8.2消元----解二元一次方程组教学设计
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
-理解消元的概念及其在解二元一次方程组中的应用;
-掌握通过加减法对二元一次方程组进行消元的具体步骤;
-学会运用加减消元法求解二元一次方程组,并能够正确验证结果;
-能够将实际问题转化为二元一次方程组,运用加减消元法解决问题。
举例说明:
(1)对于方程组:
\[
\begin{cases}
2x + 3y = 8 \\
在学生小组讨论的过程中,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对讨论的主题理解不够深入。为了改善这一点,我计划在今后的教学中,加强对学生讨论方向的引导,确保他们的讨论能够紧扣主题,提高讨论的效率。
-在验证解时,确保代入原方程组中的每个方程都满足,以避免漏解或多解。
举例说明:
(1)对于方程组:
\[
\begin{cases}
5x + 3y = 16 \\
3x - 5y = 23
\end{cases}
\]
学生可能会难以确定如何消去变量,需要指导他们通过乘以适当的数来调整系数,如将第一个方程乘以3,第二个方程乘以5,得到:
x - y = 2
\end{cases}
\]
然后应用加减消元法求解。
2.教学难点
-理解消元的本质,即如何通过变换使方程组中的某个变量的系数相同或互为相反数;
-在进行加减消元时,正确选择相加或相减的方程,避免计算错误;
-在消元过程中,注意保持等式两边的平衡,避免出现计算错误;
-对于系数不是整数倍的方程组,如何通过乘以适当的数使得系数相同或互为相反数;
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
一、教学内容
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
最新人教版初中数学七年级下册 8.2.2 加减消元法—解二元一次方程组教案
8.2.2 加减消元法简介:本节课的内容是人教版义务教育教科书《数学》七年级(下)§8.2消元---解二元一次方程组,主要内容是掌握用加减法消元解二元一次方程组,进一步了解消元是解二元一次方程组的思想方法.在本节学习之前,学生已经学习了二元一次方程组和代入消元解二元一次方程组的内容,学生已经对二元一次方程组及解二元一次方程组有一定的认识,会用二元一次方程组表示问题中的数量关系。
本节内容是学习解二元一次方程组的重要部分,在教材中占据重要的地位。
教材分析本节课是学习用加减法解二元一次方程组,进一步理解消元,通过实际情境问题引出解二元一次方程组的方法概念,对于方程组中有一个未知数的系数相等或者是互为相反数的方程组学生往往比较容易掌握,但是对于系数既不相等又不是互为相反数的方程组,老师要引导学生转化解决,让学生掌握用加减法解二元一次方程组的一般步骤。
本节课教学重点为:用加减消元法解二元一次方程组。
教学难点:探索如何用加减法将“二元”转化为“一元”的消元过程.教学目标1、知识与技能使学生熟练的掌握用加减消元法解二元一次方程组。
2、过程与方法通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,使学生进一步理解加减消元法所体现的化归思想,培养观察能力。
3、情感态度与价值观进一步体会方程是刻画现实世界的有效数学模型重点难点教学重点:用代入法、加减法解二元一次方程组. 教学难点:会用二元一次方程组解决实际问题教学方法引导发现法、小组合作探究法、练习法。
教学准备教学过程设计程序(要素)时间创设情教师行为期望的学生行为景创设情境引入新课8分钟创设问题情境知识回顾1.根据等式性质填空<1>若a=b,那么a±c= .<2>若a=b,那么ac=2.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。
某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?列出方程组思考:1、用代入消元法怎么解此方程组?2、观察y的系数,能否找出新的消元方法呢师生共同得出答案引出新知。
《8.2消元——解二元一次方程组》第1课时教案
《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
初中数学_8.2 代入法消元—解二元一次方程组教学设计学情分析教材分析课后反思
