10-11高等数学B②下-本科-A卷

合集下载

高数下期中考试(10-11)试卷及解答

高数下期中考试(10-11)试卷及解答

广东工业大学试卷用纸,共 5 页,第 1 页一、填空题(每题3分分).已知{4,3,4}a =-在向量{2,2,1}b =t e e x,sin cos ==广东工业大学试卷用纸,共 5 页,第 2 页广东工业大学试卷用纸,共 5 页,第 3 页解:两边微分得 )()(21yz d f x z d f dx '+'= 2分2221yz d yy d z f x z d x x d z f dx -'+-'= 5分 整理得 dx f y x f xy f z x dx f y x f xy f zy y x dz 22122222121222)('+''+'+''+= 6分四、计算下列各题(每题7分,共28分)1.计算Dx ⎰⎰,其中D是由曲线.10y x y x ===及所围成的区域:2031441200:1112(1)31212311)18yD xx dxy y ====+=-⎰⎰⎰⎰⎰⎰解2.计算⎰⎰Ddxdy xy }1,max{,其中}20,20),{(≤≤≤≤=y x y x D.解:曲线1=xy 把区域D 分成三个区域1D 、2D 和3D21,221:1≤≤≤≤y x x D ;x y x D 10,221:2≤≤≤≤;20,210:3≤≤≤≤y x D 2分⎰⎰Ddxdy xy }1,max{=dxdy xy D ⎰⎰1+⎰⎰2D dxdy +⎰⎰3D dxdy=212122121221⨯++⎰⎰⎰⎰x xdy dx xydy dx 6分 =2ln 419+ 7分 3.设Ω是曲线⎩⎨⎧==022x zy 绕z 轴旋转一周而成的曲面与平面8=z 围成的空间区域,求广东工业大学试卷用纸,共 5 页,第 4 页⎰⎰⎰+=Ωdv y x I )(22。

解:Ω由z y x 222=+与 8=z 所围成,在柱坐标系下 Ω:82,40,202≤≤≤≤≤≤z ρρπθ 3分⎰⎰⎰=8224202ρπρρρθdz d d I 5分=π31024五、设),(y x f 连续,且⎰⎰+=Ddudv v u f xy y x f ),(),(,其中D 是由0=y ,2xy =,1=x 所围成区域,求),(y x f (6分)五、解:设A dxdy y x f D=⎰⎰),(,则⎰⎰⎰⎰+=DDdxdy A dxdy xy A2分 A xydy dx A x 31210+=⎰⎰⇒81=A 5分 从而 81),(+=xy y x f 6分六、设曲线:C ⎩⎨⎧=++=-+5302222z y x z y x ,求C 上距离xoy 面最远的点和最近的点。

第二学期高等数学(B)Ⅱ期末考试试卷答案

第二学期高等数学(B)Ⅱ期末考试试卷答案
5 ⎛2 3 4 2 1 3 1 4⎞ 1 2 =⎜ x − x − x + x ⎟ = ⎜3 ⎟ 5 3 2 ⎠ 30 ⎝ 0 G G G G G 4.设向量场为 A = (2 z − 3 y ) i + (3 x − z ) j + ( y − 2 x ) k ,试求 rot A . 1
解:
G G i j G ∂ ∂ rot A = ∂x ∂y 2 z − 3 y 3x − z
2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
北 方




2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
一.计算题(本题满分 35 分,共有 5 道小题,每道小题 7 分) , 1.设 z = arctan 解:
y ,求 dz . x
⎛ y⎞ ⋅ d⎜ ⎟ , ⎝ x⎠ ⎛ y⎞ 1+ ⎜ ⎟ ⎝x⎠ 1
z = 4 1−
求下雨时过房顶上点 P 1, 解:
x2 y2 − . 16 36
(
3,
11 处的雨水流下的路线方程(不考虑摩擦) .
)
雨水沿 z 轴下降最快的方向下流,即沿着 z 的梯度
grad z =
∂z G ∂z G i+ j ∂y ∂x
的反方向下流.因而雨水从椭球面上流下的路线在 xOy 坐标面上的投影曲线上任一点处的切线应与
G k G G G ∂ = 2 i + 4 j + 6k ∂z y − 2x
5.求解微分方程 y ′′ + 4 y = 4 cos 2 x . 解: 先解对应的齐次方程 y ′′ + 4 y = 0 .其特征方程为 r + 4 = 0 ,得其解为 r1 = 2i , r2 = −2i .因而对

