+==++,③ 由||||MA MB λ=,得AM MB λ=,1(1x ∴-,12)(1y x λ-=-,2)y ,则12y y λ-=,④把④代入③消去2y 得:241212k λλ=+-+,当1[2λ∈,2]时,2412[012k λλ=+-∈+,1]2. 解得:272k . 22221212222221144||1()4(12)12k k k AB y y y y k k k k +=++-=+++2222211922222(1)22(1)(2,]112122k k k k k+==-=-∈+++.∴弦长||AB 的取值范围为92[2,]8.【点评】本题主要考查了椭圆的定义和标准方程、直线与圆锥曲线的综合问题、平面向量的运算等.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,突出考查了数形结合、函数与方程、等价转化等数学思想方法.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标. 【考点】JE :直线和圆的方程的应用 【专题】15:综合题【分析】(1)因为直线l 过点(4,0)A ,故可以设出直线l 的点斜式方程,又由直线被圆1C 截得的弦长为圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线1l 与2l 的点斜式方程,由于两直线斜率为1,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线1l 与2l 的方程. 【解答】解:(1)由于直线4x =与圆1C 不相交;∴直线l 的斜率存在,设l 方程为:(4)y k x =-(1分)圆1C 的圆心到直线l 的距离为d ,l 被1C 截得的弦长为1d ∴==(2分)d =(247)0k k +=即0k =或724k =-∴直线l 的方程为:0y =或724280x y +-=(5分)(2)设点(,)P a b 满足条件,由题意分析可得直线1l 、2l 的斜率均存在且不为0,不妨设直线1l 的方程为()y b k x a -=-,0k ≠ 则直线2l 方程为:1()y b x a k-=--(6分)1C 和2C 的半径相等,及直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等, 1C ∴的圆心到直线1l 的距离和圆2C 的圆心到直线2l 的距离相等1|5(4)|a b +--=(8分)整理得|13||54|k ak b k a bk ++-=+--13(54)k ak b k a bk ∴++-=±+--即(2)3a b k b a +-=-+或(8)5a b k a b -+=+- 因k 的取值有无穷多个,所以2030a b b a +-=⎧⎨-+=⎩或8050a b a b -+=⎧⎨+-=⎩(10分)解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或32132a b ⎧=-⎪⎪⎨⎪=⎪⎩这样的点只可能是点15(2P ,1)2-或点23(2P -,13)2(12分) 【点评】在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到一个关于x 的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由..【考点】4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 结合向量条件及向量运算得出关于a ,c 的等式,从而求得椭圆的离心率即可;(2)由(1)知a ,c 的一个方程,再利用AQF ∆的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;(3)由(Ⅱ)知直线:(1)l y k x =-,将直线的方程代入椭圆的方程,消去y 得到关于x 的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P 且m 的取值范围.【解答】解:(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 知20(,),(,)F A c b AQ x b =-=-2F A AQ ⊥,∴22000,b cx b x c--==-,由于12220F F F Q +=即1F 为2F Q 中点.故2222223b c c b c a c c-+=-∴==-,故椭圆的离心率12e =,(3分)(2)由(1)知12c a =,得12c a =于是21(2F a ,30)(,0)2Q a -, AQF ∆的外接圆圆心为1(2a -,0),半径1||2r FQ a ==所以1|3|22a a --=,解得2a =,1c ∴=,3b 所求椭圆方程为22143x y +=,(6分)。

(解析几何压轴题)(30题)2021高考数学考点必杀500题(新高考) (解析版)

(解析几何压轴题)(30题)2021高考数学考点必杀500题(新高考) (解析版)

解析几何压轴题 (30题)(新高考)1.(2020·江苏苏州市·吴江中学高三其他模拟)(本题满分14分)已知椭圆2221+=+x y mm m 的右焦点为F ,右准线为l ,且直线y x =与l 相交于A 点.(Ⅰ)若⊙C 经过O 、F 、A 三点,求⊙C 的方程;(Ⅱ)当m 变化时, 求证:⊙C 经过除原点O 外的另一个定点B ; (Ⅲ)若5⋅<AF AB 时,求椭圆离心率e 的范围. 【答案】(Ⅰ)22(2)0x y mx m y +--+=;(Ⅱ)证明见解析;(Ⅲ)0e <<. 【详解】(Ⅰ)22222,,a m m b m c m =+=∴=,即c m =,(,0)F m ∴,准线1x m =+,(1,1)A m m ∴++ ……………………………(2分)设⊙C 的方程为220x y Dx Ey F ++++=,将O 、F 、A 三点坐标代入得:200220F m Dm m D E =⎧⎪+=⎨⎪+++=⎩,解得02F D m E m=⎧⎪=-⎨⎪=--⎩ ……………………(4分) ∴⊙C 的方程为22(2)0xy mx m y +--+= ……………………………(5分)(Ⅱ)设点B 坐标为(,)p q ,则22(2)0p q mp m q +--+=,整理得:222()0p q q m p q +--+=对任意实数m 都成立 ……………………(7分)∴22020p q p q q +=⎧⎨+-=⎩,解得00p q =⎧⎨=⎩或11p q =-⎧⎨=⎩, 故当m 变化时,⊙C 经过除原点O 外的另外一个定点B (1,1)-……………(9分) (Ⅲ)由B (1,1)-、(,0)F m 、(1,1)A m m ++得(1,1)AFm =---,(2,)AB m m =---∴2225AF AB m m ⋅=++<,解得31m -<< ………………………(10分)又200m m m ⎧+>⎨>⎩,∴01m <<又椭圆的离心率e ===(01m <<)…………(12分) ∴椭圆的离心率的范围是02e <<………………………………(14分)2.(2017·四川成都市·成都七中高三一模(文))如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记GFD 的面积为1S ,OED (O 为原点)的面积为2S ,求12S S 的取值范围. 【答案】(Ⅰ)12e =;(Ⅱ)(9,)+∞. 【解析】(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒1分 则tan 603bc︒== 2分 将3b c =代入222a b c =+, 解得2a c =. 3分 所以椭圆的离心率为12c e a ==. 4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. 5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=得222222(43)84120k x ck x k c c +++-=. 7分则2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+, 22243(,)4343ck ckG k k -++. 8分 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. 9分因为 △GFD ∽△OED ,所以2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+11分 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. 13分所以12S S 的取值范围是(9,)+∞. 14分 3.(2021·江西上饶市·高三三模(理))已知椭圆22221(0)x y a b a b +=>>的两个顶点在直线12x y +=上,直线l 经过椭圆的右焦点F ,与椭圆交于A 、B两点,点P ⎛ ⎝⎭(P 不在直线l 上) (1)求椭圆的标准方程;(2)直线l 与2x =交于点M ,设PA ,PB ,PM 的斜率分别为123,,k k k .试问:是否存在常数λ使得123k k k λ+=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在,2λ=.【详解】(1)直线12x y +=与坐标轴的交点为,1a b ∴==故椭圆的标准方程为2212x y +=(2)设()()1122,,,A x y B x y ,直线:(1)AB y k x =-,则(2,)M k .由22222(1)2(1)2012y k x x k x x y =-⎧⎪⇒+--=⎨+=⎪⎩,即()222124220k k x k +-+-=, 22121222422,1212k k x x x x k k -∴+==++,()()12121212121122221111y y k x k x k k x x x x --∴+=+=+----()22122212121222422111222222421121211212k x x k k k k k k x x x x x x k k-⎫+-+=-+=-=-⎪----++⎝⎭-+++22221k k -=-⨯=-又32122k kk -==--123222k k k k ⎛⎫∴+=-= ⎪ ⎪⎝⎭故存在常数2λ=使得1232k k k +=4.(2021·湖南高三三模)已知椭圆221169x y +=,A 是椭圆的右顶点,B 是椭圆的上顶点,直线():0l y kx b k =+>与椭圆交于M 、N 两点,且M 点位于第一象限.(1)若0b =,证明:直线AM 和AN 的斜率之积为定值;(2)若34k =,求四边形AMBN 的面积的最大值.【答案】(1)证明见解析;(2) 【详解】(1)证明:设11(,)M x y ,则11(,)N x y --, ∵(4,0)A ,(0,3)B ,∴114AM y k x =-+,114AN y k x =+,∵11(,)M x y 在椭圆上,∴22119(16)16y x =- ∴22112211169916161616AM ANy x k k x x -⋅==⋅=---为定值. (2)设3:4l y x b =+,依题意:0k >,M 点在第一象限,∴33b -<<. 联立:22341169y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:229128720x bx b ++-=, ∴1243bx x +=-,212889x x b ⋅=-,设A 到l 的距离为1d ,B 到l 的距离为2d ,∴1|124|44|3|(3)555b d b b +==⋅+=+,2|124|44|3|(3)555b d b b -+==⋅-=-, ∴12245d d +=.又∵2212121295516||1||()4325216449MN x x x x x x b =+⋅-=+-=-+≤ (当0b =时取等号), ∴121124||()52122225AMBN S MN d d =⋅+≤⋅⋅=. ∴四边形AMBN 的面积的最大值为1225.(2021·全国高三专题练习(理))如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2A B y y ⋅=-;(2)存在,2λ=.【详解】(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=-又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+则212222A NA N A NB M A Ny y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.6.(2021·云南高三其他模拟(文))已知焦点为F 的抛物线()2:20C y px p =>经过圆()()()222:440D x y r r -+-=>的圆心,点E 是抛物线C 与圆D 在第一象限的一个公共点,且2EF =.(1)分别求p 与r 的值;(2)点M 与点E 关于原点O 对称,点A ,B 是异于点O 的抛物线C 上的两点,且M ,A ,B 三点共线,直线EA ,EB 分别与x 轴交于点P ,Q ,问:PF QF ⋅是否为定值?若为定值,求出该定值;若不为定值,试说明理由.【答案】(1)2p =,r =;(2)为定值,2. 【详解】(1)由已知得抛物线C 过点()44D ,, 所以1624p =⨯,所以2p =. 即抛物线C 的方程为24y x =.设点()()000,0E x y y >,则012EF x =+=, 所以01x =,于是得02y ==,即()1,2E ,将点E 的坐标代入圆D 的方程,得()()222142413r =-+-=,所以r =.(2)设点()11,A x y ,()22,B x y ,由已知得()1,2M --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()24,12,y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 由0∆>,得2210k k --<,即11k << 因为A ,B 异于原点O , 所以2k ≠,则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1111212241214EA y y k x y y --===-+-,2222412EBy k x y -==-+. 因为EF x ⊥轴,所以 ||||4||||||||||EA EB EA EB EF EF PF QF k k k k ⋅=⋅=⋅ ()()()121212|22||24|44y y y y y y +++++==88|44|24k k -++==, 所以||||PF QF ⋅的值为定值2.7.(2021·天津高三一模)已知椭圆()2222:10x y C a b a b +=>>的短半轴长为1,离心率为2. (1)求C 的方程;(2)设C 的上、下顶点分别为B 、D ,动点P (横坐标不为0)在直线2y =上,直线PB 交C 于点M ,记直线DM ,DP 的斜率分别为1k ,2k ,求12k k ⋅的值. 【答案】(1)2214x y +=(2)34-【详解】(1)依题意可知1b =,c a =2212a a ⎛⎫+= ⎪ ⎪⎝⎭,解得24a =, 所以椭圆C 的方程为2214x y +=.(2)依题意可知(0,1)B ,(0,1)D -, 设00(,)M x y ,则001DB y k x -=,直线BD :0011y y x x -=+,令2y =,得001x x y =-,即00(,2)1x P y -, 0101DMy k k x +==,020003(1)2101DP y k k x x y -+===--,所以00120013(1)y y k k x x +-⋅=⋅2203(1)y x -=20203()344x x ⨯-==-. 8.(2021·全国高三专题练习(文))已知抛物线1C 的顶点为坐标原点O ,焦点为圆222:4C x y +=与圆()223:31C x y +-=的公共点.(1)求1C 的方程; (2)直线1:34l y x =+与1C 交于A ,B 两点,点P 在1C 上,且P 在AOB 这一段曲线上运动(P 异于端点A 与B ),求PAB △面积的取值范围. 【答案】(1)28x y =;(2)1250,8⎛⎤⎥⎝⎦. 【详解】(1)联立()22224,31,x y x y ⎧+=⎪⎨+-=⎪⎩得0,2.x y =⎧⎨=⎩因此1C 的焦点为()0,2,设抛物线()21:20C x py p =>,则22p=, 则4p =,故1C 的方程为28x y =.(2)联立28,13,4x y y x ⎧=⎪⎨=+⎪⎩得6,92x y =⎧⎪⎨=⎪⎩或4,2,x y =-⎧⎨=⎩ 不妨假设96,2A ⎛⎫ ⎪⎝⎭,()4,2B -,则()64AB =--=.设()00,P x y ,则046x -<<,P 到直线l的距离d ===因为当46x -<<时,函数()2125y x =--的值域为[)25,0-,所以0<≤111250228PABS d AB <=⨯⨯≤=△, 故PAB △面积的取值范围是1250,8⎛⎤⎥⎝⎦. 9.(2021·全国高三专题练习(文))已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为23. (1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π. 【详解】(1)由题意得12223c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由()10,3B ,()21,0F ,知12B F 的斜率为3-,因12MN B F ⊥,故MN 的斜率为33, 则直线l 的方程为()313y x =-,即31x y =+, 联立221,4331,x y x y ⎧+=⎪⎨⎪=+⎩可得:2136390y y +-=,设()11,M x y ,()22,N x y ,则126313y y +=-,12913y y =-,则1F MN △的面积()212121224413S c y y y y y y =⋅-=+-=, 由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==, 所以1F MN △的内切圆面积为236ππ169R =. 10.(2021·黑龙江大庆市·高三一模(理))已知焦点在x 轴上的椭圆C :222210)x ya b a b+=>>(,短轴长为23,椭圆左顶点到左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.【答案】(1)22143x y +=;(2)证明见解析,(6,0).【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=.(2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k-=+. 因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033m kx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0).11.(2021·辽宁高三其他模拟(理))已知圆()22:11F x y -+=,动点()(),0M x y x ≥,线段FM 与圆F 交于点I ,MH y ⊥轴,垂足为H ,||||MI MH =,设动点M 形成的轨迹为曲线C . (Ⅰ)求曲线C 的轨迹方程,并证明斜率为2-的一组平行直线与曲线C 相交形成的弦的中点在一条直线上; (Ⅱ)曲线C 上存在关于直线:230l x y --=对称的相异两点A 和B ,求线段AB 的中点D 的坐标.【答案】(Ⅰ)24y x =,证明见解析; (Ⅱ)()1,1-.