8.2代入法消元解二元一次方程【教师准备】例题演示的详细板书.【学生准备】复习二元一次方程组解的概念.导入一:体育节要到了.拔河是七年级(1)班的优势项目.为了取得好名次,他们想在全部22场比赛中得到40分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么七年级(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程组那么有哪些方法可以求得二元一次方程组的解呢?[设计意图]导入情境是学生喜闻乐见的体育活动,可以增强学生的求知欲,使学生对所学知识产生亲切感.导入二:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列方程组表示本章引言问题中的数量关系.如果只设一个未知数:胜x场,那么这个问题也可以用一元一次方程2x+(10- x)=16来解.思路上面的二元一次方程组和一元一次方程有什么关系?[设计意图]比较方程2x+(10- x)=16和方程组之间的关系,是引入代入法的关键所在.一、代入法[过渡语](针对导入二)建立二元一次方程组求未知数,目的是求适合两个方程的未知数,也就是说两个方程的未知数取值是一样的.我们从这个认识出发,探究怎样解二元一次方程组?问题1能否借助于一元一次方程解二元一次方程组?〔解析〕我们发现,二元一次方程组中第一个方程x+y=10可以写为y=10- x.由于两个方程中的y 都表示负的场数,因此我们把第二个方程2x+y=16中的y换为10- x,这个方程就化为一元一次方程2x+(10- x)=16.解这个方程,得x=6.把x=6代入y=10- x,得y=4.从而得到这个方程组的解.问题2在上面的方程组中,第一个方程x+y=10是否可以写为x =10- y,然后再把x=10- y代入到方程2x+y=16中?〔解析〕从思路上讲,问题1和问题2的思路是一样的,只是选择哪个字母代入的问题.总结:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就可以把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入法.问题3在上述的消元过程中,是怎样实现消元的?这种消元的方法叫什么?总结:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.二、例题讲解用代入法解方程组〔解析〕方程①中x的系数是1,用含y的式子表示x,比较简便.解:由①,得x=y+3③,把③代入②,得3(y+3)- 8y=14.解这个方程,得y=- 1.把y=- 1代入③,得x=2.所以这个方程组的解是追问1:把③代入①可以吗?试试看.提示:不可以,因为方程③是由方程①变形而来的,把③代入①后,只能得到一个恒等式.追问2:把y =- 1代入①或②都可以吗?提示:可以.二元一次方程组消元后化为一元一次方程,求出一个未知数的解,代入方程①、方程②或方程③都可以求出另一个未知数的值,但代入变形后的方程③更简便一些.[知识拓展]1.当方程组中含有用一个未知数表示另一个未知数的关系式时,用代入法比较简单.2.若方程组中未知数的系数为1(或- 1),选择系数为1(或- 1)的方程进行变形,用代入法也比较简便.3.如果未知数系数的绝对值不是1,一般选择未知数系数的绝对值最小的方程变形.(补充)用代入消元法解方程组〔解析〕求方程组的解的过程叫做解方程组.由方程组的解的概念,可知解方程组就是要求出同时满足此方程组中的两个方程的x和y的值.解:由①得x=y- 5.③把③代入②,得3(y- 5)+2y=10,解这个一元一次方程,得y=5,把y=5代入③,得x=0,所以原方程组的解为[知识拓展]用代入消元法解二元一次方程组时,一般用含一个未知数的代数式表示另一个未知数,但并非绝对.如解方程组由①得2x- 3y=2③,将③代入②得+2y=9,解得y=4,再将y=4代入③得2x- 3×4=2,解得x=7,故方程组的解为这种整体代入的方法显然比常规方法简单很多,但无论是用哪一种方法进行代入消元,都应该达到同一个目的——消元.代入法解二元一次方程组的一般步骤为:(1)从方程组中选一个未知数系数比较简单的方程,将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=ax+b的形式;(2)将y=ax+b代入方程组中的另一个方程中,消去y,得到关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)把求得的x值代入方程y=ax+b中(或方程组中的任意一个方程中),求出y的值,再写成方程组解的形式;(5)检验得到的解是不是原方程组的解.1.把方程2x- 4y=1改写成用含x的式子表示y的形式是.解析:用含x的式子表示y,相当于把y看成未知数,把x看成已知数,解关于y的一元一次方程,结果为y= .故填y=.2.方程组的解是()A.B.C.D.解析:将方程y=2x代入3y+2x=8得x=1,将x=1代入y=2x得y=2.故选B.3.用代入法解方程组代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=5x- 2解析:根据代入法解方程组的方法结合方程组的特征即可作出判断.由题意得代入后化简比较容易的变形是由②得y=5x- 2.故选D.4.用代入法解下列方程组:(1)(2)解:(1) 把①代入②得3x- 2(2x- 3)=8,解得x=- 2.把x=- 2代入①得y=2×(- 2)- 3=- 7.所以原方程组的解为(2) 由①得x=y+3③,把③代入②得3(y+3)- 8y=14,解得y=- 1,把y=- 1代入③得x=2.所以原方程组的解为第1课时1.代入法(1)消元思想(2)代入法2.例题讲解例1例2一、教材作业【必做题】教材第93页练习第1,2题.【选做题】教材第97页习题8.2第2题.8.2学情分析七年级学生的抽象思维能力和逻辑思维能力较差,这也导致在课堂教学中,显得枯燥、乏味,加上学生的运算能力不强,使得这章内容的教学难度增大,但是他们的好奇心强,具有一定的探究能力。
