动量和能量专题
动量与能量综合专题
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
动量和能量练习题
物理专题——动量和能量一.选择题1.一小型爆炸装置在光滑.坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是:A .总动量守恒B .机械能守恒C .水平方向动量守恒D .竖直方向动量守恒 2(多选).向空中发射一物体,不计空气阻力。
当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则:A .b 的速度方向一定与原速度方向相反B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大C .a .b 一定同时到达水平地面D .在炸裂过程中,a .b 受到的爆炸力的冲量大小一定相等3(多选).光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是:A .子弹对木块做的功等于()222121v v m -B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能D .子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和4(多选).子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木块后子弹的动能为E 2,动量大小为2p 。
若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为:A .2121p p E E ++ B .1212p p E E -- C .2211p E p E + D .2211p E p E - 5(多选).如图所示,质量分别为m 和2m 的A .B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。
用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。
这时突然撤去F ,关于A .B 和弹簧组成的系统,下列说法中正确的是:A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /36(多选).一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示.下列说法正确的是:A .半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B .半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C .半圆槽固定不动时,物体M 在滑动过程中机械能守恒D .半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒7.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m .M 及M 与地面间接触光滑。
高三物理动量、能量计算题专题训练
动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
专题07动量和能量的综合应用
专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②若两物体相向运动,碰后两物体的运动方向不可能都不改变。
爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。
动量与能量守恒
动量与能量守恒动量和能量是物理学中两个重要的守恒量,它们对于理解和描述各种物理现象都具有重要作用。
本文将介绍动量和能量守恒的概念、原理以及在实际应用中的重要性。
一、动量守恒动量是物体运动中的基本物理量,定义为物体的质量乘以其速度。
动量的大小和方向与物体的质量和速度有关。
当一个物体不受外力作用时,它的动量保持不变,这就是动量守恒的基本原理。
动量守恒定律可以用数学公式表示如下:\[ m_{1}v_{1}+m_{2}v_{2}=m_{1}v'_{1}+m_{2}v'_{2} \]其中,m和v分别代表物体的质量和速度。
这个公式表示了两个物体碰撞前后动量的守恒关系。
根据动量守恒定律,系统内外力的合力为零时,系统的总动量保持不变。
动量守恒在许多物理问题中都有广泛的应用,例如汽车碰撞、弹道学、运动物体的跳跃等。
通过分析动量守恒,可以预测物体运动的轨迹和速度变化。
二、能量守恒能量是物体运动和变化的基本原因,它存在于各种物理系统中。
能量守恒定律指出,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,总能量保持不变。
能量守恒定律可以用数学公式表示如下:\[ E_{i} = E_{f} \]其中,\(E_{i}\)代表系统的初始能量,\(E_{f}\)代表系统的最终能量。
这个公式表明,在一个封闭系统中,能量总量在时间上保持不变。
能量守恒在物理学中起着重要的作用,它可以解释和预测各种物理现象,例如机械能守恒、热能守恒和化学能守恒等。
通过分析能量守恒,可以计算物体的动能、势能和热能的变化。
三、动量与能量守恒的关系动量和能量守恒是物理学中两个独立但相互联系的概念。
它们在某些情况下可以相互转化,但在大多数情况下是独立守恒的。
例如,在完全弹性碰撞中,动量守恒和能量守恒同时成立。
动量守恒可以用来确定碰撞物体的速度变化,而能量守恒可以用来确定碰撞物体的动能变化。
在这种情况下,动量和能量都守恒,并且可以相互转化。
专题3.1 动量和能量答案2
动量和能量 第一讲答案训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222E mv mv Mv mgl μ∆=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=21m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102⨯⨯=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR(2)根据机械能守恒 ΔE k =ΔE p mv 2=12mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30°(3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:Rv m mg F B NB2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即21=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2h mgh mg mv μθθ-⋅=- 所以v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。