【详解】(Ⅰ)||1||||1MI MF MH +==+,∴点M 的轨迹C 为以F 为焦点,1x =-为准线的抛物线,曲线C 的方程为24y x =,设点()()111222,,,A x y A x y 为其中任意一条斜率为2-的直线与曲线C 的两个交点,设线段12 A A 的中点为(),E x y ,则21122244y x y x ⎧=⎨=⎩,则()()()1212124y y y y x x -+=-,121242A A k y y ∴==-+,1222y y y ∴+=-=, 1y,所以这组斜率为2-的平行直线与曲线C 相交形成的弦的中点在直线1y =-上;(Ⅱ)设点()()3344,,,A x y B x y ,则23324444y x y x ⎧=⎨=⎩,则()()()3434344y y y y x x -+=-,344AB k y y ∴=+,又,A B 关于直线l 对称,2AB k ∴=-,即34 2y y +=-,3412y y +∴=-, 又,A B 的中点一定在直线l 上,343423122x x y y ++∴=⨯+=, ∴线段AB 的中点D 坐标为()1,1-.12.(2021·湖南长沙市·长沙一中高三一模)已知抛物线()2:20C y px p =>的准线为l ,过抛物线上一点B 向x轴作垂线,垂足恰好为抛物线C 的焦点F ,且4BF =. (Ⅰ)求抛物线C 的方程;(Ⅱ)设l 与x 轴的交点为A ,过x 轴上的一个定点()1,0的直线m 与抛物线C 交于,D E 两点.记直线,AD AE 的斜率分别为12,k k ,若1213k k +=,求直线m 的方程. 【答案】(Ⅰ)28y x =;(Ⅱ)4340x y --=. 【详解】(Ⅰ)由题意,42p B ⎛⎫ ⎪⎝⎭, 代入22y px =, 得216p =,4p =,∴抛物线C 的方程为28y x =.(Ⅱ)当直线m 的斜率不存在时,120k k +=与题意不符,所以直线的斜率一定存在,设直线m 的方程为()1y k x =-代入到28y x =中,()2222280k x k x k -++=,设()11,D x y ,()22,E x y ,则21222122281k x x k k x x k ⎧++=⎪⎪⎨⎪==⎪⎩, 12121222y yk k x x +=+++ ()()12121122k x k x x x --=+++()()()1212122422k x x x x x x ++-⎡⎤⎣⎦=++ 2819163k k ==+43k ∴=,所以直线m 的方程为4340x y --=. 13.(2021·全国高三专题练习(文))已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P 是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积.【答案】(1)2214x y +=;(2【详解】(1)由条件可知222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,12y y +=1215y y -=,11212AOBSOF y y =⨯⨯-==14.(2021·全国高三专题练习)已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)最大值为1.【详解】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p -, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,∴24a=,p = ∴椭圆Γ的方程为:2214y x +=,抛物线C 的方程为:2x =;(2)由(1)可知:F 的坐标为:,设直线l的方程为:y kx =+O 到MN 的距离为d,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩可得:()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.15.(2021·广东佛山市·高三一模)已知椭圆C :22221(0)x y a b a b+=>>右焦点为()1,0F ,且过点()2,0A -.(1)求C 的方程;(2)点P 、Q 分别在C 和直线4x =上,//OQ AP ,M 为AP 的中点,求证:直线OM 与直线QF 的交点在某定曲线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)依题意知()2,0A -为椭圆C 的左顶点,故2a =, 又()1,0F 为C 的右焦点,所以221a b -=.于是23b =,b =所以C 的方程为22143x y +=.(2)设00()2),(P x y x ≠±,则002,22x y M -⎛⎫⎪⎝⎭, 直线AP 的斜率002y k x =+, 又//OQ AP ,所以直线OQ 的方程为002y y x x =+, 令4x =得0044,2y Q x ⎛⎫⎪+⎝⎭, 002,22x y OM -⎛⎫= ⎪⎝⎭,0043,2y FQ x ⎛⎫= ⎪+⎝⎭,2220000003(2)23(4)4(*)222(2)x y x y OM FQ x x --+⋅=+=++,又P 在C 上,所以2200143x y +=,即22003412x y +=,代入(*)得0OM FQ ⋅=,所以OM QF ⊥.故直线OM 与QF 的交点在以OF 为直径的圆上,且该圆方程为221124x y ⎛⎫-+= ⎪⎝⎭.即直线OM 与直线QF 的交点在某定曲线221124x y ⎛⎫-+= ⎪⎝⎭上.16.(2020·福建宁德市·高三其他模拟)已知椭圆E :22221(0)x y a b a b+=>>的右焦点是(1,0)F ,点P 是椭圆E上一点,且||PF 的最大值为2b . (1)求椭圆方程;(2)过椭圆右顶点A 的直线l 与椭圆交于B ,与y 轴交于C .设FAB 和FAC 的面积分别为1S 和2S ,求12S S ⋅的取值范围.【答案】(1)22143x y +=;(2)2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.【详解】(1)因为椭圆2222:1(0)x y E a b a b+=>>的焦点为(1,0)F ,所以1c =,又2a c b +=,222a b c =+,所以24a =,23b =,即椭圆方程为22143x y +=.(2)由题可知直线l 的斜率存在且不为0,设直线l 的解析式为2x my =+, 则C 点为2(0,)m-, 由221432x y x my ⎧+=⎪⎨⎪=+⎩,可得:22(34)120m y my ++=, 解得:21243B my m=-+, 故11||||2B S FA y =,21||||2C S FA y =, 由此可得:212216||||434B C S S FA y y m ⋅=⋅⋅⋅=+,所以2130,2S S ⎛⎫⋅∈ ⎪⎝⎭.17.(2021·四川高三三模(理))已知椭圆C :22221x y a b+=()0a b >>的两个焦点与短轴的两个顶点围成一个正方形,且()2,1P 在椭圆上. (1)求椭圆的方程;(2)A ,B 是椭圆上异于P 的两点,设直线PA ,PB 斜率分别为1k ,2k ,点()8,3Q 到直线AB 的距离为d ,若121k k +=,求以d 的最大值为直径的圆的面积.【答案】(1)22163x y +=;(2)25π. 【详解】(1)由题意知b c =,a =∴设椭圆的方程为222212x y b b+=()0b >∵点()2,1P 在椭圆上, ∴224112b b+=,23b =, ∴椭圆方程为22163x y +=(2)当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,()12,A x y ,()22,B x y由22163y kx mx y =+⎧⎪⎨+=⎪⎩,得()222214260k x kmx m +++-=,()22863k m ∆=-+122421km x x k +=-+,21222621m x x k -⋅=+ ∵直线PA 、PB 的斜率分别为1k ,2k ,且121k k += ∴121211122y y x x --+=--,即()()121212121220y x x y x x y y x x +++-+-= ∴()()()1212211240k x x m k x x m -++-+-=∴()()2222642112402121m kmk m k m k k --⋅-+-⋅-=++ ∴()()3210m k m ++-=, ∴3m =-或12m k =-当12m k =-时,直线AB 的方程为()21y k x =-+恒过()2,1P ,不合题意 当3m =-时,由()28660k ∆=->,得1k >或1k <-当直线AB 的斜率不存在,直线AB 过()0,3C-时,不妨设(0,A,(B121k k +=+= ∴当直线AB 恒过定点过()0,3C -,则()8,3Q 到直线AB 的距离为10d QC ≤=,当AB CD ⊥时等号成立,此时,1413CD k k =-=-<- ∴以d 的最大值为直径的圆的面积210π25π2S ⎛⎫== ⎪⎝⎭.18.(2021·四川高三三模(文))已知O 为坐标原点,,A B 分别为椭圆()2222:10x y C a b a b+=>>的右顶点和上顶点,AOB 的面积为1,椭圆C的离心率为2. (1)求,a b 的值;(2)若与AB 垂直的直线交椭圆C 于,M N 两点,且OM ON ⊥,求AMN 的面积. 【答案】(1)2a =,1b =;(2或17. 【详解】(1)由椭圆方程知:(),0A a ,()0,B b ,112AOBSab ∴==,由222112ab c e a a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩得:2a =,1b =.(2)由(1)知:椭圆C 的方程为2214x y +=,()2,0A ,()0,1B ;101022AB k -==--,2MN k ∴=,可设直线MN 方程为2y x m =+, 由22214y x m x y =+⎧⎪⎨+=⎪⎩得:221716440x mx m ++-=, 则()2225668440m m ∆=-->,解得:m <<设()11,M x y ,()22,N x y ,121617m x x ∴+=-,2124417m x x -=,()()()221212121216224217m y y x m x m x x m x x m -∴=++=+++=, OM ON ⊥,12120OM ON x x y y ∴⋅=+=,即22441601717m m --+=,解得:2m =±,此时17MN ==; 当2m =时,直线MN :22y x =+,即220x y -+=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==; 当2m =-时,直线MN :22y x =-,即220x y --=,则点A 到直线MN 的距离5d ==,1122AMNSMN d ∴=⋅==综上所述:AMN . 19.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,过点2F 的直线l 交椭圆C 于,P Q 两点.(1)若1F PQ 的周长为8,12F PF △C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,直线PA ,QB 的斜率分别为1221,,k k k k λ=,若()3,4λ∈,求椭圆C 的离心率的取值范围.【答案】(1)答案见解析;(2)13,25⎛⎫⎪⎝⎭. 【详解】(1)由椭圆定义得:11||48PF QF PQ a ++==,所以2a =, 又当点P 位于短轴端点时,12F PF △的面积最大,此时12122F PF S b c ∆=⨯⨯=bc =又222a b c =+,解得①1b c ==时,椭圆的标准方程为22143x y +=,②1,b c ==2214x y +=.(2)设(,0)A a -,(,0)b a ,()11,P x y ,()22,Q x y 由题意知直线斜率不为0,且过(,0)c ,设:l x my c =+,联立22221x my c x y a b =+⎧⎪⎨+=⎪⎩,整理得()22222222220b m a y mcb y b c b a +++-=,所以()212222222122222mcb y y b m a b c a y y b m a ⎧-+=⎪+⎪⎨-⎪=⎪+⎩(*),且121212,y y k k x a x a ==+-, 由题知21k k λ=,则有()()()()2121212211212121()()y x a y my c a k my y c a y k y x a y my c a my y c a y λ+++++====-+-+-, 将(*)代入整理得:21212221212()()mcb my y c a y b m a my y c a y λ⎛⎫-++- ⎪+⎝⎭==+-()()()222212222221222()2()()mb c a c a mcb c a y b m a mb c a c a y b m a -++--++-+-+()()()2222212222221222()2()()mb c a c a mc c a c a y b m a mb c a c a y b m a⎡⎤-++-⎣⎦-++==-+-+()()222122222212222()()()ca mb mc c a c a y b m amb c a c a y b m a ⎡⎤-++⎣⎦-++-+-+()()()222122222221222()()()ca m a c c a yb m am a c c a c a y b m a-+-++==--+-+()()221221()11()m a c c a y a c a c ea c a c em a c c a y +--+++==---+--所以12111e λλλ-==-++,(3,4)λ∈ 所以13,25e ⎛⎫∈⎪⎝⎭20.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(文))定义:由椭圆的两个焦点和短轴的一个端点组成的三角形称为该椭圆的“特征三角形”.若两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将“特征三角形”的相似比称为椭圆的相似比.已知椭圆221:142x y C +=,椭圆2C 与1C 是“相似椭圆”,已知椭圆2C 的短半轴长为b .(1)写出椭圆2C 的方程(用b 表示);(2)若椭圆2C 的焦点在x 轴上,且2C 上存在两点M ,N 关于直线21y x =+对称,求实数b 的取值范围.【答案】(1)222212x y b b +=或222212y x b b +=;(2))+∞.【详解】(1)由椭圆2C 与1C 是相似椭圆,得224221a b ==,∴椭圆2C 的方程为222212x y b b +=或222212y x b b +=.(2)由题设知:椭圆2C 为222212x y b b+=,设()11,M x y ,()22,N x y ,M ,N 的中点为E ,1:2MN l y x m =-+. ∴联立MN l 与椭圆2C 的方程,整理得()2223440x mx m b-+-=,∴0∆>,即2223b m >且12423E mx x x +==, 23E m x ∴=,1223E E my x m =-+=,由22,33m m E ⎛⎫⎪⎝⎭在直线21y x =+,得32m =-,于是222332b m >=,∴b 的取值范围为)+∞. 21.(2021·四川德阳市·高三三模(文))已知平面上的动点(),E x y 及两定点()2,0A -,()2,0B ,直线EA 、EB 的斜率分别为1k 、2k ,且1234k k =-,设动点E 的轨迹为曲线R . (1)求曲线R 的方程;(2)过点()1,0P -的直线l 与曲线R 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【答案】(1)()221043x y y +=≠;(2【详解】(1)由题意知2x ≠±,且12yk x =+,22y k x =-则3224y y x x ⋅=-+- 整理得,曲线R 的方程为()221043x y y +=≠.(2)当直线l 的斜率不存在时,直线方程为1x =- 此时ABD △与ABC 面积相等,120S S -=当直线l 的斜率存在时,设直线方程为()()10y k x k =+≠()11,C x y 、()22,D x y 联立方程,得()221431x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得:()22223484120kxk x k +++-=0∆>,且2122834k x x k +=-+,212241234k x x k-=+ 此时()()1221212122211S S y y y y k x k x -=-=+=+++()212122234kk x x k k =++=+因为0k ≠,上式234k k=≤+==当且仅当k =) 所以12S S -22.(2021·天津高三其他模拟)已知椭圆()2222:10y x C a b a b +=>>的离心率为e =其左右顶点分别为,A B ,下焦点为F,若ABFS.(1)求椭圆C 的方程;(2)若点P 为椭圆C 上的动点,且在第一象限运动,直线AP 的斜率为k ,且与y 轴交于点M ,过点M 与AP 垂直的直线交x 轴于点N ,若直线PN 的斜率为25k -,求k 值.【详解】(1)由题可知:122ABFSbc =⋅=2bc e ==,22221bc a cb ac a b c⎧=⎧⎪=⎪⎪∴=⇒=⎨⎨⎪⎪=⎩=+⎪⎩, ∴椭圆方程为2214y x +=; (2)()1,0,AP A k k -=,设直线():(1),0,AP l y k x M k =+∴,联立方程()222222(1)424014y k x k x k x k y x =+⎧⎪⇒+++-=⎨+=⎪⎩, 222224,44A P A P k k x x x x k k --∴+=⋅=++, ()22248,144p p p k kx y k x k k -∴=∴=+=++,22248,44k k P k k ⎛⎫-∴ ⎪++⎝⎭,MN AP ⊥,设直线1:,MN l y x k k=-+令0y =,解得2N x k =,()2,0N k ∴, 2222824454PNk k k k k k k +==---+,即425240k k +-=,解得23k =或28k =-(舍), P 在第一象限,k ∴=23.(2021·全国高三其他模拟)已知双曲线C :()22221,0x y a b a b-=>>的一条渐近线与直线0l :0x -=垂直,且双曲线C 的右焦点F 到直线0l 的距离为1. (1)求双曲线C 的标准方程;(2)记C 的左、右顶点分别为1A ,2A ,过点F 的直线l 与双曲线C 的右支交于M ,N 点,且直线1A M 与直线2A N交于点Q ,求证:1AQ QF =.【详解】(1)由题知双曲线C 的渐近线方程为by x a =±, ∵双曲线的一条渐近线与直线0l:0x -=垂直,∴ba=b =.设(),0F c ,12c==,∴2c =. ∵222c a b =+,∴22244a b a =+=, ∴21a =,23b =,故双曲线C 的标准方程为2213y x -=.(2)由(1)可得()2,0F ,()11,0A -,()21,0A . ①当直线l 的斜率不存在时,直线l 的方程为2x =,结合双曲线C 的方程可得3=±y , 若()2,3M ,()2,3N -,则直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 若()2,3M -,()2,3N ,则直线1A M 的方程为1y x =--,直线2A N 的方程为33y x =-, 由直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫- ⎪⎝⎭,∴点Q 在直线12x =上,又1A F 的垂直平分线为直线12x =,∴1AQ QF =. ②当直线l 的斜率存在时,设直线l 的方程为()2y k x =-,()11,M x y ,()22,N x y , 由题可知0k ≠,联立,得()22213y k x y x =-⎧⎪⎨-=⎪⎩,消去y 可得()222234430k x k x k -+--=,由直线l 与双曲线C 有两个交点,得23k ≠,212243k x x k +=-,2122433k x x k +=-.