代入消元法解二元一次方程组第一课时
8.2消元-----用代入法解二元一次方程组(第一课时)【学习目标】1、 知识与技能:会用代入法解简单的二元一次方程组。
2、 过程与方法:经历探索代入消元法解二元一次方程组的过程,理解代入消元法的基本思想所体现的化归思想方法。
3、 情感与态度:通过提供适当的情景资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
【教学重点】用代入法解二元一次方程组的消元过程。
【教学难点】探索如何用代入法将“二元”转化为“一元”的消元过程。
【教学过程】一、体验园1、把方程写成用含x 的式子表示y 的形式2、把写成用含y 的式子表示x 的形式.二、探索园 问题 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?问题1 你能根据问题中的等量关系列出二元一次方程组吗?问题2 这个实际问题能列一元一次方程求解吗?问题3 对比方程和方程组,你能发现它们之间的关系吗?问题4 对于二元一次方程组,你能写出求出x 的过程吗?问题5 怎样求出y ?例题:解方程组 ⎩⎨⎧=-=-14833y x y x23;x y -=23;x y -=1、解二元一次方程组的一般步骤:1、 ____2、____3、_____4、______2、上面解方程组的基本思路是把“二元”转化为“一元” —— “消元”,即将未知数的个数由多化少、逐一解决的思想.3、代入消元法:三、训练园1、方程-x+4y=-15用含y 的代数式表示x 为( )A .-x=4y-15B .x=-15+4yC. x=4y+15 D .x=-4y+152、将y=-2x-4代入3x-y=5可得( )A.3x-(2x+4)=5B. 3x-(-2x-4)=5C.3x+2x-4=5D. 3x-2x+4=53、用代入法解方程组⎩⎨⎧=+=+832152y x y x 较为简便的方法是( ) A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形4、用代入法解二元一次方程组(1)⎩⎨⎧-==+32823x y y x (2)⎩⎨⎧=+=-24352y x y x解: 解:四、三省园对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?。
人教版七年级数学8.2《代入消元法解二元一次方程组》教学设计
2.加强对代入过程的指导,让学生熟练掌握代入消元法的步骤。
3.引导学生运用代入消元法解决实际问题,培养学生的实际应用能力。
4.针对特殊情况的二元一次方程组,教师应给予充分讲解和指导,帮助学生克服困难。
在此基础上,关注学生的心理特点,激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养他们主动探究、合作学习的良好习惯。通过以上措施,使学生在掌握代入消元法的基础上,提高解决实际问题的能力,为后续学习打下坚实基础。
2.家长监督并签字,确保学生按时完成作业。
3.教师将针对作业完成情况进行批改和反馈,帮助学生发现并改正错误。
3.教学策略:
(1)关注学生的个体差异,针对不同水平的学生设计不同难度的练习题,使每个学生都能得到提高。
(2)注重启发学生思维,鼓励学生提出问题,培养学生的问题意识。
(3)加强师生互动,营造轻松、和谐的学习氛围,激发学生的学习兴趣。
(4)运用多媒体辅助教学,通过直观的动画演示代入消元法的过程,帮助学生更好地理解。
3.应用题:结合生活实际,设计一道应用题,让学生将实际问题抽象成二元一次方程组,并运用代入消元法求解。例如:“小华和小明一起去书店购买图书,小华购买了3本科技书和2本故事书,小明购买了2本科技书和4本故事书。若科技书每本20元,故事书每本15元,小华和小明一共花费了190元。求小华和小明各购买了多少本科技书和故事书。”
人教版七年级数学8.2《代入消元法解二元一次方程组》教学设计
一、教学目标
(一)知识与技能
1.理解代入消元法的概念和原理,掌握代入消元法解二元一次方程组的步骤。
2.能够根据实际问题列出二元一次方程组,并运用代入消元法求解。
8.2 消元——加减消元法解二元一次方程组(教案)
8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。