动量守恒能量守恒练习题
动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
物理能量与动量
物理能量与动量物理学是一门关于能量和物质运动的科学领域。
本文将聚焦于物理中的两个重要概念:能量和动量。
通过深入探讨它们的定义、性质和相互关系,我们可以更好地理解宇宙中发生的各种运动和相互作用。
一、能量的定义和性质能量是物体或系统具有的做功能力。
它是物理学中最基本的概念之一,广泛应用于各个学科领域。
根据能量形式的不同,能量可以分为多种类型,包括机械能、热能、电能、化学能等。
1. 机械能:机械能是物体由于运动或位置而具有的能量。
它包括动能和势能两个组成部分。
动能是由于物体的运动而产生的能量,它与物体的质量和速度成正比。
势能是由于物体的位置而产生的能量,它与物体的质量和位置高度成正比。
2. 热能:热能是物体内部微观粒子的热运动所具有的能量。
它与物体的温度和热容量有关,符合热力学第一定律,即能量守恒定律。
3. 电能:电能是由于电荷之间的相互作用所产生的能量。
在电路中,电能可以转化为其他形式的能量,如光能、热能、声能等。
二、动量的定义和性质动量是物体运动的物理量,是描述物体运动状态的重要参数。
它是速度与质量的乘积,用符号p表示。
动量是矢量量,方向与速度方向一致。
动量的定义为:p = m·v其中,p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
根据动量定理,当一个物体受到外力作用时,它的动量将发生变化,变化率等于作用力的瞬时值,即:F = Δp/Δt其中,F表示作用力,Δp表示动量的变化量,Δt表示时间的变化量。
这个定理说明了力与物体动量变化之间的关系。
三、能量与动量的关系能量和动量在物理中有着密切联系,并且彼此之间可以相互转化。
1. 动能和能量转化:当物体的动量改变时,它的动能也会发生相应改变。
根据动能的定义,动能的大小与物体的质量和速度平方的乘积成正比。
因此,当速度增加时,动能增加;当速度减小时,动能减小。
2. 势能和能量转化:物体的势能也能转化为动能或其他形式的能量。
专题3.1 动量和能量
第- 7 -页专题三 动量和能量第一讲 动能定理与能量守恒要点梳理:1、功的基本问题(1)关于功的计算问题:①W=FL cos α这种方法只适用于恒力做功。
②用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,往往考虑用这种方法求功。
(2)关于求功率问题:①tW P = 所求出的功率是时间t 内的平均功率。
②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。
一般用于求某一时刻的瞬时功率。
(3)常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh , 当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。
②滑动摩擦力做功与路径有关。
滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在两个接触面上因相对滑动而产生的热量相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触的两个物体的相对路程。
2.动能和动能定理K E mv mv W ∆=-=21222121合 ①不管是否恒力做功,该定理都成立;对于变力做功,应用动能定理要更方便、更迅捷。
②动能为标量,但21222121mv mv E K -=∆仍有正负,分别表示动能的增减。
3.功能关系的几个常用公式:①物体动能的增量由外力做的总功来量度,即:K E W ∆=外; ②物体重力势能的增量由重力做的功来量度,即:P GE W ∆-=;③物体机械能的增量由重力以外的其他力做的功来量度,即:E W ∆=其他,当0=其他W 时,说明只有重力做功,所以系统的机械能守恒;④一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触物的相对路程。
题型分类聚焦: 类型一:功、功率的计算例1:如图1,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
动量与能量专题65页
动量和能量专题高考试题1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A .P 的初动能B .P 的初动能的1/2C .P 的初动能的1/3D .P 的初动能的1/4提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有02mv mv = ①由机械能守恒定律,有22Pm 01122E mv mv =-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是A .物体的位移相等B .物体动能的变化量相等C .F 对物体做的功相等D .物体动量的变化量相等提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ∆=∆,所以,物体动量的变化量相等.4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则A .它的速度大小不变,动量也不变B .它不断克服地球对它的万有引力做功C .它的速度大小不变,加速度等于零D .它的动能不变,引力势能也不变5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则A.甲比乙先到最高点B.甲和乙在最高点的重力势能相等C.落回地面时,甲的动量的大小比乙的大D.落回地面时,甲的动能比乙的大7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于A B C.D.8.(2001年·全国理综)下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反以上说法正确的是A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b 14.(1994年·全国)质量为4.0kg 的物体A 静止在水平桌面上,另一个质量为2.0kg 的物体B以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .【答案】6.015.