∵直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,∵()()21121111y x x x y x ++=--,两边同时平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-, 又221113y x -=,222213y x -=,∴()()()()()()222221212222121231111311x x y x y x x x -++=---()()()()21121111x x x x ++=--()()1212121211x x x x x x x x +++=-++22222222434133434133k k k k k kk k +++--=+-+-- 22222243434343k k k k k k +++-=+-+- 9=,∴2191x x +⎛⎫= ⎪-⎝⎭,解得12x =或2x =. 由题易知()()211101y x y x +<-,当2x =时,101x x +>-,矛盾,舍去,故12Q x =,即点Q 在直线12x =上, 又1A F 的垂直平分线为直线12x =,∴1AQ QF =. 24.(2021·河南郑州市·高三三模(文))椭圆()222210,0x y a b a b +=>>经过点()0,1.若斜率为k的直线l 与椭圆交于不同的两点E 、G . (1)求椭圆的标准方程;(2)设()2,0P -,直线PE 与椭圆的另一点交点为M ,直线PG 与椭圆的另一个交点为N .若M 、N 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .【答案】(1)2213x y +=;(2)1k =.【详解】(1)因为椭圆()222210,0x y a b a b +=>>经过点()0,1,所以b =1,222213b e a =-= ,即2213b a =,解得a所以椭圆的方程是2213x y +=.(2)设()()11223344,,,,(,),(,)E x y G x y M x y N x y ,则221133x y +=,①222233x y +=,② 又()2,0P -,所以设1112PE y k k x ==+,直线PE 的方程为()12y k x =+, 由()122213y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222211113121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,所以13171247x x x --=+,13147y y x =+,即1111712(,)4747x y M x x --++,同理可得2222712(,)4747x y N x x --++,又因为71,44Q ⎛⎫-⎪⎝⎭,由Q 、M 、N 三点共线, 可得121212124747712712471144777444y y x x x x x x --++=----++++,化简得12121y y x x -=-,即1k =. 25.(2021·浙江高三二模)如图,A 点在y 轴正半轴上,抛物线2y x =上有三个不同的点B ,C ,D ,使得四边形ABCD 是菱形,C 点在第四象限.(1)若B 点与坐标原点重合,求菱形ABCD 的面积; (2)求OA 的最小值.【答案】(1)63(51)25++【详解】(1)设点A (0,2a ),因四边形ABCD 是菱形且B 点与坐标原点,则CD ⊥x 轴且|CD |=2a , 由抛物线对称性知C (a 2,-a ),D (a 2,a ),由|AB |=|BC |得2222()a a a =+3a =所以菱形ABCD 的边|AB |=3h =a 2=3,其面积为||333S AB h =⋅==(2)设点B (s 2,s ),D (t 2,t ),则线段BD 中点坐标为22(,)22s t s t++,而线段AC 与BD 有相同中点,点A 在y 轴上,则点2222(,)C s t s t +-+,22(0,)A s t s t ++,因AC ⊥BD ,即0AC BD ⋅=,222222(,2),(,)AC s t s t s t BD t s t s =+---+=--,222222()()(2)()0s t t s s t s t t s +-+---+-=,而t ≠s ,则22222()()s t s t s t s t +++=++令222s t m +=,则221m s t m +=-,而222()2()s t s t +<+,m>0,有12m + 322222||11m m m OA s t s t m m m +=+++=+=--,令32(),(12)1m mf m m m +=>+-,22342222222(31)(1)2()41(25)(25)()(1)(1)m m m m m m m m m f m m m +--+-----+'==-- ()025f m m '=⇒=+1225,()0m f m '+<<+<,25,()0m f m '>+>,所以()f m 在(12,25)++上单调递减,在(25,)++∞上单调递增,25m =+时,()f m 取最小值2(35)25(51)25(51)25(25)512(51)f +++++++===++. 26.(2021·四川广元市·高三三模(理))已知抛物线22(0)y px p =>的焦点为F .(1)若点(),1C p 3(2)点(),1C p ,若线段CF 的中垂线交抛物线于A ,B 两点,求三角形ABF 面积的最小值. 【答案】(1)2y =;(2)4. 【详解】(1)抛物线的准线方程是2p x =-,焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,2p p ∴+=0p >,p ∴=∴抛物线的方程为2y =(2)由题意知线段CF 的中点坐标为31,42p M ⎛⎫⎪⎝⎭,1022CF k p p p -==-, 2AB pk ∴=-∴直线AB 的方程为13224p p y x ⎛⎫-=- ⎪⎝⎭设()11,A x y ,()22,B x y由2213224y pxp p y x ⎧=⎪⎨⎛⎫-=-- ⎪⎪⎝⎭⎩,得2234202p y y +--= 124y y ∴+=-,212322y y p =--)2124||p AB y p+∴=-==又||CF ==2411||||228ABFp SAB CF p+∴=⨯⨯==令2(0)t p t =>,则3(4)()t f t t +=,222(4)(2)()t t f t t+-'= ∴当02t <<时,()0f t '<,()f t 递减,当2t >时,()0f t '>,()f t 递增, ∴当2t =即p =ABFS △取得最小值,最小值为84=.27.(2021·河南郑州市·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于A 、B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率; (2)若02y ≥,求△PAB 面积的最小值. 【答案】(1)3±;(2)最小值为2.【详解】(1)由题意,可设切线PB 的方程为y kx m =+,代入抛物线的方程得2440x kx m --=, 由相切的条件得:216160k m ∆=+=,即20k m +=,由直线与圆相切可得圆心到直线距离1d ==,即222k m m =+,∴230m m +=,可得3m =-或0m =,∵当0m =时,有PB 的方程为0y =,此时(0,0)P 与圆E 的有且仅有一条切线, ∴3m =-,舍去0m =,故23k =,即3k =±.(2)设切线方程为00()y y k x x -=-,即000kx y y kx -+-=,圆心到直线距离1d ==,整理得222000000(1)(22)20k x x y x k y y --+++=,而220004(2)0x y y ∆=++>(02y ≥),设P A ,PB 斜率分别为12,k k ,则20000012122200222+,,11x y x y y k k k k x x ++=⋅=-- 令y =0,得000012,A B y yx x x x k k =-=-,0000120000121212000|||()()|||||y y y y k k AB x x y y k k k k k k -=---=-=⋅==00011||22PABSAB y y =⋅== 令222(6)(),2(2)y y y f y y y +=≥+,2232(4+18()0(2)y y y f y y +'=>+),则()f y 在[2,)+∞上单调递增,即min ()(2) 4.f y f ==∴PABS的最小值为2.28.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程; (2)求点A 到直线l 的距离的最小值.【答案】(1)焦点坐标()0,1,准线方程1y =-;(2)232416. 【详解】(1)抛物线的标准方程为24x y =,所以其焦点坐标()0,1,准线方程1y =-;(2)已知204x y =,则点A 处的切线方程:20024x x y x =-,因为过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线所以()202222004124x t x t x x x t t t ⎧-⎪⋅=-⎪⎪-⎨⎪⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,化简得:224200030216x t t x x +--=.由0t >得:)242000200042202x x x t y y y t -+==-++> 设()11,E x y ,()22,F x y ,则由120k k +=得:1020044x x x x +++=,即0122x x x -=+, 所以021212EF x y y k x x -==--,由8OM NO =得0,8t N ⎛⎫- ⎪⎝⎭, 所以,直线l :028x ty x =--,则023y d +==23=[)01,y ∈+∞上单调递增所以,当01y =时,min 416d =, 此时,直线l 与抛物线相交.29.(2021·宁夏银川市·银川一中高三三模(理))已知椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率e =,椭圆上的点到焦点的最短距离为1. 直线l 与y 轴交于点()0,P m ,与椭圆C 交于相异两点A 、B ,且3AP PB =.(1)求椭圆C 的方程; (2)求m 的取值范围.【答案】(1)22112x y +=; (2)11(1,)(,1)22--. 【详解】(1)设椭圆的方程为2222:1(0)C bb x a a y +>>=,因为椭圆C 的离心率e =,椭圆上的点到焦点的最短距离为1-, 可得2c e a ==且12a c -=-,解得1,2a c ==, 则22212b ac =-=,所以椭圆的方程为22112x y +=. (2)由题意,直线l 的斜率显然存在,设:l y kx m =+,与椭圆C 交点为1122(,),(,)A x y B x y ,联立方程组2221y kx m x y =+⎧⎨+=⎩,整理得222(2)2(1)0k x kmx m +++-=, 所以22222(2)4(2)(1)4(22)0km k m k m ∆=-+-=-+>,且212122221,22km m x x x x k k --+==++, 因为3AP PB =,所以123x x -=,可得122212223x x x x x x +=-⎧⎨=-⎩, 消去2x 得212123()40x x x x ++=,即2222213()4022km m k k --⨯+⨯=++, 整理得22224220k m m k +--=,即222(41)22m k m -=-, 当214m =时上式不成立, 当214m ≠时,可得2222241m k m -=-, 由3AP PB =,可得0k ≠,所以22222041m k m -=>-,解得112m -<<-或112m <<, 经验证此时2222k m >-成立,即0∆>成立,所以实数m 的取值范围为11(1,)(,1)22--. 30.(2021·山东济宁市·高三二模)己知抛物线()2:20C x py p =>,过点()0,T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A ,B 两点,2l 交抛物线C 于E 、F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12. (1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求OMN 面积的最小值.【答案】(1)2=4x y ;(2)8.【详解】(1)因为()220x py p =>可化为22x y p =,所以x y p '=. 因为当A 点的横坐标为1时,抛物线C 在A 点处的切线斜率为12, 所以112p =,所以2p =, 所以,抛物线C 的标准方程为2=4x y .(2)由(1)知点T 坐标为()0,2,由题意可知,直线1l 和2l 斜率都存在且均不为0,设直线1l 方程为2y kx =+,由224y kx x y=+⎧⎨=⎩联立消去y 并整理得,2480x kx --=, ()2243216320k k ∆=-+=+>, 设()11,A x y ,()22,B x y ,则124x x k +-,128x x ⋅=-, 所以,()21212444y y k x x k +=++=+, 因为M 为AB 中点,所以()22,22M k k +, 因为12l l ⊥,N 为EF 中点,所以222,2N k k ⎛⎫-+ ⎪⎝⎭, 所以,直线MN 的方程为()()()22222221222222k k y k x k k x k k k k⎛⎫+-+ ⎪⎛⎫⎝⎭-+=⋅-=-⋅- ⎪⎝⎭+ 整理得14y k x k ⎛⎫=-+ ⎪⎝⎭, 所以,直线MN 恒过定点()0,4. 所以OMN面积1211424=4()482S k k k k k k ⎛⎫=⨯⨯--=++≥⋅= ⎪⎝⎭, 当且仅当1kk即1k =±时,OMN 面积取得最小值为8.。

高考数学解析几何压轴题

高考数学解析几何压轴题

2.圆锥曲线1.(2017·福建厦门第一中学期中)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限内的交点,且||MF =53. (1)求C 1的方程;(2)已知菱形ABCD 的顶点A ,C 在椭圆C 1上,顶点B ,D 在直线7x -7y +1=0上,求直线AC 的方程. 解 (1)设M (x 1,y 1)(x 1>0,y 1>0),椭圆的左、右焦点分别为F 1,F 2,由题意知点F 2即为点F (1,0).由抛物线的定义,|MF 2|=53⇒x 1+1=53⇒x 1=23, 因为y 21=4x 1, 所以y 1=263,即M ⎝⎛⎭⎫23,263, 所以|MF 1|=⎝⎛⎭⎫23+12+⎝⎛⎭⎫2632=73,由椭圆的定义得2a =|MF 1|+|MF 2|=73+53=4⇒a =2, 所以b =a 2-c 2=3,所以椭圆C 1的方程为x 24+y 23=1. (2)因为直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,所以AC ⊥BD ,设直线AC 的方程为y =-x +m ,代入椭圆C 1的方程,得7x 2-8mx +4m 2-12=0,由题意知,Δ=64m 2-28(4m 2-12)>0⇔-7<m <7.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8m 7,y 1+y 2=2m -(x 1+x 2)=-8m 7+2m =6m 7, 所以AC 中点的坐标为⎝⎛⎭⎫4m 7,3m 7,由四边形ABCD 为菱形可知,点⎝⎛⎭⎫4m 7,3m 7在直线BD 上,所以7·4m 7-7·3m 7+1=0⇒m =-1∈()-7,7. 所以直线AC 的方程为y =-x -1,即x +y +1=0.2.(2017·湖南师大附中月考)已知椭圆C 的中心在原点,离心率为22,其右焦点是圆E :(x -1)2+y 2=1的圆心. (1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点M ,N .试推断是否存在点P ,使|MN |=143?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c , 因为椭圆的右焦点是圆E 的圆心,所以c =1, 因为椭圆的离心率为22,则c a =22,即a =2c =2, 从而b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)设点P (x 0,y 0)(x 0<0),M (0,m ),N (0,n ),则直线PM 的方程为y =y 0-m x 0x +m , 即(y 0-m )x -x 0y +mx 0=0.因为圆心E (1,0)到直线PM 的距离为1, 即|y 0-m +x 0m |(y 0-m )2+x 20=1,即(y 0-m )2+x 20=(y 0-m )2+2x 0m (y 0-m )+x 20m 2,即(x 0-2)m 2+2y 0m -x 0=0,同理可得,(x 0-2)n 2+2y 0n -x 0=0.由此可知,m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两个实根,所以m +n =-2y 0x 0-2,mn =-x 0x 0-2, |MN |=|m -n |=(m +n )2-4mn =4y 20(x 0-2)2+4x 0x 0-2=4x 20+4y 20-8x 0(x 0-2)2. 因为点P (x 0,y 0)在椭圆C 上,则x 202+y 20=1, 即y 20=1-x 202, 则|MN |=2x 20-8x 0+4(x 0-2)2=2(x 0-2)2-4(x 0-2)2=2-4(x 0-2)2, 令2-4(x 0-2)2=143, 则(x 0-2)2=9,因为x 0<0,则x 0=-1,y 20=1-x 202=12,即y 0=±22, 故存在点P ⎝⎛⎭⎫-1,±22满足题设条件. 3.已知点P 是椭圆C 上任意一点,点P 到直线l 1:x =-2的距离为d 1,到点F (-1,0)的距离为d 2,且d 2d 1=22,直线l 与椭圆C 交于不同的两点A ,B (A ,B 都在x 轴上方),且∠OF A +∠OFB =180°.(1)求椭圆C 的方程;(2)当A 为椭圆与y 轴正半轴的交点时,求直线l 的方程;(3)对于动直线l ,是否存在一个定点,无论∠OF A 如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.解 (1)设P (x ,y ),则d 1=|x +2|,d 2=(x +1)2+y 2, ∴d 2d 1=(x +1)2+y 2|x +2|=22,化简得,x 22+y 2=1, ∴椭圆C 的方程为x 22+y 2=1. (2)A (0,1),F (-1,0),∴k AF =1-00-(-1)=1, 又∵∠OF A +∠OFB =180°,∴k BF =-1,直线BF 的方程为y =-(x +1)=-x -1,代入x 22+y 2=1,解得⎩⎪⎨⎪⎧ x =0y =-1(舍),⎩⎨⎧ x =-43,y =13.∴B ⎝⎛⎭⎫-43,13, k AB =1-130-⎝⎛⎭⎫-43=12, ∴直线AB 的方程为y =12x +1,即直线l 的方程为x -2y +2=0. (3)方法一 ∵∠OF A +∠OFB =180°,∴k AF +k BF =0.