代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。
二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。
2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。
3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。
三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。
(二)教学难点:如何运用加减法进行消元。
四、教学方法:本节课采用“探索---发现---比较”的教学法。
五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。
(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。
1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
8.2消元__二元一次方程组的解法(加减法)学案
课题8.2消元---二元一次方程组的解法年级:七年级 备课人:娄婷婷 课型:新授 课时:新课标:掌握加减消元法,能解二元一次方程组。
一、指导思想与理论依据涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。
本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论,并在二元一次方程组的基础上,学习讨论三元一次方程组及解法。
由此为今后进一步学习不等式组以及二次函数奠定基础。
本章主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例。
其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点。
使学生经历建立二(三)元一次方程组这种数学模型并应用它们解决实际问题的过程,体会方程组的特点和作用,掌握运用方程组解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识,是本章的中心任务。
由于含有两(三)个以及多个未知数的实际问题中数量关系比较多,在某些问题中数量关系比较隐蔽,所以列方程组表示问题中的数量关系通常是教学中的难点。
二、教学背景(一)学生情况分析七年级学生由于才进入初中,绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,学习成绩极不理想。
从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。
部分学生有主动学习的行为,深得老师赞赏。
比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会,表现欲较强。
但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。
(二)教学方式与教学手段抓住七年级学生表现欲强的特征,多让学生自主学习与小组合作学习相结合,老师起点拨作用,把课堂还给学生。
北京八中乌兰察布分校人教版七年级数学下册8.2消元----二元一次方程组的解法 教案
加减消元法——解二元一次方程组的教学设计北京八中乌兰察布分校闫凤珍8.2 消元----二元一次方程组的解法(二)(第一课时)一、知识与技能目标1.进一步体会消元思想、会用加减法解二元一次方程组。
2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想。
3.培养学生观察、思考、归纳及解决问题的能力。
二、过程与方法目标通过探索二元一次方程组的解法的过程,•了解二元一次方程组的“消元”思想,培养学生良好的探索习惯.三、情感态度与价值观目标1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。
2.培养学生合作交流,自主探索的良好习惯。
新授课:一、复习导入1.复习等式的基本性质2.复习用代人法解二元一次方程组的基本思路和解题步骤二、题组教学,植入新课(一)发现之旅我们知道,对于方程组22240x y x y +=⎧⎨+=⎩可以用代入消元法求解。
这个方程组的两个方程中,y 的系数有什么关系?•利用这种关系你能发现新的消元方法吗?1.问题的解决上面的两个方程中未知数y 的系数相同,②-①可消去未知数y ,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入①得y=4。