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).【答案】(1)gh 2;(2)211212()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有21112m gh m v =解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有112()m v m m v '=+碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+由能量守恒定律,有212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有2212112mgR mv mv β=+12mv mv β=+解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:(1)两球从开始运动到相碰,A 球下落的高度.(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规律得0l v t =① 212h gt = ② 联立①②得2202gl h v = ③(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得0A B x x mv mv mv ''=+ ④由机械能守恒定律,得22222220B A A A B B 1111()()()2222y y x y x y m v v mv m v v m v v ''''++=+++ ⑤式中A A B B ,y y y y v v v v ''== 联立④⑤解得A0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【答案】0.3m解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则11225F mg f mg μ=<= 且222(2)5F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有2211()(2)2F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:mv 1=(m +m )v 2碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m +m )v 2=(2m +m +m )v 3设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m gm -=-=++对C 物体,由动能定理得221113111(2)(2)2222F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g .解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211()()()()22m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2m m v m g x x ⑤ 由①②⑤式得v = ⑥21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .【答案】201)2v g m解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有212h gt =① L =Vt② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④由以上各式得201)2l v g m = ⑤22.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得212121()()2B m m gR m m v +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,从运动学规律,21142R gt s v t ==根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =已知m 1=2m 2,由以上各式可得s=8R23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ①代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有-(F BA +F CA )t =m A v A -m A v A ③F AB t =m B v B ④其中F AB =F BA F CA =μ(m A +m B )g ⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB ⑦动量与动能之间的关系为A A m v = ⑧B B m v =⑨ 木板A 的长度L =s A -s B ⑩代入数据解得L =0.50m24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.【答案】(1)54;(2)32L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①则1254v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL由③式得v 22 =2μgL 又因208,325l L v gL μ==得 如果卡车滑到故障车前就停止,由20102Mv MgL μ'-= ④ 故32L L '= 这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有220111122mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.2223211(2)(2)(2)(2)22m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112mv mgl μ=由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.