设A (x 1,y 1),B (x 2,y 2),直线AB 方程为y =kx +b ,将直线AB 的方程y =kx +b 代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2kbx +b 2-1=0.∴x 1+x 2=-2kb k 2+12,x 1x 2=b 2-1k 2+12, ∴k AF +k BF =y 1x 1+1+y 2x 2+1=kx 1+b x 1+1+kx 2+b x 2+1=(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)(x 1+1)(x 2+1)=0, ∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=2kx 1x 2+(k +b )(x 1+x 2)+2b=2k ×b 2-1k 2+12-(k +b )×2kb k 2+12+2b =0, ∴b -2k =0,∴直线AB 的方程为y =k (x +2),∴直线l 总经过定点M (-2,0),方法二 由于∠OF A +∠OFB =180°,∴点B 关于x 轴的对称点B 1在直线AF 上.设A (x 1,y 1),B (x 2,y 2),B 1(x 2,-y 2),直线AF 方程为y =k (x +1).代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2k 2x +k 2-1=0. ∴x 1+x 2=-2k 2k 2+12,x 1x 2=k 2-1k 2+12, ∴k AB =y 1-y 2x 1-x 2, 直线AB 的方程为y -y 1=y 1-y 2x 1-x 2(x -x 1), 令y =0,得x =x 1-y 1(x 1-x 2)y 1-y 2=x 2y 1-x 1y 2y 1-y 2. 又∵y 1=k (x 1+1),-y 2=k (x 2+1),∴x =x 2y 1-x 1y 2y 1-y 2=x 2×k (x 1+1)+x 1×k (x 2+1)k (x 1+1)+k (x 2+1)=2x 1x 2+x 1+x 2x 1+x 2+2=2×k 2-1k 2+12-2k 2k 2+122-2k 2k 2+12=-2. ∴直线l 总经过定点M (-2,0).4.(2017·广西南宁二中、柳州高中、玉林高中联考)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=3FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意可设直线AB :x =my +1,设A (x 1,y 1),B (x 2,y 2),将直线AB 与抛物线联立⎩⎪⎨⎪⎧ x =my +1y 2=4x⇒y 2-4my -4=0, 由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4, ∵AF →=3FB →,∴y 1=-3y 2,∴m 2=13,∴直线AB 的斜率为3或- 3.(2)S 四边形OACB =2S △AOB =2·12||OF ||y 1-y 2=||y 1-y 2=(y 1+y 2)2-4y 1y 2=16m 2+16≥4, 当m =0时,四边形OACB 的面积最小,最小值为4.5.(2017·惠州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎫1,22在椭圆C 上,所以2a =||AF 1+||AF 2=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9且-3<t <3. 由PM →=NQ →,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. (也可由PM →=NQ →知四边形PMQN 为平行四边形而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.) 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围[-1,1]矛盾. 因此点Q 不在椭圆上,即椭圆上不存在满足题意的Q 点.6.(2017·河南开封月考)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.解 (1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1. (2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0),∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1kx . ⎩⎪⎨⎪⎧ y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4, S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4), (4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85. 综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85.。

7.3 解析几何(压轴题)

7.3 解析几何(压轴题)

7.3解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验·对方向1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1.因此点P的轨迹方程为x2+y2=2.F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P-,Q-,R-.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=----=-b=k2.所以AR∥FQ.l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.由题设可得|b-a|--,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).(x≠1).当AB与x轴不垂直时,由k AB=k DE可得-而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.新题演练提能·刷高分1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.B(x,y),则AB的中点D,y>0.∵C(0,1),则-,在☉C中,∵DC⊥DB,∴=0,∴-+y=0,即x2=4y(y>0).∴点B的轨迹E的方程为x2=4y(y>0).E的方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2).∵y=,∴y'=,∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2).由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.∵点P在这两条切线上,∴2(y1-1)=tx1,2(y2-1)=tx2,即直线MN的方程为2(y-1)=tx,故直线2(y-1)=tx过定点C(0,1).2.(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.设P(x,y),∵A(-2,0),B(2,0),∴k1=,k2=,-又k1k2=-,∴-=-,∴=1(x≠±2),∴轨迹C的方程为=1(x≠±2).(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故△△ ,S=△△=S△PQO,当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×--; 当直线PQ的斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,Δ=144(k2+1)>0,--故|PQ|=|x1-x2|=-, 点O到直线PQ的距离d=,S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6---,故S的最大值为.3.(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).①设W(x0,y0),证明:<1;②求四边形QRST的面积的最小值.r,由于D在圆内,圆P与圆C内切,则|PC|=2-r,|PD|=r,|PC|+|PD|=2>|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b=-=1,E的方程为+y2=1.(2),垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,同理得|RT|=2,∴S QSRT=|QS|·|RT|=,当且仅当2k2+1=k2+2,即k=±1时等号成立.综上所述,当k=±1时,四边形QRST的面积取得最小值.4.(2018福建福州3月质检)设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.(1)求E的方程;(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.设点M(x,y),A(x1,y1),则Q(x1,0),因为2,所以2(x1-x,-y)=(0,-y1),所以---解得由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为+y2=1.(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).由得(1+4k2)x2+8kx=0.设B(x1,y1),P(x2,y2),因此x1=0,x2=-,|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=, 由-得3y2+2y-5+=0(-1≤y≤1),(*)依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,设f(x)=3x2+2x-5+(-1<x<1),因为函数f(x)的对称轴为x=-,要使函数f(x)的图象在(-1,1)与x轴有两个不同的交点, 则---整理得--即--所以解得k∈----,所以k的取值范围为----.命题角度2直线与圆锥曲线的位置关系高考真题体验·对方向1.(2018全国Ⅰ·19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;为坐标原点,证明:∠OMA=∠OMB.F(1,0),l的方程为x=1.由已知可得,点A的坐标为或-.所以AM的方程为y=-x+或y=x-.l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=--,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0.从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.2.(2018全国Ⅱ·19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.A,B且与C的准线相切的圆的方程.由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.(2018全国Ⅲ·20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差.A(x1,y1),B(x2,y2),则=1,=1.两式相减,并由--=k得·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P-,||=.于是||=-=--=2-.同理||=2-.所以||+||=4-(x1+x2)=3.故2||=||+||,则||,||,||成等差数列,设该数列的公差为d,则2|d|=|||-|||=|x1-x2|=-.②将m=代入①得k=-1.所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.4.(2017全国Ⅲ·20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB 为直径的圆.(1)证明:坐标原点O在圆M上;过点P(4,-2),求直线l与圆M的方程.A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为-=-1,所以OA⊥OB.故坐标原点O在圆M 上.(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-.5.(2017北京·18)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=-,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1),直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=-=-=-=--=0,所以y1+=2x1.故A为线段BM的中点.6.(2017天津·19)设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.设F的坐标为(-c,0).依题意,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=-,故D-.所以|AD|=1--.又因为△APD的面积为,故,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-3=0.新题演练提能·刷高分1.(2018河北唐山一模)已知椭圆Γ:=1(a>b>0)的左焦点为F,上顶点为A,长轴长为2,B为直线l:x=-3上的动点,M(m,0),AM⊥BM.当AB⊥l时,M与F重合.(1)求椭圆Γ的方程;BM交椭圆Γ于P,Q两点,若AP⊥AQ,求m的值.依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),=-1,由AF⊥BF,得k AF·k BF=-又b2+c2=6,解得c=2,b=.所以,椭圆Γ的方程为=1.(2)由(1)得A(0,),依题意,显然m≠0,所以=-,又AM⊥BM,所以k BM=,所以直线BM的方程为y=(x-m),设P(x1,y1),Q(x2,y2).-联立有(2+3m2)x2-6m3x+3m4-12=0,x1+x2=,x1x2=-.|PM|·|QM|=|(x1-m)(x2-m)|=|x1x2-m(x1+x2)+m2|=-=-,|AM|2=2+m2,由AP⊥AQ得,|AM|2=|PM|·|QM|,所以-=1,解得m=±1.2.(2018河南郑州一模)已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l的方程.解(1)C:x2+y2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心C为(-1,1).∵F,0,∴|CF|=-,解得p=6.∴抛物线的方程为y2=12x.(2)设直线l为x=my+t(t≠0),A(x1,y1),B(x2,y2).联立可得y2-12my-12t=0.∴y1+y2=12m,y1y2=-12t.∵OA⊥OB,∴x1x2+y1y2=0,即(m2+1)y1y2+mt(y1+y2)+t2=0.整理可得t2-12t=0,∵t≠0,∴t=12.∴直线l的方程为x=my+12,故直线l过定点P(12,0).∴当CN⊥l时,即动点M经过圆心C(-1,1)时到动直线l的距离取得最大值.=-,∴m=,k MP=k CP=---此时直线l的方程为x=y+12,即为13x-y-156=0.3.(2018甘肃第一次诊断性考试)椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且∠APF2=∠BPF2,求直线AB 的方程.由题意可得|PF2|==3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,所以椭圆E的方程为=1.(2)易知点P的坐标为(2,3).因为∠APF2=∠BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由--可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,∴x1+2=-.同理,直线PB的方程为y-3=-k(x-2),可得x2+2=---,∴x1+x2=-,x1-x2=-,k AB=--------,∴满足条件的直线AB的方程为y+1=(x-1),即为x-2y-3=0.命题角度3圆锥曲线的最值、范围问题高考真题体验·对方向1.(2017山东·21)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程.(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T,求∠SOT的最大值并求取得最大值时直线l的斜率.由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程-得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-.所以|AB|=|x1-x2|=.由题意可知圆M的半径r为r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立方程得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t>1,∈(0,1),因此--=--≥1,当且仅当,即t=2时等号成立,此时k1=±,所以sin ,因此.所以∠SOT最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为k1=±.2.(2016全国Ⅱ·20)已知椭圆E:=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;2|AM|=|AN|时,求k的取值范围.设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×.(2)由题意t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=-得x1=-,故|AM|=|x1+.由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.t>3等价于-----<0,即--<0.由此得--或--解得<k<2.因此k的取值范围是(,2).3.(2016全国Ⅰ·20)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为:=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由-得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=-,所以|MN|=|x1-x2|=.过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2-=4.故四边形MPNQ的面积S=|MN||PQ|=12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8.新题演练提能·刷高分1.(2018江西南昌一模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.依题意F,当直线AB的斜率不存在时,|y1y2|=-p2=-4,p=2.当直线AB的斜率存在时,设AB:y=k-,由-化简得y2-y-p2=0.