另外,由①-②也能消去未知数y ,•得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入①得y=4.2.想一想:联系上面的解法,想一想应怎样解方程组 22=+y x112=-y x分析:这两个方程中未知数y 的系数互为相反数,•因此由①+②可消去未知数y , 解:由①+②得 3x=33 x=11把x=11代入①得y=11 ∴这个方程组的解为 11=x11=y3.加减消元法的概念从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代入消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a)理解代入消元法的步骤:选择一个方程解出一个变量,然后将其代入另一个方程中,从而得到一个一元一次方程,最后求解得到两个变量的值。
-举例:解方程组2x + 3y = 5和x - y = 1,先从第二个方程解出x = y + 1,然后代入第一个方程得到2(y + 1) + 3y = 5。
b)学会判断何时使用代入消元法:当一个方程已经解出了某个变量的值,或者方程中某个变量的系数为1或-1时,适合使用代入消元法。
-举例:如果问题涉及到两个人共同完成一项工作,需要根据两人的工作效率和时间来构建方程组。
d)难点4:理解代入消元法与其他消元方法的区别
-学生需要理解代入消元法与加减消元法的区别,以及何时使用哪种方法更有效。
-举例:对于方程组x + y = 3和2x - y = 1,使用加减消元法更为简便。
四、教学流程
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
一、教学内容
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案:
1.理解代入消元法的概念及原理;
2.学会运用代入消元法解二元一次方程组;
3.能够根据具体问题,选择合适的消元方法求解;
4.掌握代入消元法在不同类型二元一次方程组中的应用。
初中数学_解二元一次方程组教学设计学情分析教材分析课后反思
8.2 消元—解二元一次方程组【教学目标】知识与技能:使学生学会用代人消元法解二元一次方程组.过程与方法:理解代人消元法的基本思想体现的化未知为已知的化归思想方法.情感态度与价值观:逐步渗透矛盾转化的唯物主义思想.【教学重难点】教学重点:用代入法解二元一次方程组.教学难点:代入消元法的基本思想.教具准备:小黑板、多媒体教法:讲授学法:探究课时:第1课时课型:新授课授课时间:【教学过程】一、创设情境,引入课题体育节要到了.篮球是初一(1)班的拳头项目.为了取得好名次,他们想在全部10场比赛中得到16分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么初一(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程.那么有哪些方法可以求得二元一次方程组的解呢?二、探索新知1.引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)满足方程①的解有:,,,,,满足方程②的解有:,,,,,…这两个方程的公共解是2.这个问题能用一元一次方程来解决吗?学生思考并列出式子.设胜x场,负(10-x)场,解方程2x+(10-x) =16 ③观察:上面的二元一次方程组和一元一次方程有什么关系?教师可通过提问进一步引导.(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)方程组中方程②所表示的等量关系是什么?(3)方程②与③的等量关系相同,那么它们的区别在哪里?(4)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?结合学生的回答,教师做出讲解.由方程①进行移项得y=10-x,由于方程②中的y与方程①中的y都表示负的场数,故可以把方程②中的y用(10-x)来代换,即得2x+(10-x) =16.由此一来,二元化为一元了.解得x=18.问题解完了吗?怎样求y将x=6代入方程y=10-x,得y=4.能代入原方程组中的方程①②来求y吗?代入哪个方程更简便?这样,二元一次方程组的解是归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.(板书课题)三、巩固新知例1 用代入法解方程组解:把①代入②,得3(y+3)-8y=14所以y=-1把y=-1代人①,得x=2.所以教师引导学生思考下列问题:(1)选择哪个方程代人另一方程?其目的是什么?(2)为什么能代?(3)只求出一个未知数的值,方程组解完了吗?(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?(5)怎样知道你运算的结果是否正确呢?(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)例2(为例1的变式)解方程组解:由①得,y=,③把③代人②,得(问:能否代入①中?)3x-8()=14,所以-x=-10,x=10.把x=10代入③,得y=所以y=2所以(本题可由一名学生口述,教师板书完成)四、课堂小结合作交流:你从上面的学习中体会到代人法的基本思路是什么?主要步骤有哪些呢?与你的同伴交流.五、布置作业必做题:习题8.2第1题,第2(1)(2)题选做题:习题8.2第5题(1)板书设计:8.2消元—解二元一次方程组(1)代入法解二元一次方程组的一般步骤:1.变形例12.代入例23.求解4.回代5.写解学情分析本节课的学习者是七年级第二学期的学生,他们已经能够熟练求解一元一次方程,并刚刚学会了二元一次方程和二元一次方程组的定义,学习用代入法解二元一次方程组水到渠成,能够引起学生的兴趣。