【答案】2.1×105N解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102Mgl Fl Mv -=-由上各式解得()[2mg m F mg h l l M=+-+ 代入数据解得F =2.1×105N27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+= ①设全过程损失的机械能为E ,则220)(2121v M m mv E +-= ②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ ③W 2=)(1s s mg +-μ ④W 3=2mgs μ-⑤ (a ) (b )W 4=)(2s s mg -μ ⑥W =W 1+W 2+W 3+W 4 ⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧ 由①~⑧式解得mgs v M m mM E μ221201-+= ⑨代入数据得E 1=2.4J ⑩28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍. 【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得mv 0=2mv 1 ①设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ④ 由以上各式解得73s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).【答案】15N解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .物块受到的滑动摩擦力F 1=μmg撤去力F 后,由动量定理得-F 1t =-mv由运动学公式得s -s 1=vt /2全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgsF s gt μμ=-代入数据得F =15N30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?【答案】06m g F m m -=;g F v m l m22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得tv m m g m m F 21001)()(+=+- ③ tv m m g m m F 22002)()(+=++ ④根据机械能守恒定律可得 2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1⑦ 由以上各式可解得,反映系统性质的物理量是06m g F m m -= ⑧ g F v m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003m m v E gF =31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.【答案】(1)021,0u u u ==;(2)014E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有021mu mu mu =+(以向右为速度正方向)202221212121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:mE v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有1102mv mv =用E 1表示最大弹性势能,由能量守恒有 211210210212121mv E mv mv =++解得0141E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N .这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [222TL N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩解得P =T Nm [222TL N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R。
动量与能量综合问题归类分析
量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
高中物理压轴题04 用动量和能量的观点解题(解析版)
压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动量和能量的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。
考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。
4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。
(3)规定正方向。
(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。
第十六章 专题 动量和能量的综合应用
第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。
动量与能量的关系
动量与能量的关系动量与能量是物理学中两个重要的概念,它们在描述物体运动和相互作用时起着关键的作用。
本文将探讨动量与能量之间的关系,以及它们在实际应用中的意义。
一、动量的定义与性质动量是描述物体运动的物理量,它是物体质量和速度的乘积。
动量的计算公式为:p = m * v,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量具有以下几个重要的性质:1. 动量是矢量量,具有方向性。
它的方向与物体的速度方向一致。
2. 动量与物体质量成正比,与速度成正比。
质量越大,速度越快,动量就越大。
3. 动量是守恒的。
在一个封闭系统中,物体间的相互作用不会改变系统的总动量。
二、能量的定义与性质能量是描述物体状态和物体间相互作用的物理量,它是物体所具有的做工能力。
根据能量的性质和形式,能量可以分为多种类型,如机械能、热能、电能、化学能等。
能量的计量单位是焦耳(J)。
能量具有以下几个重要的性质:1. 能量是标量量,不具有方向性。
2. 能量具有转化和守恒的性质。
能量可以在不同形式之间相互转化,但总能量守恒,不会因为转化而减少或增加。
三、动能与动量之间的关系物体的动能是指因物体运动而具有的能量。
动能的计算公式为:E_k = 1/2 * m * v^2,其中E_k表示动能,m表示物体质量,v表示物体的速度。
动能与动量之间存在着密切的关系。
根据动能的计算公式可以推导出:E_k = 1/2 * p * v,其中p表示物体的动量。
这表明动能与动量之间存在着倍数关系,动量越大,动能也越大。
四、冲量与动量的关系物体受到外力作用时,会发生动量的变化,这种变化称为冲量。
冲量的计算公式为:I = ∆p = m * ∆v,其中I表示冲量,∆p表示动量的变化量,m表示物体的质量,∆v表示速度的变化量。
冲量与动量之间存在着密切的关系。
根据冲量的计算公式可以推导出:I = F * ∆t = ∆p,其中F表示外力的大小,∆t表示作用时间。
