七年级数学下册第6章实数6.3实数6.3.1实数的概念课件44

合集下载

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

人教版七年级下册数学第六章实数课件:6.3 实数

人教版七年级下册数学第六章实数课件:6.3 实数

正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4

0.6
(6)实数集合: 9 3 5

0.6
3 4
3 9 3 0.13
64

0.6
3
3
4
0.13

3 9

64 3

3 9

实数课件人教版数学七年级下册3

实数课件人教版数学七年级下册3

填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);

(4)a+(-a) = (-a)+a = 0

(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.

七年级数学人教版下册第六章6.3.1实数及其分类课件

七年级数学人教版下册第六章6.3.1实数及其分类课件
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数



0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};

,∴
是有理数.∵

8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8

1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介

七年级数学下册:第六章实数6.3实数第1课时实数的概念教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第1课时实数的概念教学课件(新版新人教版)

7.下列说法正确的有( A )
①不存在绝对值最小的无理数;
②不存在绝对值最小的实数;
③不存在与本身的算术平方根相等的数;
④比正实数小的数都是负实数;
⑤非负实数中最小的数是 0.
A.2 个
B.3 个
C.4 个
D.5 个
8.[2018·咸宁]写出一个比 2 大但比 3 小的无理数(用含根号的式子表示) ___5__.
-64;
(2) 225;
(3) 11;
(4) 2-2.
解:(1)因为3 -64=-4,所以3 -64的相反数是 4,倒数是-14,绝对值是 415,倒数是115,绝对值是 15;
(3)
11的相反数是-
11,倒数是
1 ,绝对值是 11
11;
(4) 2-2 的相反数是 2- 2,倒数是 21-2,绝对值是 2- 2.
类型之三 数轴上的点与实数一一对应的关系 如图 6-3-1,数轴上 A,B 两点表示的数分别为 2和 5.1,则 A,B 两
点之间表示整数的点共有( C )
A.6 个
B.5 个
图 6-3-1 C.4 个
D.3 个
类型之四 实数的大小比较 三个数-π,-3,- 3 的大小顺序是__-__π_<_-__3_<__-___3_____ (按从小
2019年春人教版数学七年级下册课件
6.3 实根
第六章 实数
6.3 实根 第1课时 实数的概念
学习指南 知识管理 归类探究 当堂测评 分层作业
学 习 指 南 [教用专有]
教学目标 1.了解无理数和实数的概念,会对实数按照一定的标准进行分类,培养分 类能力. 2.实数和数轴上的点一一对应,了解实数的运算法则及运算律,会进行实 数的运算.

七年级数学下册 第6章 实数 6.3《实数》

七年级数学下册 第6章 实数 6.3《实数》

也可以这样来分类:
(shìshù)
正实数
(shìshù)


0
12/10/2021
负实数
(shìshù)
正有理数
正无理数
负有理数 负无理数
第八页,共二十二页。
随堂练习
一、判断(pànduàn):
1.实数(shìshù)不是有理数就是无理数。( )
2.无理数都是无限(wúxiàn)不循环小数。( )
无限 不循环的小数 (wúxiàn) ----------叫做无理数
12/10/2021
第三页,共二十二页。
无理数的特征(tèzhēng):
1.圆周率 及一些含有 的数
2.开方(kāi fāng)开不尽 数
2
3.有一定(yīdìng)的规律, 但
注意:带根号的 数不一定是无 理数
不循环的无限小数
有限小数及无限循环小数
实 有理数 数
无理数
无限不循环小数
一般有三种情况
12/10/2021
正整数
整数 0 (zhěngshù) 负整数
分数 正分数 (fēnshù)
自然数
负分数 正无理数
负无理数
(1)含π的数
2开 方 开 不 尽 的 数
(3 )有 规 律 但 不 循 环 的 无 限 小 数
第七页,共二十二页。
9

0.6 •
64 0 . 6
3
4
3 4
3 9 3 0.13 3 0.13
5 (2)无理数集合(jíhé): 3
3 9
(3)整数集合:
(4)负数集合:
(5)分数集合: (6)实数集合:
12/10/2021

6.3 实数(第二课时)--(课件)