由y1y2=-4,得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),B,则E(-1,t).又由y1y2=-4,可得A-.因为k EF=-,AD⊥EF,所以k AD=,故直线AD:y+-.由---化简得y2-2ty-8-=0,所以y1+y0=2t,y1y0=-8-.所以|AD|=·|y1-y0|=-.设点B到直线AD的距离为d,则d=---.所以S△ABD=|AD|·d=≥16,当且仅当t4=16,即t=±2.当t=2时,直线AD的方程为x-y-3=0,当t=-2时,直线AD的方程为x+y-3=0.2.(2018山东济南一模)在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B 两点.(1)若直线OA,OB的斜率之积为-,证明:直线l过定点;(2)若线段AB的中点M在曲线C2:y=4-x2(-22)上,求的最大值.A(x1,y1),B(x2,y2),由题意可知直线l的斜率存在,设直线l的方程为y=kx+m,由得x2-4kx-4m=0, Δ=16(k2+m)>0,x1+x2=4k,x1x2=-4m,k OA·k OB==-,由已知:k OA·k OB=-,所以m=1,所以直线l的方程为y=kx+1,所以直线l过定点(0,1).M(x0,y0),则x0==2k,y0=kx0+m=2k2+m,将M(x0,y0)代入C2:y=4-x2(-2<x<2),得2k2+m=4-(2k)2,∴m=4-3k2.∵-2<x0<2,∴-2<2k<2,∴-<k<.∵Δ=16(k2+m)=16(k2+4-3k2)=32(2-k2)>0,∴-<k<,故k的取值范围是k∈(-.|AB|=-,将m=4-3k2代入,得|AB|=4-≤4-=6当且仅当k2+1=2-k2,即k=±时取等号,所以|AB|的最大值为63.(2018山东青岛一模)已知O为坐标原点,点A,B在椭圆C:+y2=1上,点E-在圆D:x2+y2=r2(r>0)上,AB的中点为Q,满足O,E,Q三点共线.(1)求直线AB的斜率;(2)若直线AB与圆D相交于M,N两点,记△OAB的面积为S1,△OMN的面积为S2,求S=S1+S2的最大值.设A(x1,y1),B(x2,y2),AB的中点Q(x0,y0).∵点A,B在椭圆C上,∴相减得-+(y1-y2)(y1+y2)=0.∴k AB=-=-.-∵x0=,y0=,∴k AB=-.∵E-,∴k OE=-.∵O,E,Q三点共线,∴k OQ=k OE=-,∴k AB=-=1.(2)∵点E-在圆D上,∴r2=-.∴圆D的方程为x2+y2=.设直线AB的方程:y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0得m2<3.x1+x2=-,x1x2=-,则|AB|=--.设O到直线AB的距离为d,d=,∴|MN|=2-=2-.∴S=S1+S2=|AB|·d+|MN|·d=-×2-|m|--=--,∴当m2=<3时,即m=±时,S max=.4.(2018广东珠海3月质检)已知抛物线C1:y2=2px(p>0),圆C2:x2+y2=4,直线l:y=kx+b与抛物线C1相切于点M,与圆C2相切于点N.(1)若直线l的斜率k=1,求直线l和抛物线C1的方程;F为抛物线C1的焦点,设△FMN,△FON的面积分别为S1,S2,若S1=λS2,求λ的取值范围.由题设知l:x-y+b=0,且b>0,由l与C2相切知,C2(0,0)到l的距离d==2,得b=2,∴l:x-y+2=0.将l与C1的方程联立消x得y2-2py+4p=0,其Δ=4p2-16p=0得p=4∴C1:y2=8x.综上,l:x-y+20,C1:y2=8(2)不妨设k>0,根据对称性,k>0得到的结论与k<0得到的结论相同.此时b>0,又知p>0,设M(x1,y1),N(x2,y2),由消y得k2x2+2(kb-p)x+b2=0,其Δ=4(kb-p)2-4k2b2=0得p=2kb,从而解得M,由l与C2切于点N知C2(0,0)到l:kx-y+b=0的距离d==2,得b=2,则p=4k,故M.由得N,故|MN|=M-x N|=.F到l:kx-y+b=0的距离d0==2k2+2,∴S1=S△FMN=|MN|d0=,又S2=S△FON=|OF|·|y N|=2k,∴λ=(k2+1)=2k2++3≥2+3.当且仅当2k2=即k=时取等号,与上同理可得,k<0时亦是同上结论.综上,λ的取值范围是[3+2,+∞).命题角度4圆锥曲线的定值、定点问题高考真题体验·对方向1.(2017全国Ⅰ·20)已知椭圆C:=1(a>b>0),四点P1(1,1),P2(0,1),P3-,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l 过定点.P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为---.则k 1+k 2=- --=-1,得t=2,不符合题设.从而可设l :y=kx+m (m ≠1). 将y=kx+m代入 +y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-,x 1x 2=-.而k 1+k 2= --= - - =-.由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0. 即(2k+1)· -+(m-1)·-=0.解得k=-. 当且仅当m>-1时,Δ>0,于是l :y=-x+m ,即y+1=-(x-2), 所以l 过定点(2,-1). 2.(2016北京·19)已知椭圆C :=1(a>b>0)的离心率为,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN|·|BM|为定值.解得a=2,b=1. 所以椭圆C 的方程为+y 2=1. (1)知,A (2,0),B (0,1).设P (x 0,y 0),则 +4=4.当x 0≠0时,直线PA 的方程为y= -(x-2).令x=0,得y M =--,从而|BM|=|1-y M |=-.直线PB的方程为y=-x+1.令y=0,得x N=--,从而|AN|=|2-x N|=-.所以|AN|·|BM|=--=----=----=4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.3.(2015全国Ⅱ·20)已知椭圆C:=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.由题意有-=1,解得a2=8,b2=4.所以C的方程为=1.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入=1,得(2k2+1)x2+4kbx+2b2-8=0.故x M=-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.新题演练提能·刷高分1.(2018福建厦门第一次质检)设O为坐标原点,椭圆C:=1(a>b>0)的左焦点为F,离心率为.直线l:y=kx+m(m>0)与C交于A,B两点,AF的中点为M,|OM|+|MF|=5.(1)求椭圆C的方程;(2)设点P(0,1),=-4,求证:直线l过定点,并求出定点的坐标.F1,则OM为△AFF1的中位线.∴OM=AF1,MF=AF,∴|OM|+|MF|==a=5,∵e=,∴c=2,∴b=∴椭圆C的方程为=1.A(x1,y1),B(x2,y2),联立消去y,整理得(1+5k2)x2+10mkx+5m2-25=0.∴Δ>0,x1+x2=-,x1x2=-,∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=--=-.∵P(0,1),=-4,∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4,∴--+5=0,整理得3m2-m-10=0,解得m=2或m=-(舍去).∴直线l过定点(0,2).2.(2018安徽合肥第二次质检)已知点A(1,0)和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.(1)求动点B的轨迹方程;(2)已知点P(2,0),Q(2,-1),经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.(1)解如图,设以线段AB为直径的圆的圆心为C,取A'(-1,0).依题意,圆C内切于圆O,设切点为D,则O,C,D三点共线,∵O为AA'的中点,C为AB中点,∴A'B=2OC.∴|BA'|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA'|=2,∴动点B的轨迹是以A,A'为焦点,长轴长为4的椭圆,设其方程为=1(a>b>0), 则2a=4,2c=2,∴a=2,c=1,∴b2=a2-c2=3,∴动点B的轨迹方程为=1.当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆=1相切,与题意不符.②当直线l的斜率存在时,设直线l的方程为y+1=k(x-2).由-消去y整理得(4k2+3)x2-(16k2+8k)x+16k2+16k-8=0.∵直线l与椭圆交于M,N两点,∴Δ=(16k2+8k)2-4(4k2+3)(16k2+16k-8)>0,解得k<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=-,∴k PM+k PN=--------=2k---=2k----=2k---=2k----=2k+3-2k=3(定值).3.(2018北京丰台期末)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=-1的距离相等,记点P的轨迹为C.(1)求C的方程;(2)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C 相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.因为动点P到点F(1,0)的距离和它到直线x=-1的距离相等,所以动点P的轨迹是以点F(1,0)为焦点,直线x=-1为准线的抛物线.设C的方程为y2=2px,则=1,即p=2.所以C的轨迹方程为y2=4x.(2)设A,m,则B+2,0,所以直线AB 的斜率为k= -=-.设与AB 平行,且与抛物线C 相切的直线为y=-x+b ,由-得my 2+8y-8b=0, 由Δ=64+32mb=0得b=-,所以y D =-,所以点D,-.当,即m ≠±2时,直线AD 的方程为y-m=-x-,整理得y=-(x-1),所以直线AD过定点(1,0).当,即m=±2时,直线AD 的方程为x=1,过定点(1,0).综上所述,直线AD 过定点(1,0).4.(2018四川德阳二诊)已知长度为3 的线段AB 的两个端点A ,B 分别在x 轴和y 轴上运动,动点P 满足=2 ,设动点P 的轨迹为曲线C. (1)求曲线C 的方程;(2)过点(4,0)且斜率不为零的直线l 与曲线C 交于M ,N 两点,在x 轴上是否存在定点T ,使得直线MT 与NT 的斜率之积为常数.若存在,求出定点T 的坐标以及此常数;若不存在,请说明理由. 设P (x ,y ),A (m ,0),B (0,n ),由于=2 ,所以(x ,y-n )=2(m-x ,-y )=(2m-2x ,-2y ),即 - - - 所以又|AB|=3 ,所以m 2+n 2=18,从而+9y 2=18. 即曲线C的方程为=1. (2)由题意设直线l 的方程为:x=my+4,M (x 1,y 1),N (x 2,y 2), 由得(m 2+4)y 2+8my+8=0, 所以--故x 1+x 2=m (y 1+y 2)+8= , x 1x 2=m 2y 1y 2+4m (y 1+y 2)+16= - ,假设存在定点T (t ,0),使得直线MT 与NT 的斜率之积为常数,则k MT ·k NT =- -=.---当t2-8=0,且t-4≠0时,k MT·k NT为常数,解得t=±2.显然当t=2时,常数为;当t=-2时,常数为-,所以存在两个定点T1(2,0),T2(-2,0),使得直线MT与NT的斜率之积为常数,当定点为T1(2,0)时,常数为;当定点为T2(-2,0)时,常数为-.命题角度5圆锥曲线的探究、存在性问题高考真题体验·对方向1.(2015全国Ⅰ·20)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点. (1)当k=0时,分别求C在点M和N处的切线方程;轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2), 即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=--=-.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.2.(2015全国Ⅱ·20)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C 有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M=-,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由-得,即x P=.将点的坐标代入l的方程得b=-,因此x M=-.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×-,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.3.(2014山东·21)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A 的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF 为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,①证明直线AE过定点,并求出定点坐标;②△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.由题意知F,设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+-,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)①由(1)知F(1,0).设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1.由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0, 由题意Δ==0,得b=-.设E(x E,y E),则y E=-,x E=.当≠4时,k AE=--=---,可得直线AE的方程为y-y0=-(x-x0),由=4x0,整理可得y=-(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).②由①知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=-.设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.所以点B到直线AE的距离为d=-==4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.新题演练提能·刷高分1.(2018山西太原一模)已知椭圆C:=1(a>b>0)的左顶点为A,右焦点为F2(2,0),点B(2,-在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.依题意,c=2.∵点B(2,-)在C上,∴=1.∵a2=b2+c2,∴a2=8,b2=4,∴椭圆方程为=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),则F(-x1,-y1),联立消去y化简得(1+2k2)x2-8=0,解得x1=,y1=.∵A(-2,0),∴AE所在直线方程为y=·(x+2),∴M0,,同理可得N0,-,=-x0,,=-x0,-,由=0,得-4=0.∴x0=2或x0=-2.∴存在点P,使得无论非零实数k怎么变化,总有∠MPN为直角,点P坐标为(2,0)或(-2,0).2.(2018山东菏泽一模)已知抛物线E的顶点为平面直角坐标系xOy的坐标原点O,焦点为圆F:x2+y2-4x+3=0的圆心F.经过点F的直线l交抛物线E于A,D两点,交圆F于B,C两点,A,B 在第一象限,C,D在第四象限.(1)求抛物线E的方程;(2)是否存在直线l使2|BC|是|AB|与|CD|的等差中项?若存在,求直线l的方程;若不存在,请说明理由.∵圆F的方程为(x-2)2+y2=1,∴圆心F的坐标为(2,0),半径r=1.根据题意设抛物线E的方程为y2=2px(p>0),∴=2,解得p=4.∴抛物线E的方程为y2=8x.(2)∵2|BC|是|AB|与|CD|的等差中项,|BC|=2r,∴|AB|+|CD|=4|BC|=4×2r=8.∴|AD|=|AB|+|BC|+|CD|=10r=10.讨论:若l垂直于x轴,则l的方程为x=2,代入y2=8x,解得y=±4.此时|AD|=8,不满足题意; 若l不垂直于x轴,则设l的斜率为k(k≠0),此时l的方程为y=k(x-2),由-得k2x2-(4k2+8)x+4k2=0.设A(x1,y1),B(x2,y2),则x1+x2=.∵拋物线E的准线方程为x=-2,∴|AD|=|AF|+|DF|=(x1+2)+(x2+2)=x1+x2+4.∴+4=10,解得k=±2.当k=±2时,k2x2-(4k2+8)x+4k2=0化为x2-6x+4=0.∵(-6)2-4×1×4>0,∴x2-6x+4=0有两个不相等的实数根.∴k=±2满足题意.∴存在满足要求的直线l:2x-y-4=0或2x+y-4=0.3.(2018山西晋城一模)已知直线l1是抛物线C:x2=2py(p>0)的准线,直线l2:3x-4y-6=0,且l2与抛物线C没有公共点,动点P在抛物线C上,点P到直线l1和l2的距离之和的最小值等于2.(1)求抛物线C的方程;(2)点M在直线l1上运动,过点M作抛物线C的两条切线,切点分别为P1,P2,在平面内是否存在定点N,使得MN⊥P1P2恒成立?若存在,请求出定点N的坐标,若不存在,请说明理由.解(1)作PA,PB分别垂直l1和l2,垂足为A,B,抛物线C的焦点为F0,,由抛物线定义知|PA|=|PF|,所以d1+d2=|PA|+|PB|=|PF|+|PB|,易知d1+d2的最小值即为点F到直线l2的距离,故d=--=2,∴p=2,所以抛物线C的方程为x2=4y.(2)由(1)知直线l1的方程为y=-1,当点M在特殊位置(0,-1)时,易知两个切点P1,P2关于y轴对称,故要使得MN⊥P1P2,点N必须在y轴上.故设M(m,-1),N(0,n),P1x1,,P2x2,,抛物线C的方程为y=x2,求导得y'=x,所以切线MP1的斜率k1=x1,直线MP1的方程为y-x1(x-x1),又点M在直线MP1上,所以-1-x1(m-x1),整理得-2mx1-4=0,同理可得-2mx2-4=0,故x1和x2是一元二次方程x2-2mx-4=0的两根,由韦达定理得-=x2-x1,·(-m,n+1)=(x2-x1)[-4m+(n+1)(x2+x1)]=(x2-x1)[-4m+2m(n+1)]=m(x2-x1)(n-1),可见n=1时,=0恒成立,所以存在定点N(0,1),使得MN⊥P1P2恒成立.4.(2018河北衡水中学七调)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P为该双曲线上异于顶点的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,且点A,C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得||+||=?若存在,求出点P的坐标;若不存在,请说明理由.由题意知,椭圆离心率e=,即a=c,又2a+2c=4(+1),所以a=2,c=2,所以b2=a2-c2=4,所以椭圆的标准方程为=1.所以椭圆的焦点坐标为(±2,0).又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为=1.(2)设P(x0,y0)(x0≠±2),则,因为点P在双曲线=1上,所以=1.-设A(x1,y1),B(x2,y2),直线PF1的方程为y=k(x+2),所以直线PF2的方程为y=(x-2),联立得(2k2+1)x2+8k2x+8k2-8=0,所以x1+x2=-,x1·x2=-,所以|AB|=----.同理可得|CD|=.由题知||+||=|·||·cos θ(θ=∠F1PF2), 即cos θ=.因为=||||cos θ,即(-2-x0)(2-x0)+(-y0)(-y0)=-,又因为=4,所以2(-4)=-----,所以=8,=4.即存在满足题意的点P,且点P的坐标为(±2±2).。