这表明冲量等于动量的变化量,而动量是物体运动的量度,因此冲量可以看作是物体运动状态变化的度量。
动量及能量经典题剖析及问题详解
动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为m的小球以速度v1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量和能量综合问题
动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。
动量守恒,碰撞系统动能损失。
根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。
动量守恒与能量守恒练习题
动量守恒与能量守恒复习 1.质量为1m 的物体以速度1v 与质量为物体2m 发生弹性碰撞,求碰撞后它们的速度分别是多少?2.质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 0向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求:(1)小球能上升到的最大高度H 是多少 ?(2)小球与物块最终速度1v 和2v 是多少?3.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视做质点,质量分别为2m 和m .Q 与轻质弹簧相连(弹簧处于原长).设开始时P 和Q 分别以2v 和v 初速度向右匀速运动,当小滑块P 追上小滑块Q 与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q 的最大速度?4.如图所示,质量M 的小车B 静止光滑的水平轨道上,一个质量m 的物体A 以初速度0v 冲上小车B 后经一段时间t 从小车的右端以速度1v 滑下。
物体A 与小车板面间的动摩擦因数为μ,(取g=10m/s 2)(1)对物体A 动量定理: (4)对物体A 动能定理:(2)对车B 动量定理: (5)对车B 动能定理:(3)系统动量守恒: (6)系统能量守恒:5.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A (可视为质点),同时给A 和B 以大小均为2.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,要使小木块A 不滑离长木板B 板,已知小木块与长木板之间的动摩擦因数为0.6,求长木板B 的最小长度L=?6.如图所示,质量为3m 、长度为L 的木块静止放置在光滑的水平面上。
质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出木块速度变为025v 。
试求:子弹穿透木块的过程中,所受到平均阻力的大小。
7.如图,长木板a b 的b 端固定一档板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m 。
动量与能量守恒定律
动量与能量守恒定律动量与能量守恒定律是物理学中两个重要的基本定律。
它们描述了物体在相互作用过程中的性质和规律。
本文将详细介绍动量守恒定律和能量守恒定律的基本概念、原理以及在实际应用中的重要性。
一、动量守恒定律动量是描述物体运动状态的物理量,它的大小等于物体的质量与速度的乘积。
动量守恒定律指出,在相互作用过程中,物体的总动量保持不变。
具体而言,如果没有外力作用,物体的动量守恒。
动量守恒定律可以用以下公式表示:∑p初= ∑p末其中,∑p初表示相互作用前物体的总动量,∑p末表示相互作用后物体的总动量。
根据这个公式,我们可以得出,在一个封闭系统中,物体A和物体B发生弹性碰撞时,它们的动量分别由质量和速度共同决定。
在碰撞前后,两个物体的总动量保持不变。
动量守恒定律的一个重要应用是矢量分析。
矢量的方向和大小都要考虑,这使得矢量分析在描述运动过程中的物体受力和运动方向等方面非常有用。
二、能量守恒定律能量是物体进行物理活动时所具有的物理量。
能量守恒定律指出,在一个封闭系统中,物体的总能量保持不变。
能量可以从一种形式转化为另一种形式,但总能量的大小保持不变。
能量守恒定律可以用以下公式表示:∑E初= ∑E末其中,∑E初表示相互作用前物体的总能量,∑E末表示相互作用后物体的总能量。
物体的总能量由其动能和势能共同决定。
动能是物体运动时所具有的能量,势能则是物体处于某个位置时所具有的能量。
能量守恒定律的应用非常广泛。
例如,在机械能守恒定律中,我们可以利用物体的动能和势能之间的转化关系来分析和解释物体的运动。
在热力学中,能量守恒定律也常常用于分析物体的热量传递和工作过程等问题。
三、动量与能量守恒定律的应用动量守恒定律和能量守恒定律是物理学中非常重要的定律,广泛应用于各个领域。
在工程领域,动量守恒定律被用于设计和分析各种机械设备和工程结构,例如汽车碰撞的安全评估、水泵的设计等。
通过应用动量守恒定律,我们可以预测物体在相互作用过程中的受力情况和运动状态,从而帮助工程师制定更合适的设计方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.质量为m 的小球挂在长为L 、不可伸长的轻线上,静止于自然悬挂状态。
沿水平方向朝球打击一下,打击时间t 比小球振动周期小得多。
之后球沿圆弧运动时它将上升的最大高度为h ,则打击时作用在球上的平均冲力可能是( ) A.2m gh t B.5m gL t C.4m gL t D.(3h L)m g t
2.质量为2m 的长木板静止地放在光滑的水平面上,如图a 所示,质量为m 的小铅块(可视为质点)以水平速度v0滑上木板左端,恰能滑至木板右端与木板相对静止,铅块运动中所受的摩擦力始终不变.现将木板分成长度与质量均相等的两段(1、2)后紧挨着仍放在此水平面上,让小铅块以相同的初速度由木板1的左端开始滑动,如图b 所示,由下列判断中正确的是( )
A.小铅块滑到木板2的右端前就与之保持相对静止
B.小铅块仍滑到木板2的右端与之保持相对静止
C.小铅块滑过木板2的右端后飞离木板
D.上面的三种情况都有可能出现
1.如图所示,A 为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M= 40kg 小车B 静止于轨道右侧,其板面与轨道底端靠近且在同一水平面上,一个质量m=20kg 的物体C 以
2.0m/s 的初速度从轨道顶滑下,冲上小车B 后经一段时间与小车相对静止并继续一起运动.若轨道顶端与底端水平面的高度差h 为0.8m ,物体与小车板面间的动摩擦因数μ为0.40,小车与水平面间的摩擦忽略不计,(取g=10m/s 2)求:
(1)物体和小车保持相对静止时的速度。
(2)从物体冲上小车到与小车相对静止所用的时间;
(3)物体冲上小车后相对于小车板面滑动的距离.