关玉的代入消元法解二元一次方程教学设计
杏山镇中心学校七年级数学教学设计课 题:8.2消元---解二元一次方程组(代入消元法) 主备人:关玉复核人:郑体华、杜学君 审核人:郑体华 教学目标:1、理解消元思想。
2、了解代入法是消元的一种基本方法,会用代入法解二元一次方程组.知识回顾:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得某队在10场比赛中得到16分,那么这个队胜负场数分别是多少? 方法一(设两个未知数,列二元一次方程组): 设此篮球队胜x 场,负y 场 ①②方法二(只设一个未知数,列一元一次方程):设胜x 场,则负 场。
学、自主学习:自学教材第91页-92页例2上面,完成以下问题: 帮你分析:上面的二元一次方程组和一元一次方程有什么关系?(1)二元一次方程组中第一个方程10=+y x 可写为=y ;(2)此时把第二个方程162=+y x 中的y 换成 ,这个方程就化为一元一次方程 ;(3)解这个一元一次方程,得=x 。
(4)把=x 代入x y -=10,得=y 。
(5)从而得到这个方程组的解 x =y = 。
归纳一:二元一次方程组中有 个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的 ;我们可以先求出一个未知数,然后再求出另外一个未知数。
这种将未知数的个数 ,逐一解决的思想,叫做消元思想。
归纳二:上面的解法,是把二元一次方程组中一个方程的 用含 的式子表示出来,再代入 一个方程,实现 ,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
练:(5分钟)用代入法解方程组。
x – y = 3 ①3x –8y = 14 ②x ,比较简便。
) 解:展、小组展示自主学习中的任务,并答疑解惑。
研、合作探究: 1、第二步中,把③代入①可以吗?能求出方程组的解吗?猜想:实际试一试:把③代入①,得结论:2、第四步中,把y = – 1代入①或②可以吗?猜想: 。
试一试:把y = – 1代入①,得把y = – 1代入②,得结论: 。
8_2_代入消元法解二元一次方程教案
2x- 3y=1 ① x=y-1 ②x- y=3 ① 3x-8y=1 4②8.2消元——解二元一次方程组【教学目标】1.会用代入消元法解简单的二元一次方程组。
2.理解解二元一次方程组的思想是“消元”,由“二元”转化为“一元”。
3.培养学生自主学习,合作交流的意识与探究精神。
【重 点】会用代入法解二元一次方程组,体会消元思想。
【难 点】理解“二元”向“一元”转化的关键是将一个方程的变形。
【教学方法】探究、引导、练习【教学用具】电子白板设备【教学过程】:一、自主探究,挑战自我课件展示问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.七1班在8场比赛中得了14分。
设比赛胜了x 场,负了y 场,由此可列出二元一次方程组 。
二、合作探究,成就自我1.课前热身:(1)把方程2x -y=3写成用含x 的式子表示 y 的形式:y= (2)把方程3x +y - 1=0写成用含y 的式子表示x 的形式x=2.例题1讲解:解方程组:3.师生归纳:(1)上面解方程组的基本思路是“消元”,把“二元”变为“一元”。
(2)主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
.4.学生尝试,教师引导,完成例题2:5.归纳用代入法解二元一次方程组的一般步骤:(1)将方程组里的一X+y=5 ① x-y=1 ② 2 x +3y=10 ① 3x-y=4 ②ax +by=5 ①bx-ay=5 ② x=2 y=-1 个方程变形,用含有一个未知数的一次式表示另一个未知数(变形);(2)用这个一次式代替另一个方程中的相对应未知数,得到一个一元一次方程,求得一个未知数的值(代入);(3)把这个未知数的值代入一次式,求得另一个未知数的值(再代);(4)写出方程组的解并检验(写解)。
6.学以致用:引导学生完成“引入”中篮球联赛问题。
七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
七年级下册数学教案消元-解二元一次方程组