6.3 实数(第二课时)--(课件)
假设这个数字为a,
则|a|= 3
所以a=± 3
所以绝对值为 3的数为 3和- 3 。
第五步:巩固反馈



− − − (−) +

3
4
【环节1 :师友检测】
− + − + (−)
(−) −

+ −
+ − − − + − .
3
问题二:指出− 5,1 − 3分别是什么数的相反数。
解: − − 5 = 5
3
-( 1 − 3 )=
3
3
3 -1
所以,− 5和1 − 3的相反数分别为 5,
3
3 -1
第二步:互助探究
【环节2 :教师讲解】
当数从有理数扩充到实数以后,实数之间不仅可以进
行加、减、乘、除(除数不为0)、乘方运算,又增加了非
【详解】
3
3
−27 − 32 − (−1)2 + 8 = −3 − 3 − 1 + 2 = −5;
2 5−
5 − 2 + 5 − 3 + (−5)2 = 2 5 − 5 + 2 − 5 + 3 + 5 = 10.
3
(−3)2 − 8 + 1 − 2 = 2.
18 + 1 − 2 − 2−3 + − 1
负数的开平方运算,任意实数可以进行开立方运算.进行
实数运算时,有理数的运算法则及性质等同样适用。
实数的运算顺序
(1)先算乘方和开方;
(2)再算乘除,最后算加;
(3)如果遇到括号,则先进行括号里的运算.
第三步:分层提高

6.3 实数 课件(2课时)

6.3 实数 课件(2课时)

人教版七年级(下册)
第六章实数
复习
实数的分类
整数 有理数 有限小数或 无限循环小数 无限不循环小数
实 数 无理数
分数
复习
实数的分类
正实数 正有理数 正无理数 负有理数
实 数
0
负实数
负无理数
引入
3 5 4 5 (3 4) 5 7 5 3 5 4 5 (3 4) 5 5
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( × )
把下列各数填入相应的集合内: 0.13 3 9 3 5 64 0 . 6 4 0 3 9 3 (1)有理数集合:{ 9 64 0. 6 3 3 0.13 }
3
(2)无理数集合:{
2的相反数是 2 ;

正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0. 2 2 绝对值等于 2的数是什么?
-2 2 -1 0 1 2
例1、(1)求 3 64 的绝对值; (2)已知一个数的绝对值是 3 , 求这个数。 2、请将数轴上是各点与下列实数对应 起来:
2
2
1 (2) ( x 3) 3 4 0 2
(3) ( x 1) 5 0
2
……
小结
1、本节课你学了什么知识?
实数的计算 方程的解法 2、你有什么体会? 计算方法 开方
人教版七年级(下册)
第六章实数
复习 你认识下列各数吗? 3 9 3 5 11 5 有理数分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数
0.875 0
正整数 正数
有 正分数 理 零 数 负整数 负数 负分数

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:

6.3.1实数-人教版七年级数学下册课件

6.3.1实数-人教版七年级数学下册课件

你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数

七年级数学下册 第六章 实数 6.3 实数 第1课时 实数的概念

七年级数学下册 第六章 实数 6.3 实数 第1课时 实数的概念
3 f的值.
第二十二页,共二十六页。
课时 第1
(kèshí)
实数的概念
解:因为 a,b 互为倒数,所以 ab=1. 因为 c,d 互为相反数,所以 c+d=0. 因为 e 的绝对值为 2,所以 e=± 2, 所以 e2=(± 2)2=2. 因为 f 的算术平方根是 8, 所以 f=64,所以3 f=3 64=4,所以12ab+c+5 d+e2+3 f=21+0+2+4=612.
A.1a<a<-a B.-a<1a<a
C.a<1a<-a D.1a<-a<a
图 6-3-2
[解析] 采用特殊值法来解决.不妨设 a=-12,则-a=21,1a=-2. 因为-2<-12<12,所以1a<a<-a.故选 A.
第十五页,共二十六页。
课时 第1
(kèshí)
实数的概念
17.已知 a 为实数,则下列四个数中一定为非负数的是( C )
6.按大小分,实数可分为__正_实__数___、__0______、__负_实__数___三类.
(shìshù)
(shìshù)
第六页,共二十六页。
第1课时 实数(shìshù)的概念
7.把下列各数分别填入相应的数集里.
-13π,-2123, 7,3 27,0.324371,0.5,3 9,- 0.4, 16,
第1课时(kèshí) 实数的概念 2.任何一个有理数都可以写成_有_限_小__数_或__无_限_(_wú_xià_n)_循_环_小__数_的形式,反 过来,任何_有__限_小_数__或_无__限_(w_úx_ià_n)循__环_小_数__都是有理数. 3.下列各数中:-14,3.14159,-π,ππ5 ,0,0.3,15,5.2·01·, 2.121122111222…,其中无理数有__-_π__,__5_,__2._1_21_1_2_2_11_1_2_22_…____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 47 9 11 5 3, , , , , 5 8 11 90 9
上面的有理数都可以写成有限小数或无限循环小数的形
式.
结论:任何一个有理数都可以写成有限小数或
无限循环小数的形式.
一、试一试
2.追问:任何一个有限小数或无限循环小数都能 化成分数吗? 阅读下列材料:
. 设x = 0.3 =0.333…① 则 10x = 3.333… ②, 则②-①得9x =3,即x =1 . 3 . .. 根据上面提供的方法,你能把0.7, 0.14 化成分数吗?
, 3
3
,64
,2
49 ,
3
16 , 6,
.
5 负数集合 2
有理数集合1
… ;
4 1 9 4
3
3
5.2 6 无理数集合π 3
64
16
π 6
5 2
49 … ;
0.808 008 000 8…(相邻两个8 之间的0的
四、练一练
(1)有没有最小的正整数?有没有最小的整数?
有理数
二、探究新知 2.实数的分类
(2)挑战自己.
画出实数的分类图.
二、探究新知
有限小数及无限循环小数
整数 有理数 实 数 分数
正整数 0 负整数 正分数
自然数
负分数
正无理数
无理数
负无理数
无限不循环小数
一般有三种情况
(1)含π的数 (2)开方开不尽的数
(3)有规律但不循环的无限小数
二、探究新知 2.实数的分类 也可以这样来分类: 正实数 实 数 0 负有理数 正有理数
1
二、探究新知
2.实数的分类 (1)分一分.
回忆并画出有理数的分类图.
二、探究新知 有理数:整数和分数统称为有理数
(1)按整数、分数的关系分类: 正整数 整数 有理数 分数 0 负整数 正分数 负分数
二、探究新知 有理数:整数和分数统称为有理数
(2)按正数、负数与0的关系分类: 正整数 正有理 数 0 负有理 数 正分数 负整数 负分数
第6章 实数
6.3 实数
第1课时 实数的概念
一、试一试 我们以前学过有理数,你能简单地说一 说有理数的基本概念和分类吗?
概念:整数和分数统称为有理数.
分类:(1)按整数、分数的关系分类; (2)按正数、负数与0的关系分类.
一、试一试
试一试 1.使用计算器计算,把下列有理数写成小数的形 式,你有什么发现?
并想一想是不是任何无限循环小数都可以化成分数?
7 0.7 = 9
0.14 =
14 99
一、试一试
结论:
任何一个有限小数或者无限循环小数都 能化成分数,所以 任何一个有限小数或者无限循环小数都 是有理数.
二、探究新知
在前面的学习中,我们知道,许多数的平方根 和立方根都是无限不循环小数,它们不能化成分数. 我们给无限不循环小数起个名字,叫“无理数”.有 理数和无理数统称为实数. 例1 (1)你能尝试着找出三个无理数吗?
1 无
无 无
(2)有没有最小的有理数?有没有最小的无理数?
(3)有没有最小的正实数?有没有最小的实数?


五、布置作业
教材习题6.3第2,9题.
再见
谢谢观看
… ; … ;
49
3
正数集合 π 1 5.2 4 1 3 3 64 9 4 6 0.808 008 000 8…(相邻两个8 之间的0的个数逐次加1)
16
… ;
π 6
数逐次加1) 4,
二、探究新知 1 4 π, ,5.2, , 0.808 008 000 8…(相邻两个8之间的0的个 6 1 9 π 5
2、 3、π
二、探究新知
(2)下列各数中,哪些是有理数?哪些是无理数? -π, 3 ,3.1,0.101 001 000 1…(相邻两个1之间的0 π 3 36 25 2 3, 的个数逐次加1), , , , . 8 2 1 3 36 有理数: , 3.1 , 8 , 3 无理数: -π , 0.101 001 000 1…(相邻两个 π 3 1之间的0的个数逐次加1) , 2 ,25 , 2 思考: 用根号形式表示的数一定是无理数吗?
正无理数
负实数
负无理数
二、探究新知
例2 把下列各数填入相应的集合内: 4 1 π, ,5.2, , 0.808 008 000 8…(相邻两个8之间 6 9
3 ,
3
1 的0的个数逐次加1), 4
整数集合 3 64
1 分数集合 6
,64 ,
5 2
, 49
3
, 16
π , 6
.
5.2
49 4 1 5 9 4 2
相关文档
最新文档