2、如图所示,质量为m 的小物体(可视为质点)放在
小车上,它们一起在两堵竖直墙壁之间运动,小车质量为M ,且M > m.设车与物体间的动摩擦因数为μ,车与水平面间无摩擦,车与墙壁碰撞后速度反向而大小不变,且碰撞时间极短.开始时车紧靠在左面墙壁上,物体位于车的最左端,车与物体以共同速度v0向右运动.若两墙壁之间的距离足够长,求:
(1)小车与墙壁第2 次碰撞前(物体未从车上掉下)的速度.
(2)要使物体不从车上滑落,车长L应满足的条件.
3.如图所示,水平平板小车质量为m= 2kg, 其上左端放有一质量为M=6kg的铁块,铁块与平板车间的动摩擦因数μ=0.5,今二者以10m/s的速度向右运动,并与墙发生弹性碰撞,使小车以大小相同的速度反弹回,这样多次碰撞,求:
(1)欲使M不从小车上落下,小车至少多长?
(2)第一次反弹后到最终状态,小车运动的总路程.(小车与水平面的摩擦不计,g=10m/s2 )
5.(25届预赛)如图所示,“1”和“2”是放在水平地面上的两个小物块(可视为质点),与地面的滑动摩擦系数相同,两物块间的距离d =170.00m ,它们的质量分别为m1=2.00kg、m2=3.00kg.现令它们分别以初速度v1=10m/s和v2=2m/s相向运动,经过时间t=20.0s,两物块相碰,碰撞时间极短,碰后两者粘在一起运动.求从刚碰后到停止运动过程中损失的机械能.
6.如图所示,某货场需将质量为m1=100kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速滑下,轨道半径R=1.8m。
地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为L=2m,质量均为m2=100kg,木板上表面与轨道末端相切。
货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.2。
(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s2)
(1)求货物到达圆轨道末端时对轨道的压力。
(2)若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求μ1应满足的条件。
(3)若μ1=0.5,求货物滑到木板A末端时的速度和在木板A上运动的时间。
9.如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为L。
工人用沿斜面的力推最下面的木箱使之上滑,逐一与其他木箱碰撞。
每次碰撞后木箱都粘在一起运动。
整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。
已知木箱与斜面间的动摩擦因数为μ,重力加速度为g。
设碰撞时间极短,求:(1)工人的推
力;(2)三个木箱匀速运动的速度;
(3)在第一次碰撞中损失的机械能。
10.劲度系数为k的轻质弹簧水平放置,左端固定,右端连接一个质量为m的木块(图1),开始时木块静止于某一位置,木块与水平面之间的动摩擦因数为,然后加一个水平向右的恒力于木块上,
(1)要保证在任何情况下都能拉动木块,此恒为F不得小于多少?
(2)用这个力F拉木块当木块的速度再次为零时,弹簧可能的伸长量是多少?
11.如图所示,一块足够长的木板放在光滑的水平面上,在木板上自左向右放有序号为l、2、3、…、n的木块,所有木块的质量都为m,与木板间的动摩擦因数都为μ.木板的质量与所有木块的总质量相等.开始时,木板静止不动,第l、2、3、…、n号木块的速度分别为v0、2v0、3v0…、nv0方向都向右,最终所有木块与木板以共同速度匀速运动.求:
(1)所有木块与木板一起匀速运动的速度大小v n.
(2)第l号木块与木板刚好相对静止时的速度大小v1
(3)通过分析与计算得出第k号(k<n)木块的最小速度v k.
(4)第n号木块从开始运动到与木板速度刚好相等时的位移。