学校教师备课笔记学校教师备课笔记茄子西红柿FECADB教学环节教学活动设计意图让学生感受列表法的直观,体会用列表法梳理数量关系的好处,培养学生使用列表法的意识.学生交流解法,碰撞思维火花,体会一题多解的问题情境,学会从多种角度考虑问题.考查学生对探究问题的理解程度,同时让学生体会数学来源于生活,又服务于生活.教师活动学生活动备用图(1)学生先齐读,再小声读题,划出关键词句,明确问题让我们做什么.(2)学生分享找出的关键词句.(3)小组合作交流,完成三个任务:①找出等量关系;②设出恰当的未知数;③列出方程组.(4)学生代表板演解题过程并讲解.(5)学生讲完解法一后,教师引导学生重新回顾解法一,并给出下面的表格,由表格可以清楚地看出各个数据和等量关系,然后提倡学生采用列表法梳理等量关系.2.类比延展请加入生活中的其它实际背景(如:消毒液、花坛、黑板、墙报、窗户等)对这道题进行改编并写在下面的横线上.______________________________________________________四、当堂检测1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人,列方程组为( )茄子西红柿未知边长x y种植面积10x10y单位产量之比 1 2总产量之比10x2×10y法二:解:如图1,一种种植方案为:茄子、西红柿的种植区域分别为长方形AEFD和BCFE.设AE=x m,BE=y m.(31):(42)3:2÷÷=则⎩⎨⎧==+2:310:1020yxyx解这个方程组得⎩⎨⎧==812yx答:过长方形土地的长边上离一端12 m处,把这块地分为两个长方形.较大一块地种茄子,较小一块地种西红柿.学生自由发言根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?教学环节教学活动设计意图教师活动学生活动A.⎩⎨⎧==+yxyx241590B.⎩⎨⎧==yxyx4548-90C.⎩⎨⎧==+yxyx243090D.⎩⎨⎧=-=yxyx24)15(2-902.如图,8块相同的长方形地砖拼成一个大长方形,大长方形的宽为60 cm,每块长方形地砖的长和宽分别是多少?五、归纳总结PPT回放几张重点幻灯片,引导学生回顾本节所学内容,谈一谈有哪些收获.六、布置作业必做题:1.课本P102 习题8.3 4、5选做题:课本P102 习题8.3 7学生讲解1.C2.解:设长方形的长为xcm,宽为ycm根据题意,列方程组⎩⎨⎧=++=6032yxyxx解这个方程组,得⎩⎨⎧==1545yx答:长方形的长为45cm,宽为15cm。
8.2消元-解二元一次方程组(第1课时)-教学设计
↓
y=20-x
(二元转化成一元)
2x+(20-x)=38
4.思考:二元转化一元的基本途径是什么?(代入消元法)
1. 试解的方法是学 生思维求异的一种 方式。 有利于学生策 略意识和数学思维 品质的形成; 2. 新旧对比是学生 发现和感知知识的 有效而重要的途径, 有利于学生经历知 识的发生发展过程; 3. 发现交流使学生 在合作中检阅纠正 自己的思维。 同时合 作交流也是学生获 取知识的一种重要 途径; 4.归纳和思考从直 观和简洁两方面突
提高学生应用所学 知识解决实际问题 的能力, 并养成用数 学思维和方法去解 决遇到的实际问题 的能力。
(2)解: 由①得 代入②得 解得 x=6 所以这个方程组的解是: ,代入③,得 ③
四、小结归纳 代入法解二元一次方程组的步骤: (1)变:从方程组中选一个未知数系数比较简单的方程,将 这个方程表示成用一个未知数表示另一个未知数的方式; 让学生尝试归纳,总结,发言, (2)代:将变形后得到的式子代入方程组中的另一个方程中,体会,反思,教师点评汇总。 消去一个未知数得到一元一次方程; (3)解这个一元一次方程,求出一个未知数的值。 (4)把求得的未知数的值代入变形后的方程中,求出另一个 未知数的值。 (5)写出方程组解的形式。
破教学难点: 代入消 元法——转化思想 的形成, 利于新的知 识结构与方法的建 构。
通过讲解, 引导学生 逐步掌握代入消元 法的基本步骤。
解:由①,得 x=y+3 ③ 把③代入 ②得 3(y+3)-8y=14 解这个方程,得 y=-1 把 y=-1 代入③,得 x=2 所以这个方程组的解是
(选择并变形) (代入消元) (解一元方程) (代回求解)
教 学 目 标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、2消元----解二元一次方程组教学设计
第一课时代入消元法
【教学目标】
1.我会用代入法解二元一次方程组。
2.我能体会解二元一次方程组的基本思想――“消元”。
3、掌握用代入法解二元一次方程组的一般步骤,并体会消元思想和化归思想。
【教学重难点】
重点:.用代入法解二元一次方程组
难点:.掌握用代入法解二元一次方程组的一般步骤。
【课时安排】1课时
【教学过程】
一、导入环节(2分钟)
(一)导入新课,板书课题
导入语:同学们,上节课我们学习了二元一次方程组,今天我们来学习二元一次方程组的解法,如何解二元一次方程组呢?带着疑惑我们进入自学指导.