专练14(解析几何压轴题)(30题)2021高考数学考点必杀500题(山东、海南专用)(解析版)

专练14(解析几何压轴题)(30题)2021高考数学考点必杀500题(山东、海南专用)(解析版)

1专练14 解析几何压轴题 (30题)(山东、海南专用)1.(2021·海南高三其他模拟)已知抛物线C 的顶点为坐标原点,焦点为圆F :2220x x y -+=的圆心,y 轴负半轴上有一点P ,直线PF 被C 截得的弦长为5. (1)求点P 的坐标;(2)过点P 作不过原点的直线PA ,PB 分别与抛物线C 和圆F 相切,A ,B 为切点,求直线AB 的方程. 【答案】(1)()0,2P -;(2)4340x y +-=. 【详解】(1)圆F 的方程可化成()2211x y -+=,所以()1,0F ,所以抛物线C 的方程为24y x =.设()()0,0P m m <,则直线PF 的方程为1yx m+=, 由21,4y x my x⎧+=⎪⎨⎪=⎩消去y ,得()2222240m x m x m -++=, 设直线PF 与C 的交点横坐标分别为1x 和2x ,由题意知1225AB x x =++=,即222425m m++=,解得2m =-,故()0,2P -. (2)由条件可设直线PA 的方程为2y kx =-,由22,4y kx y x=-⎧⎨=⎩消去y ,整理得()224440k x k x -++=, 因为PA 与抛物线C 相切,所以()2244160k k ∆=+-=,解得12k =-. 代入原方程组解得()4,4A -.设()00,B x y ,由题意可知点B 与坐标原点关于直线PF :22y x =-对称,所以00001,222,22y x y x ⎧=-⎪⎪⎨⎪=⨯-⎪⎩解得84,55B ⎛⎫- ⎪⎝⎭.2所以直线AB 的方程为()44544845y x -++=--,即4340x y +-=. 2.(2019·海南海口市·高考模拟(理))在直角坐标系xOy 中,抛物线C :26x y =与直线l :3y kx =+交于M ,N 两点.(1)设M ,N 到y 轴的距离分别为1d ,2d ,证明:1d 与2d 的乘积为定值.(2)y 轴上是否存在点P ,当k 变化时,总有OPM OPN ∠=∠?若存在,求点P 的坐标;若不存在,请说明理由.【答案】(1)见解析(2)存在, (0,3)P -【解析】(1)证明:将3y kx =+代入26x y =,得26180x kx --=. 设()11,M x y ,()22,N x y ,则1218x x =-, 从而12121218d d x x x x =⋅==为定值. (2)解:存在符合题意的点,证明如下:设()0,P b 为符合题意的点,直线PM ,PN 的斜率分别为1k ,2k .从而()()()12121212121212233663kx x b x x k k b y b y b k k x x x x x x +-+-+---+=+==. 当3b =-时,有120k k +=对任意k 恒成立,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以点()0,3P -符合题意.3.(2021·海南高三其他模拟)已知椭圆2222:1(0)x y C a b a b+=>>经过点(2,0)A ,过右焦点F 且与x 轴垂直的直线l 被C 截得的线段长为3. (1)求椭圆C 的方程;(2)点P 在椭圆C 上,直线AP 与l 交于点M ,过点M 作AP 的垂线,与y 轴交于点Q ,若PF QF ⊥,求点P 的坐标.【答案】(1)22143x y +=;(2)226,33⎛-± ⎝⎭.3【详解】(1)由条件知2a =.设(,0)(0)F c c >,将x c =代入椭圆方程得22221c y a b+=,得2by a =±,直线l 被C 截得的线段长为3,即223b a ⨯=,所以23b =,因此椭圆C 的方程为22143x y +=.(2)由(1)知直线:1l x =,点(2,0)A ,(1,0)F . 设直线AP 的方程为(2)(0)y k x k =-≠,点()11,P x y ,联立22(2)143y k x x y =-⎧⎪⎨+=⎪⎩,得()2222341616120k x k x k +-+-=,则2121612234k x k -=+,于是2128634k x k-=+,()11212234k y k x k -=-=+, 即2228612,3434k k P k k ⎛⎫-- ⎪++⎝⎭. 在直线AP 的方程中,令1x =,得()1,M k -,则直线MQ 的方程为1(1)y k x k+=--,令0x =,得1y k k =-,即10,Q k k ⎛⎫- ⎪⎝⎭. 因为PF QF ⊥,所以0PF QF ⋅=,即2222286121831,1,0343434k k k k k k k k ⎛⎫--⎛⎫-⋅-== ⎪ ⎪+++⎝⎭⎝⎭,所以238k =,6k =, 所以点P 的坐标为226,3⎛- ⎝⎭. 4.(2021·海南海口市·高三其他模拟)已知曲线2:4x C y =,与直线:2l y x t =+.(1)若直线l 与曲线C 相切,求t 的值;(2)若直线l 与曲线C 交于,A B 两点,点(0,1),M O -为坐标原点,当t 为何值时,OMA OMB ∠=∠?4【答案】(1)4t =-;(2)1t =或1t =-.【详解】(1)设直线l 与曲线C 相切于点()00,P x y ,由24x y =,则002x x x y ='=,所以022x =,解得04x =,所以2044x y ==,即(4,4)P . 将点(4,4)P 代入直线l 的方程:48t =+,解得4t =-. (2)设()()1122,,,A x y B x y ,直线,MA MB 的斜率分别为12,k k .将2y x t =+代入曲线C 的方程整理,整理得2840x x t --=. 所以12128,4x x x x t +==-,且64160t ∆=+>,即4t >-.(1)当直线l 交x 轴于非负半轴时,若过点(0,1)M -,则点,,M A B 三点共线, 显然有OMA OMB ∠=∠,代入直线方程得1t =-.(2)当直线l 交x 轴与负半轴时,若OMA OMB ∠=∠,则120k k +=, 所以()1212121212124(1)110x x t x x y y k k x x x x ++++++=+==,代入12128,4x x x x t +==-,解得1t =.综上所述,1t =或1t =-时,OMA OMB ∠=∠.5.(2020·海南高三一模)已知椭圆()2222:10x y E a b a b +=>>的左、右顶点分别为A ,B ,离心率为32,过点1,0P 作直线交椭圆于点C ,D (与A ,B 均不重合).当点D 与椭圆E 的上顶点重合时,5AD =(1)求椭圆E 的方程(2)设直线AD ,BC 的斜率分别为1k ,2k ,求证:12k k 为定值. 【答案】(1)2214x y +=;(2)证明见解析.【详解】5(1)当点D 与椭圆E 的上顶点重合时,有()0,D b , 所以225AD a b =+=①又因为离心率2232a b e a -==,②由①②解得2a =,1b =,所以E 的方程为2214x y +=.(2)由题意,设直线CD 的方程为1x my =+,联立方程组221,41,x y x my ⎧+=⎪⎨⎪=+⎩得()224230m y my ++-=,设()11,C x y ,()22,D x y ,则12224m y y m +=-+,12234y y m =-+. 由(1)得()2,0A -,()2,0B ,所以2122=+y k x ,1212=-y k x ,()()()()212111222121212121233y x y my k my y y k y x y my my y y ---===+++ ()1212121121121433334my my y y y y m m my y y y m -+-+++===-+++.6.(2020·海南高三其他模拟)已知抛物线2:4C y x =的焦点为F ,过F 的直线交抛物线C 于()11,A x y ,()22,B x y 两点.(Ⅰ)当14y =时,求2y 的值;(Ⅱ)过点A 作抛物线准线的垂线,垂足为E ,过点B 作EF 的垂线,交抛物线于另一点D ,求ABD △面积的最小值.【答案】(Ⅰ)21y =-;(Ⅱ)16. 【详解】6(Ⅰ)由题意知()1,0F ,设直线AB 的方程为1x ty =+,联立21,4,x ty y x =+⎧⎨=⎩消去x 得2440y ty --=. 由根与系数的关系得124y y =-.当14y =时,21y =-.(Ⅱ)设()00,D x y ,()20,4m m m A ⎛⎫⎪⎝≠⎭,则()1,E m -, 由(Ⅰ)知24y m =-,所以244,B m m⎛⎫- ⎪⎝⎭.因为BD EF ⊥,0112EF m m k -==---,所以2BD k m=. 所以直线BD 的方程为2424y x m m m⎛⎫+=- ⎪⎝⎭,即28240x my m ---=. 联立方程组得228240,4,x my my x ⎧---=⎪⎨⎪=⎩消去x 得2216280y my m ---=, 所以202y y m +=,202168y y m=--. ()2222020202644432y y y y y y m m -=+-=++, 所以222202161484m BD y m m m=+-=+++设点A 到BD 的距离为d ,则2222222816482424m m m mm d m m ---++==++. 所以33222222111611682816244ABDSBD d m m m m ⎛⎫⎛⎫=⋅=++≥⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2m =±时等号成立,所以ABD △面积的最小值为16.7.(2020·海南高三三模)已知椭圆22221(0)x y E a b a b+=>>:的离心率12e =,直线 20l x y m -+=:与E 相交7于A ,B 两点,当0m =时,15AB =(1)求椭圆E 的标准方程.(2)在椭圆E 上是否存在点P ,使得当()44m ∈-,时,APB ∠的平分线总是平行于y 轴?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭. 【详解】(1)设椭圆E 的半焦距为c 因为离心率12e =,所以2a c =,222243b c c c =-= 由222214320x y c c x y ⎧+=⎪⎨⎪-=⎩解得3x c =±. 不妨设33,A c ⎛⎫ ⎪ ⎪⎝⎭,33B c ⎫⎪⎪⎭,则2212315AB c c =+=所以1c =,从而2a =,23b =.所以椭圆E 的标准方程为22143x y +=.(2)假设存在点(),P x y ,设()11,A x y ,()22,B x y .由2214320x y x y m ⎧+=⎪⎨⎪-+=⎩,消去y 得2242120x mx m ++-=.因为44m -<<,所以()22416120m m ∆=-->,且122m x x +=-,212124m x x -=. 由APB ∠的平分线平行于y 轴,得0AP BP k k +=所以12120y y y y x x x x --+=--,即1212220x m x my y x x x x ++--+=--,8可得()()()()12121222220x x x x x m y x m y x x +-+---+=,所以()()2212220222m m y mx m m y x ---+-+-=,整理得()321280x y m xy -+-=. 当m 变化时,上式恒成立,所以3201280x y xy -=⎧⎨-=⎩,解得132x y =-⎧⎪⎨=-⎪⎩或132x y =⎧⎪⎨=⎪⎩.故满足条件的P 点的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫--⎪⎝⎭. 8.(2020·海南高三一模)已知抛物线()2:20C y px p =>上横坐标为2的点到焦点的距离为4. (1)求抛物线C 的方程;(2)若过(),0A m ()4m >的直线与圆()22:24D x y -+=切于B 点,与抛物线C 交于,P Q 点,证明:82PQ >.【答案】(1)28y x =;(2)见解析 【详解】(1)由已知可得242p+=,解得4p =. 所以抛物线C 的方程为28y x =.(2)设直线AB 的方程为x ty m =+,因为直线AB 与圆D 相切,2221mt-=+,即2244m mt -=. 将x ty m =+与28y x =联立消去x 得2880y ty m --=, 所以8P Q y y t +=,8P Q y y m =-. 因为()()2284842P Q y y t m m m -=---所以()3222142222P Q m PQ t y y m m m m -=+-=⋅-=-9因为4m >,()()32g m m m =-单调递增,所以()()33244232m m ->⨯-=, 所以82PQ >.9.(2021·海南高三二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.【答案】(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以2222b ac =-因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-,10则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++()222648729189t m t t -=-+-+. 所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TNk k ⋅=-.因此,所有满足条件的T 的坐标为(3,0)-和(3,0).10.(2020·海南海口市·高三其他模拟)已知椭圆()2222:10x y C a b a b+=>>的左顶点为A ,O 为坐标原点,3OA =C 6(Ⅰ)求椭圆C 的方程;(Ⅱ)已知不经过点A 的直线():0,l y kx m k m =+≠∈R 交椭圆C 于M ,N 两点,线段MN 的中点为B ,若2MN AB =,求证:直线l 过定点.【答案】(Ⅰ)2213x y +=(Ⅱ)证明见解析【详解】(Ⅰ)由已知3OA =3a = 设椭圆C 的半焦距为c ,因为6c e a ==,所以2c =2321b =-=, 所以椭圆C 的方程为2213x y +=.(Ⅱ)由题意知()3,0A ,11联立2213y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222316330k x kmx m +++-=, 由题意知()()()222226431331236120km k m k m ∆=-+-=+->.(*)设()11,M x y ,()22,N x y ,则122631km x x k -+=+,21223331m x x k -=+,因为2MN AB =,B 为线段MN 的中点,所以AM AN ⊥, 所以(1212330AM AN x xy y ⋅=++=,又11y kx m =+,22y kx m =+,()22121212y y k x x m km x x =+++, 所以()(()2212121330k x x km x x m ++++++=,所以()()(2222263331303131km km mk m k k +-+-++=++,整理得2233320k km m -+=,得3k =或23k =, 当3k =时,l 的方程为(33y x =,过定点()3,0A -,不符合题意; 当233k m =时,l 的方程为233y x ⎛= ⎝⎭, 过定点3⎛⎫⎪ ⎪⎝⎭,经检验,符合(*)式,综上所述,直线l 过定点32⎛⎫- ⎪ ⎪⎝⎭. 11.(2020·海南)已知椭圆C :2222x y a b+=1(a >b >0),椭圆上的点到焦点的最小距离为22P 2).(1)求椭圆C 的方程;(2)若过点M (3,0)的直线l 与椭圆C 有两个不同的交点P 和Q ,若点P 关于x 轴的对称点为P ',判断直线P 'Q 是否经过定点,如果经过,求出该定点坐标;如果不经过,说明理由.12【答案】(1)22142x y +=.(2)直线P 'Q 过x 轴上定点403⎛⎫ ⎪⎝⎭,. 【详解】(1)由题意222222221122a b a c a b c ⎧⎪+=⎪⎪-=⎨⎪=+⎪⎪⎩,解得222a b c =⎧⎪=⎨⎪=⎩故椭圆C 的方程为22142x y +=.(2)显然直线l 的斜率存在,且当l 斜率为0时, 直线P 'Q 为x 轴. 故定点若存在则必在x 轴上,设定点为(),0M m . 故设:3l x ty =+,()()1122,,,P x y Q x y .将直线与椭圆的方程联立得:223142x ty x y =+⎧⎪⎨+=⎪⎩, 消去x ,整理得()222650t y ty +++=.由根与系数之间的关系可得:12262t y y t +=-+,12252y y t =+. ∵点P 关于y 轴的对称点为P ',则P '(x 1,﹣y 1),且,,P Q M 三点共线 ∴'P M QM k k =,即1212y y x m x m-=--.即112233y y m ty y mt -=+--+,1212303ty t my m y y --++=+ 整理对()1212032y y t m y y +-=+,代入韦达定理有()62035t t m --=,即()33105m t -⎡⎤-=⎢⎥⎣⎦恒成立.解得43m =. ∴直线P 'Q 过x 轴上定点403⎛⎫ ⎪⎝⎭,. 12.(2020·海南高三其他模拟)已知点O 为坐标原点,椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,P 为13椭圆C 上一点,椭圆C 上异于P 的两点A ,B 满足AFO BFO ∠=∠,当PF 垂直于x 轴时,32PF =. (1)求椭圆C 的标准方程;(2)设直线PA ,PB 分别与x 轴交于点(),0M m ,(),0N n ,问:mn 的值是否为定值?若是,请求出mn 的值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值;4mn =【详解】(1)设椭圆半焦距为c ,根据题意可得221c a b ==-当PF 重直于x 轴时,232b PF a ==.因为222a b c =+,由此解得24a =,23b =,∴椭圆C 的标准方程为22143x y +=.(2)由AFO BFO ∠=∠,可得A ,B 关于x 轴对称.设()11,A x y ,()11,B x y -,()00,P x y ,易知10x x ≠,10y y ≠,0x m ≠. ∵PA PM k k =,∴100100y y y x x x m-=--.∴()100010x x y x m y y --=-,∴()10001101010x x y x y x y m x y y y y --=-=--.同理,得011010x y x y n y y +=+.∴222201100110011022101010x y x y x y x y x y x y mn y y y y y y -+-=⋅=-+-. 又2200143x y +=,2211143x y +=,∴2200413y x ⎛⎫=- ⎪⎝⎭,2211413y x ⎛⎫=- ⎪⎝⎭.∴2222011022220110222210104141334y y y y x y x y mn y y y y ⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪-⎝⎭⎝⎭===--,为定值.1413.(2021·山东高三其他模拟)ABC 中,已知()2,0B -,)2,0C ,AD BC ⊥交BC 于点D ,H 为AD 中点,满足BH AC ⊥,点H 的轨迹为曲线C . (1)求曲线C 的方程:(2)过点10,3M ⎛⎫⎪⎝⎭作直线l 交曲线C 于P ,Q 两点,求证:以PQ 为直径的圆恒过定点,【答案】(1)()22102x y y +=≠;(2)证明见解析.【详解】(1)设(),H x y ,(),2A x y ,()2,BH x y =,()2,2CA x y =-, 因为BH AC ⊥,所以0BH CA ⋅=,即(22220x x y ++=,整理得:2222x y +=,即2212x y +=.ABC 中,三顶点不可能共线,所以0y ≠,故曲线C 的方程为()22102x y y +=≠.(2)若直线l 斜率不存在,可得圆:221x y +=,若直线l 斜率为0,可得圆:2211639x y ⎛⎫+-= ⎪⎝⎭. 两个圆的公共点为()0,1N -,若直线l 斜率存在且不为0时,设其方程为()103y kx k =+≠, 221312y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩,可得()2241621039k x kx ++-=, 0∆>恒成立,设点()11,P x y ,()22,Q x y ,15可得韦达定理:12212246316189k x x k x x k ⎧+=-⎪⎪+⎨⎪=-⎪+⎩()()()()11221212,1,111NP NQ x y x y x x y y ⋅=+⋅+=+++12124433x x kx kx ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭()()21212416139k x x k x x =++++()()22244161163189639k k k k k --+=++++ ()22221616161618990189k k k k ---++==+ 即NP NQ ⊥,以PQ 为直径的圆经过定点()0,1N -. 综上所述,以PQ 为直径的圆经过定点()0,1N -.14.(2021·山东泰安市·高三其他模拟)已知抛物线2:4C y x =.(1)若C 与圆22:(4)13G x y -+=在第一象限内交于,M N 两点,求直线MN 的方程;(2)直线l 过点(1,0)D -交C 于,A B 两点,点B 关于x 轴的对称点为E ,直线AE 交x 轴于点P ,求证:P 为定点.【答案】(1))31330x y -=;(2)证明见解析【详解】(1)解:联立()22244130y xx y y ⎧=⎪⎪-+=⎨⎪>⎪⎩,解得12x y =⎧⎨=⎩或33x y =⎧⎪⎨=⎪⎩所以2323131MN k ==-,可得直线MN 的方程为)()2311y x -=-,即()31330x y -=.16(2)证明:设直线():1l y kx =+,(),0P t ,()11,A x y ,()22,B x y ,()22,E x y -,联立()241y x y k x ⎧=⎪⎨=+⎪⎩,得()2222240k x k x k +-+=,所以0k ≠,()()22422441610k k k ∆=--=->,即21k <,12242x x k+=-,121=x x , 由A ,P ,E 三点共线得AP EP k k =,所以1212y yx t t x =--, 所以()()()()211211t x x x t x -+=-+, 所以()12122(1)20x x t x x t +-+-=, 所以242(1)220t t k ⎛⎫+---=⎪⎝⎭, 解得1t =,即点()1,0P , 所以P 为定点.15.(2021·山东济南市·高三二模)已知椭圆C :22221x y a b +=(0a b >>)的离心率为22,且经过点(2,1)H .(1)求椭圆C 的方程; (2)过点()3,0P-的直线与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点()2,0G -,若PM PG λ=,PN PG μ=,求证:11λμ+为定值.【答案】(1)22163x y +=;(2)证明见解析.17【详解】(1)由题意知22212c b e a a ==-=,则222a b =, 又椭圆C 经过点(2,1)H ,所以22411a b +=; 联立解得26a =,23b =,所以椭圆C 的方程为22163x y +=.(2)证明:设直线AB 方程为3x my =-,()11,A x y ,()22,B x y ,由223163x my x y =-⎧⎪⎨+=⎪⎩,联立消x 得()222630m y my +-+=,所以()22361220m m ∆=-+>,12262my y m +=+,12232y y m =+, 由题意知,1y ,2y 均不为1. 设(),0M M x ,(),0N N x ,由H ,M ,A 三点共线知AM 与MH 共线, 所以()()112M M x x y x -=---,化简得11121M x y x y +=-;由H ,N ,B 三点共线,同理可得22221N x y x y +=-;由PM PG λ=,得()()3,01,0M x λ+=,即3M x λ=+; 由PN PG μ=,同理可得3N x μ=+;所以11221211111122333311M N x y x y x x y y λμ+=+=+++++++--()()121211221211113311y y y y x y x y m y m y ----=+=+-+-+--182121212122611111222231112m y y y y m m y y m y y m m ⎛⎫ ⎪⎛⎫⎛⎫--++=+=-=-= ⎪ ⎪ ⎪---⎝⎭⎝⎭ ⎪+⎝⎭, 所以11λμ+为定值.16.(2021·山东高三其他模拟)已知椭圆()2222:10x y C a b a b +=>>3E ,左焦点为F ,且满足直线EF 与圆2234x y +=相切. (1)求椭圆C 的标准方程;(2)设,A B 是椭圆C 上两个动点,且直线,OA OB 的斜率满足14OA OB k k ⋅=-,证明:AOB 的面积为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)由3e =22222234c a b e a a -===,解得:2a b =,3c b ∴=, 则()3,0F b -,()0,E b ,则303EF k b ==+, ∴直线3:3EF l y x b =+,即330x b =,又直线EF 与圆C 相切,33313b b ==+1b =,2a ∴=, ∴椭圆C 的标准方程为2214x y +=.(2)当直线AB 的斜率存在时,设方程为y kx m =+,设()11,A x y ,()22,B x y ,由2214y kx m x y =+⎧⎪⎨+=⎪⎩得:()222418440k x kmx m +++-=,则()2216410k m ∆=+->, ∴122841km x x k -+=+,21224441m x x k -=+,19()()()2222121212122414m k y y kx m kx m k x x km x x m k-∴=++=+++=+, ∴()()()222222121212141114k km AB k x k x x x x ++-=+-=++-=又原点到直线AB 的距离为21m d k=+224112AOBm k m SAB d +-∴==,221221214444OA OBy y m k k k x x m -∴⋅==-=-,即22214m k =+, 2241112AOBm k m SAB d +-∴===. 当直线AB 斜率不存在时,设()11,A x y ,()22,B x y ,12x x =,12y y =-, 则212114OA OBy k k x -⋅==-,22114x y ∴=,又221114x y +=,解得:12x =122y =, 111AOBSx y ∴==.综上所述:AOB 的面积为定值1.17.(2021·山东滨州市·高三二模)已知圆(22:212C x y +=,动圆M 过点)2,0D且与圆C 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)假设直线l 与轨迹E 相交于A ,B 两点,且在轨迹E 上存在一点P ,使四边形OAPB 为平行四边形,试问平行四边形OAPB 的面积是否为定值?若是,求出此定值;若不是,请说明理由.【答案】(1)2213x y +=;(2)是定值,定值为32.【详解】(1)因为2223CD =,所以点D 在圆内. 又因为圆M 过点D 且与圆C 相切,所以23MC MD =, 所以23MC MD CD +=>. 即点M 的轨迹是以C ,D 为焦点的椭圆. 则223a =3a =又因为222a b -=,所以21b =.20故动圆圆心M 的轨迹E 的方程为:2213x y +=.(2)当直线AB 的斜率不存在时,可得直线AB 的方程为3x =,此时3A y =,所以四边形OAPB 的面积32S =.当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,由22,13y kx m x y =+⎧⎪⎨+=⎪⎩整理得,()()222316310k x kmx m +++-=. 因为直线l 与轨迹E 相交于A ,B 两点,所以()()()222222361231112310k m k m k m =-+-=-+>△.设()11,A x y ,()22,B x y ,则122631km x x k +=-+,()21223131m x x k -=+. 所以()121222231my y k x x m k +=++=+.设AB 的中点为Q , 则Q 的坐标为223,3311km m k k ++⎛⎫-⎪⎝⎭. 因为四边形OAPB 为平行四边形,所以22622,3131kmm OP OQ k k ⎛⎫==-⎪++⎝⎭, 所以点P 的坐标为2262,3131kmm k k ⎛⎫-⎪++⎝⎭. 又因为点Р在椭圆上,所以222262311331km m k k ⎛⎫- ⎪+⎛⎫⎝⎭+= ⎪+⎝⎭.整理得,22431m k =+.又因为22222122331111k m AB k x k k ⋅-+=+-=+=+△, 原点О到直线AB 的距离为21m d k=+,21所以平行四边形OAPB 的面积222331322AOBm k m S SAB d -+==⋅==.综上可知,平行四边形OAPB 的面积为定值32. 18.(2021·山东高三月考)已知F 为抛物线2:2(0)C x py p =>的焦点,直线:21l y x =+与C 交于A ,B 两点且||||20AF BF +=. (1)求C 的方程.(2)若直线:2(1)m y x t t =+≠与C 交于M ,N 两点,且AM 与BN 相交于点T ,证明:点T 在定直线上. 【答案】(1)24x y =;(2)证明见解析. 【详解】(1)解:设()11,A x y ,()22,B x y ,由221,2,y x x py =+⎧⎨=⎩,得()28210y p y -++=, 则1282y y p +=+, 从而12922022p pAF BF y y p +=+++=+=, 解得2p =,故C 的方程为24x y =.(2)证明:设()33,M x y ,()44,N x y ,()00,T x y ,()1TM TA λλ=≠.因为//AB MN ,所以TN TB λ=.根据2112224,4,x y x y ⎧=⎨=⎩得()()()1212124x x x x y y +-=-,则()12121248y y x x x x -+==-, 同理得348x x +=.又()()30104020,,x x x x x x x x λλ⎧-=-⎪⎨-=-⎪⎩两式相加得()34012022x x x x x x λ+-=+-,即()()0410x λ--=,由于1λ≠,所以04x =. 故点T 在定直线4x =上.19.(2021·山东高三专题练习)已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且过点31,2P ⎛⎫ ⎪⎝⎭.22(1)求椭圆C 的方程;(2)过P 作两条直线12,l l 与圆()2223102x y r r ⎛⎫-+=<<⎪⎝⎭相切且分别交椭圆于,M N 两点. ①求证:直线MN 的斜率为定值;②求MON △面积的最大值(其中O 为坐标原点).【答案】(1)22143x y +=;(2)①证明见解析;3【详解】(1)设椭圆的半焦距为c ,由12e =得:2a c =, C 过点31,2P ⎛⎫⎪⎝⎭,221914a b ∴+=,又222c b a +=,解得:2a =,3b =∴椭圆C 方程为:22143x y +=;(2)①由题意知:两直线12,l l 的斜率存在,设为12,k k ,设()11,M x y ,()22,N x y ,直线12,l l 与圆()2223102x y r r ⎛⎫-+=<< ⎪⎝⎭相切,12k k ∴=-, 直线1l 的方程为()1312y k x -=-, 联立方程组112232143y k x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得:()()()22211114312832120x k k k x k ++-+--=, ,P M 为直线与椭圆的交点,()11121812143k k x k -∴+=+,同理可得:当2l 与椭圆相交时,()11221812143k k x k ++=+,112212443k x x k -∴-=+,而()11211212112243k y y k x x k k --=+-=+, ∴直线MN 的斜率121212y y k x x -==-,即直线MN 的斜率为定值12;23②设直线MN 的方程为12y x m =+, 联立方程组2212143y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:2230x mx m ++-=, ()222431230m m m ∆=--=->,解得:24m <,12x x m ∴+=-,2123x x m =-,()2222115143422MN m m m ⎛⎫∴=+--=- ⎪⎝⎭又原点O 到直线MN 的距离25m d =,()222222115334443222225MONm m m Sm m m +-∴=-=-⋅=22m =时取等号), 当22m =时,满足24m <,且存在30,2r ⎛⎫∈ ⎪⎝⎭使得过点31,2P ⎛⎫ ⎪⎝⎭的两条直线与圆()2221x y r -+=相切,且与椭圆C 有两个交点,M N ,MON ∴△320.(2021·山东高三二模)已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线l 与椭圆C 交于M ,N 两点,圆P 是2MNF ∆的内切圆.当直线l 的倾斜角为45︒时,直线l 与椭圆C 交于点41,33⎛⎫-- ⎪⎝⎭. (1)求椭圆C 的方程; (2)求圆P 周长的最大值.【答案】(1)2212x y +=;(2)π.【详解】(1)设椭圆C 的半焦距为()0c c >,则()1,0F c -, 当直线l 的倾斜角为45︒时,直线l 的方程为y x c =+,24又直线l 与椭圆C 交于点41,33⎛⎫-- ⎪⎝⎭,1c ∴=,221a b ∴=+将点41,33⎛⎫-- ⎪⎝⎭代入椭圆方程得:()221611991b b +=+ 解得21b =或219b =-(舍),22a ∴= ∴椭圆C 的方程为2212x y +=(2)设圆P 的半径为()0r r >,当直线l 的斜率不存在时,直线l 的方程为1x =-,2MN =222MNF MPN MPF NPF S S S S ∆∆∆∆=++()2212MN MF NF r =++22r =1222=⨯12r ∴=当直线l 的斜率存在时,设为k ,直线l 的方程为y kx k =+, 设()11,M x y ,()22,N x y由2212y kx k x y =+⎧⎪⎨+=⎪⎩得()2222214220k x k x k +++-= 2122421k x x k ∴+=-+,21222221k x x k -=+ 2121212MNF S F F y y ∆∴=-12||k x x =- ()21212|4k x x x x =+-()()242228116||2121k k k k k-=-++()422244221k k k+=+()2212121k =-+又22222MNF MPN MPF NPF S S S S r ∆∆∆∆=++=25()221222121r k∴=-+()2211112221r k ∴=-<+ 综上,102r <≤∴当12r =时,圆P 的周长取得最大值π. 21.(2021·山东淄博市·高三二模)已知抛物线Ω的标准方程是()220x py p =>,过点()0,2M p 的直线l 与抛物线Ω相交于()11,A x y ,()22,B x y 两点,且满足1264y y ⋅=. (1)求抛物线Ω的标准方程及准线方程;(2)设垂直于l 的直线1l 和抛物线Ω有两个不同的公共点C ,D ,当C ,D 均在以AB 为直径的圆上时,求直线l 的斜率.【答案】(1)抛物线方程为28x y =;准线方程为2y =-;(2)1或1-.【详解】(1)由题意可知,直线l 的斜率存在,设其斜率为k ,则直线l 的方程为2y kx p =+,由222x py y kx p ⎧=⎨=+⎩消元得:22240x pkx p --=. ∴122x x pk +=,2124x x p ⋅=-,点()11,A x y ,()22,B x y 在抛物线Ω上,∴2112x py =,2222x py =,∴22212124x x p y y =,∴212464y y p ⋅==,解得:4p =,∴抛物线Ω的标准方程为28x y =,准线方程为2y =-.(2)由(1)得:抛物线Ω的方程为28x y =,若0k =,则直线1l 与抛物线仅有一个交点,不合题意,0k ∴≠, 设()33,C x y ,()44,D x y ,143344318l y y x x k x x k -+∴===--,则348x x k+=-,,C D 在以AB 为直径的圆上,CA CB ∴⊥,DA DB ⊥,26即0CA CB ⋅=,0DA DB ⋅=,()()()()()()()()222231323132222241424142064064x x x x x x x x x x x x x x x x ⎧--⎪--+=⎪∴⎨--⎪--+=⎪⎩,整理得:()()()()31324142640640x x x x x x x x ⎧+++=⎪⎨+++=⎪⎩,由(1)知:128x x k +=,1264x x ⋅=-,2332448080x kx x kx ⎧+=∴⎨+=⎩, 两式作差得:348x x k +=-, 又348x x k +=-,88k k∴-=-,解得:1k =±. ∴直线l 的斜率为1或1-.22.(2021·山东省实验中学高三一模)已知椭圆C 的左、右焦点分别为1F ,2F ,离心率为23,过点2F 且与x 轴垂直的直线与椭圆C 在第一象限交于点P ,且12F PF △的面积为103. (1)求椭圆的标准方程;(2)过点()3,0A 的直线与y 轴正半轴交于点S ,与曲线C 交于点E ,1EF x ⊥轴,过点S 的另一直线与曲线C 交于M ,N 两点,若2SMA SEN S S =△△,求MN 所在的直线方程.【答案】(1)22195x y +=;(2)513y x =+或513y x =-+.