(二)出示学习目标
学案展示学习目标,学生读学习目标.
过渡语:让我们带着学习目标、带着问题进入自主学习环节.
二、先学环节(15分钟)
(一)出示自学指导.
(1)复习:把方程改写成用含的x式子表示y的形式:3x+ y-1=0变形为:y=
(2)、篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
①、如果只设一个末知数:胜x场,负(10-x)场,列方程为: .
②、我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x,负的场数是y,
根据题意列方程组得:
思考:观察上面的二元一次方程组和一元一次方程,根据提示解方程组。
x+y=10 ①
2x+y=16 ②
解:由①可得: y=③
把③代入②,得
解得:X=
把X的值代入③解得y的值为
所以,方程组的解是:
3、归纳:二元一次方程组中有两个未知数,如果消去其中一个未知数,将转化为我
们熟悉的一元一次方程,我们就可以先解出,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做 .
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,
再代入另一方程,实现,进而求得 .这种方法叫做代入消元法,简称代入法(二)自学检测
要求:根据自学指导2的提示,独立完成,再两两交换检查.
例1用代入法解方程组x-y=3 ①
3x-8y=14 ②
(三)质疑问难
过渡语:你在自学中还有什么问题吗?请提出来准备班内解决.
三、后教环节(15分钟)
第一,生生合作,互相纠错
组内交流,大约用3分钟,将课本中的疑问和自学检测中疑难问题进行交流,组长负责组员的
发言秩序,记录没解决的问题.发言要求:言简意赅,明确清晰.
第二,展示交流,统一答案
要求:先独立思考,再组内交流解题思路和方法,准备展示.
用代入法解下列二元一次方程组:
(1)5s+2t=12
3s-t=5
解后反思:(1)用代入消元法解二元一次方程组的具体步骤是什么?
(2)你选择方程变形时有什么好的方法和同学分享吗?
(3)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?
(4)怎样知道你运算的结果是否正确呢?
点拨:比一比计算能力,看那组算的又快又准,
四、训练环节(13分钟)
训练要求:认真规范完成训练题目,3分钟后,老师根据情况确定同学到黑板展示
.成绩记入小
组量化,不超过
7分钟完成.展示点拨环节,大约用时
10分钟.
1.已知x =2,y =2是方程ax -2y =4的解,则a =________.
2.已知方程x -2y =8,用含x 的式子表示y ,则y =_____________,用含y 的式子表示x ,则x =____________
3.已知
1
2y
x 是方程组
5
4a
by
x
b y ax 的解.求a 、b 的值.
点拨:注意解题格式,提高计算能力.纠错环节,说出自己错在哪里,为什么错。
课堂总结:本节课我们学习了用代入法解二元一次方程组,
知道了解方程组的步骤及解题思路。
【板书设计】
消元----解二元一次方程组代入消元法
【教学反思】。