【详解】(1)由题意知23c e a ==,2103b c a ⋅=,又222a b c =+,∴25b =,2c =,∴椭圆标准方程为22195x y +=.(2)∵1EF x ⊥轴,∴52,3E ⎛⎫- ⎪⎝⎭,27设()00,S y ,则03553y =,∴01y =,即()0,1S ,∵23c a =,∴32SA SE =,∴1sin 32312sin 2SMA SEN SM SA MSA SM S S SNSN SE ESN ⋅∠===⋅∠, ∴2SM SN =,即2SM SN =-,设()11,M x y ,()22,N x y ,则()11,1SM x y =-,()22,1SN x y =-, ∴122x x =-.①当直线MN 的斜率不存在时,MN 的方程为0x =,此时∴5251SM SN=≠-不符合条件. ②当直线MN 的斜率存在时,设直线MN 的方程为1y kx =+,联立221195y kx x y =+⎧⎪⎨+=⎪⎩得()225918360k x kx ++-=.12212212185936592k x x k x x k x x -⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩得2222218591859k x k x k ⎧=⎪⎪+⎨⎪=⎪+⎩, ∴22218185959k k k⎛⎫= ⎪++⎝⎭,解得53k =±. 故直线MN 的方程为51y x =+或51y x =+. 23.(2021·山东烟台市·高三二模)已知椭圆()222210x y a b a b +=>>过点(22(1)求椭圆的方程;(2)过点()0,1P 作椭圆的两条弦AB ,CD (A ,C 分别位于第一、二象限).若AD ,BC 与直线1y =分别交于点M ,N .求证:PM PN =.28【答案】(1)22184x y +=;(2)证明见解析.【详解】(1)∵椭圆22221x y a b +=过点(2,则22421a b +=,又2c a =,则222a c =.又222a b c =+,∴联立上述式子,解得28a =,24b =,故椭圆的方程为22184x y +=.(2)由题意,可设直线AB :11y k x =+,CD :21y k x =+,()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,M ,N 点的横坐标为M x ,N x ,将直线AB 方程代入椭圆22184x y +=,整理得()221112460k x k x ++-=,而2164240k ∆=+>,由韦达定理可得,11221412k x x k +=-+,1221612x x k ⋅=-+, 同理得:23422412k x x k +=-+,3422612x x k ⋅=-+,∵()11,1M AM x x y =--,()44,1M DM x x y =--,且三点A ,M ,D 共线, ∴()()()()1441110M M x x y x x y -----=,将1111y k x -=,4241y k x -=代入并整理可得()()24112114M k x k x x k k x x -=-, 又14y y ≠,即24110k x k x -≠, ∴()21142411M k k x x x k x k x -=-,同理:()21232312N k k x x x k x k x -=-,∴()()2114212324112312M N k k x x k k x x x x k x k x k x k x --+=+--()()()()()21234121123423122411k k k x x x x k x x x x k x k x k x k x -+-+⎡⎤⎣⎦=-- ()()()()()()()12122122221212231224112424121212120k k k k k k k k k k k x k x k x k x ⎡⎤--⎢⎥++++⎢⎥⎣⎦==--, ∴M N x x =-,M N x x =,故PM PN =.2924.(2021·山东潍坊市·高三月考)椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为1F 、2F ,P 为椭圆短轴上的一个顶点,1PF 的延长线与椭圆相交于G ,2PGF △的周长为8,113PF GF =. (1)求椭圆E 的方程;(2)过椭圆E 外一点A 作矩形ABCD ,使椭圆E 与矩形ABCD 的四条边都相切,求矩形ABCD 面积的取值范围.【答案】(1)22142x y +=;(2)8212S ≤≤.【详解】(1)由2PGF △的周长为8得48a =,则2a =, 由113PF GF =且G 在1PF的延长线上,得143PG PF =, 设点P 为椭圆的上顶点,设()00,G x y ,则()()004,,3x y b c b -=--,解得043x c =-,013y b =-, 由2200221x y a b +=,解得22c =,所以22b =,椭圆E 的方程为22142x y +=; (2)设四边形ABCD 面积为S .当四边形ABCD 的一边与坐标轴平行时,因为四边形ABCD 为矩形,2282S a b =⋅= 当四边形ABCD 的各边与坐标轴不平行时,根据对称性,设其中一边AB 所在直线方程为y kx m =+,则对边所在直线CD 方程为y kx m =-,则另一边AD 所在直线方程为1y x n k=-+, 则BC 所在直线方程为1y x n k=--, 联立22142x y y kx m ⎧+=⎪⎨⎪=+⎩,得()()222124220k x kmx m +++-=, 得()()22221681220k m km∆=-+-=,可得2242m k =+,同理2242n k =+, 矩形一边长1221m d k =+22211nd k =+,30矩形面积为22212222222121224182111121k k m n mnk k S d d k k k k k ⎛⎫+⋅+ ⎪⎝⎭=====++++++因为22221122k k k k+≥⋅=,当且仅当1k =±时,等号成立,所以8212S <≤. 综上得8212S ≤≤.25.(2021·山东临沂市·高三二模)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,以1PF 为直径的圆22149:416E x y ⎛⎫+-= ⎪⎝⎭过焦点2F .(1)求椭圆C 的方程;(2)若椭圆C 的右顶点为A ,与x 轴不垂直的直线l 交椭圆C 于M ,N 两点(M ,N 与A 点不重合),且满足AM AN ⊥,点Q 为MN 中点,求直线MN 与AQ 的斜率之积的取值范围.【答案】(1)2214x y +=;(2)30,8⎛⎫ ⎪⎝⎭.【详解】(1)在圆E 的方程中,令0y =,得23x =,解得3x =±所以,1F ,2F 的坐标分别为()3,0,)3,0.∵10,4E ⎛⎫⎪⎝⎭,又因为212OE F P =,2//OE F P ,所以点P 的坐标为13,2⎫⎪⎭,所以,127122442a PF PF =+=⨯+=,得2a =,1b =, 即椭圆C 的方程为2214x y +=.(2)右顶点为()2,0A ,由题意可知直线AM 的斜率存在且不为0, 设直线AM 的方程为()2y k x =-,由MN 与x 轴不垂直,故1k ≠±.31由()222,14y k x x y ⎧=-⎪⎨+=⎪⎩得:()222214161640k x k x k +-+-=, 设()11,M x y ,()22,N x y ,又点()2,0A ,则由根与系数的关系可得:212164214k x k -=+,得2128214k x k -=+,()1124214k y k x k -=-=+, ∵AM AN ⊥,∴直线AN 的方程为()12y x k=--, 用1k -替换k 可得:222824k x k-=+,2244k y k =+, ∴点Q 坐标为()()()()()2222226130,144144k k k k k k k ⎛⎫-⎪ ⎪++++⎝⎭, ∴直线AQ 的斜率()()()()()()()2222124222611443130222144k k k k k k k kk k k k -++-==++++,直线MN 的斜率()222122222122445414828241414k ky y k k k k k k x x k k k +-++===-----++, ∴()212422215152822821k k k k k k k ==⎛⎫++++ ⎪⎝⎭,∵20k >且21k ≠,∴22222221224k k k k++>⨯=,32∴22153028821k k <<⎛⎫++ ⎪⎝⎭.即1230,8k k ⎛⎫∈ ⎪⎝⎭.∴直线MN 与AQ 的斜率之积的取值范围是30,8⎛⎫ ⎪⎝⎭.26.(2021·山东日照市·高三二模)已知抛物线2:2E y px =,过抛物线E 上一点(1,3)C 作直线CA CB ,交抛物线于A ,B 两点,交x 轴于D ,F 两点,且CD CF =. (1)求E 的方程:(2)求ABC 的面积,并判断是否存在最大值,若存在请求出最大值,不存在请说明理由. 【答案】(1)29y x =;(2)323539m m m -++1m >-且3m ≠);不存在. 【详解】(1)因为抛物线E 过点()1,3C ,所以2321p =⋅,所以29p =,所以E 的方程,29y x =.(2)因为CD CF =,所以直线AC 斜率AC k 与直线BC 斜率BC k 满足0AC BC k k +=,设()()1122,,A B x y x y ,,则2119y x =,2229y x =,22121212121293333110001133911y y y y x x y y y y ----+=⇒+=⇒+=--++--,则有126y y +=-, 直线AB 斜率122212129936299AB y y k y y y y -====-+--;设直线AB 的方程为:23x y m =-+, 由2239x y m y x⎧=-+⎪⎨⎪=⎩消去x 得:2690y y m +-=,由题意易知264(9)363601m m m ∆=--=+>⇒>-,直线AB 不过点C ,即3m ≠, 由根与系数的关系知:12126,9y y y y m +=-=-,()22121212213131()436362131333AB y y y y y m m =+--=+-=+=+33又因为点C 到直线AB 的距离213334131319mm d +⋅--===+, ABC 的面积11||213131|3|2213ABCSAB d m m m =⋅=⋅+=+⋅-323539m m m =-++1m >-且3m ≠), 设10t m =+>,2|3||(1)4||4|0m m t -=+-=->,t →+∞时,2|4|t -→+∞,即31|3|m m +⋅-→+∞,ABC 的面积不存在最大值.27.(2021·山东高三其他模拟)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C上位于第二象限的任一点,直线l 是12F PF ∠的外角平分线,直线2PF 交椭圆C 于另一点Q ,过左焦点1F 作l 的垂线,垂足为N ,延长1F N 交直线2PF 于点M ,||2ON =(其中O 为坐标原点),椭圆C 的离心率为12. (1)求椭圆C 的标准方程;(2)求1PFQ 的内切圆半径r 的取值范围. 【答案】(1)22143x y +=;(2)23. 【详解】(1)由题意可得1||||F N NM =,且1||||PF PM =, 所以1222||||||||||2PF PF PM PF MF a +=+==,因为O ,N 分别为线段12F F ,1F M 的中点,所以ON 为12MF F △的中位线, 所以2//ON MF 且21||||22ON MF a ===, 由12c a =,222a b c =+得23b =, 所以椭圆C 的标准方程为22143x y +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业资料整理分享高中数学解析几何压轴题一.选择题1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B ∠PFR=∠QFR C.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1C.D.e2+15.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.156.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4xB.y2=4x(x≠0)C.y2=﹣4xD.y2=﹣4x(x≠0)9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22B.20C.18D.1611.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()A.B.(,+∞)C.D.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.C.8D.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4C.0或4D.0或﹣41.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则PN∥MQ,,又由双曲线第二定义可知,由此能够推导出RF是∠PFQ的角平分线,所以∠PFR=∠QFR.=,3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()B C D,,,=.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()B D,∴M((的坐标代入,可得5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最由题意可得:椭圆的焦点分别是两圆(的焦点分别是两圆(6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE交双曲线右支于点P,若=(+),则双曲线的离心率为()B C D=(+解:∵若(+)e==7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()B C D==8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足、的坐∥∥⇒9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()+=1(y≠0)B+=1(y≠0)C﹣=1(y≠0)D﹣=1(y≠0)=2,根据抛物线定义可得(10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()B C D,,再利用余弦定理,即可求得|=2|=,12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()BD,+∞)解:曲线=,k′=,<≤13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()B C=,14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()B C D,=的中点坐标是()﹣,,m=15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值根据双曲线上存在两点(﹣,,∴b=,m二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.)根据椭圆的离心率为kk'==,利用,即可求直,且经过点(的标准方程为…(,及=则有,的最小值为17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.•S S S S,故.=•≤在双曲线上,所以,所以=,﹣==,则S=5.﹣=,﹣﹣的取值范围为18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.,可得:中,,所以,(﹣,(﹣:.,圆的方程为(<=ty=y=3×[=<19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.•=并与椭圆联立,利用韦达定理求•﹣=•时,•.,=0,=+=++20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.b=,知==,,==,=+4当且仅当21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k 的取值范围..所以,得(的中垂线为,由,的中点为,即,得,⇒,∴,根据导数知识易得.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.的大小,求出)由时,轨迹是双曲线,焦点为,离心率时,轨迹是椭圆,焦点为,离心率时,轨迹是椭圆,焦点为,离心率>;≤23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.⇒即得的方程为的坐标为.的方程为,得,得,当且仅当,即,的面积的最小值为24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.,则=.又由sin60°=a,平方整理得<φ<分)=..所以•cosθ.知φ=θ<φ<时,θ=φ<时,点4,则.|•cos45°=a•sin60°=a<φ<)分)=|•cosθ=a•sinφ=aφ=时,点θ=φ<25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.的方程为,解得的方程为.故点,的直线方程为得,.,则,同理可得,的斜率的直线方程为,由.,得.此时,的距离为,===.面积的最大值为.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?)依题意,可知椭圆的方程为:+,令x=x+1∴椭圆的方程为:),=﹣=(x++,cosθ(cosθ≠0)≤cosθ≤,,﹣得:|AB|=|•|BC|=|=•||==+1,即当时,以≤27.如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).(1)若l经过点F,求弦长|PQ|的最小值;(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T①求证:②求的取值范围.,消去,|PQ|=,消去可取一切不相等的正数∴)==28.过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1 (1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程;(2)过点A、B分别作圆C的切线BD、AE,试求|AB|2﹣|AE|2﹣|BD|2的取值范围.,则过点的切线方程为:相切,坐标为的方程为:29.已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.(1)求弦长MN;(2)设AM=l1,AN=l2,求的取值范围.所以.所以θ=45°时,原式有最大值从而30.已知以动点P为圆心的圆与直线y=﹣相切,且与圆x2+(y﹣)2=外切.(Ⅰ)求动P的轨迹C的方程;(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.(1)求直线L斜率k的取值范围;(2)设椭圆E的方程为+=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若=0,求E离心率的范围.相切,且与圆﹣外切,建立方程,即可求动)求出直线方程代入抛物线和椭圆方程,由,则有的斜率为﹣∴|k|>∴k<﹣>﹣﹣,的判别式>的判别式,∴>)+1=><<。

相关文档
最新文档