2011高等数学下试卷及答案

2011高等数学下试卷及答案

华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是( )(今年不作要求)A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程''6'90y y y -+=的通解为_____.(今年不作要求) 2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域. 6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz. 7.计算二重积分cos Dydxdy y⎰⎰,其中D 是由y y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.(今年不作要求)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z =(今年不作要求)参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y =-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分) 2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2zx y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xy z z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分)243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010n n ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z z z z F F z z y x F e y F e ∂∂=-==-=∂+∂+.........(5分) 故1(2)1zz z dz dx dy dx ydy x y e ∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =及y x =围成的区域. 解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分) 212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定. 解:'DD σθ=..........(2分)120d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分) 而111()00a xdydz ydzdx zdxdy azdxdy dxdy ∑∑∑++===⎰⎰⎰⎰⎰⎰.....(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。

最新同济高数b下期末考试试卷(含答案)

最新同济高数b下期末考试试卷(含答案)

2011学年高数B 第二学期期末考试试卷一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dzπθθθ⎰⎰⎰4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1(,)e xI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 .三、解答题(共54分,每小题6--7分)1. (本小题满分6分)设arctany z y x =, 求z x ∂∂,z y∂∂. 2. (本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。

高等数学b1期末试题及答案

高等数学b1期末试题及答案

高等数学b1期末试题及答案一、选择题(每题5分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B2. 计算定积分∫(0,1) x^2 dx 的值。

A. 1/3B. 1/2C. 1D. 2答案:A3. 以下哪个选项是洛必达法则的应用?A. 计算极限lim(x→0) (sin x)/xB. 计算定积分∫(0,π) sin x dxC. 计算导数 d/dx (x^3)D. 计算不定积分∫e^x dx答案:A4. 以下哪个选项是二阶导数?A. d^2y/dx^2B. dy/dxC. d^2y/dy^2D. d^2y/dxdy答案:A5. 以下哪个选项是泰勒公式的展开式?A. f(x) = f(a) + f'(a)(x-a)B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2!C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^3/3!答案:B6. 以下哪个选项是傅里叶级数的组成部分?A. 正弦函数B. 余弦函数C. 指数函数D. 所有选项答案:D二、填空题(每题5分,共20分)1. 函数 f(x) = x^3 - 6x 在 x = 2 处的导数是 _______。

答案:-62. 微分方程 y'' - 2y' + y = 0 的通解是 _______。

答案:y = C1 * e^x + C2 * e^(-x)3. 计算极限lim(x→0) (e^x - 1)/x 的值是 _______。

答案:14. 函数 y = sin x 的不定积分是 _______。

高等数学B期末考试试卷 A 参考答案及评分标准

高等数学B期末考试试卷 A 参考答案及评分标准

3. 已知两条直线 x −1 = y + 2 = z −1 与 x = y = 3z 相交, m = 1 ;
1 2m
9
1
1− x2
0
y +1
1
1− y2
∫ ∫ ∫ ∫ ∫ ∫ 4. 交换积分次序 dx
f (x, y)dy = dy f (x, y)dx + dy
f (x, y)dx ;
0
x−1
−1
0
解 ∂z (1+ z)ez = ey + yex ,(2 分) ∂z = ey−z + yex−z ,(2 分) ∂z = ex−z + xe y−z (3 分)
∂x
∂x 1+ z
∂y 1+ z
共3页
第1页
∫∫ { } 11.计算二重积分 ydxdy ,其中 D = (x, y) x2 + y2 ≥ 2, x2 + y2 ≤ 2 y . D
0
0
2
0
{ } 解 D = (x, y) x2 + y2 ≤ 4, 0 ≤ x ≤ y ,(1 分)
∫∫ ∫ ∫ ( ) 原式 = e−(x2+y2 )dxdy = D
π
2 π

4
e2 −ρ2 ρdρ = π
0
8
1− e−4
(1+3+2 分)
∫∫∫ 13. 计算三重积分 eydxdydz ,其中 Ω 由曲面 x2 − y2 + z2 = 1, y = 0, y = 2 所围成. Ω
0 9 - 1 0 - 3 高数 B 期末试卷(A)参考答案及评分标准 10.6.29

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

《高等数学》 2020-2021学年第二学期期末试卷A卷

《高等数学》 2020-2021学年第二学期期末试卷A卷

河海大学2020—2021学年第二学期 《高等数学》 期末试卷(A )一.填空题 (本题共5小题,每小题3分,满分15分) 1. 设xy e z sin =,则=dz _______。

2. 母线平行于x 轴且通过曲线⎪⎩⎪⎨⎧=+-=++0162222222z y x z y x 的柱面方程是 3.⎰=++-12222y x y x xdyydx =4. 函数y=x1在x=3处的幂级数展开式为: 5. 微分方程02=+'-''y y y 的通解是:二. 选择题 (本题共5小题,每小题3分,满分15分)1.已知a ϖ=(0, 3, 4), b ϖ=(2, 1, -2),则=b j a ϖPr [ ]A. 3B.31- C. -1 D.1 2. 函数yx xy z 2050++= (x>0,y>0)[ ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C. 在点(5, 2)处取极大值 D . 在点(5, 2)处取极小值3.I=1:,)(222222=++Ω++⎰⎰⎰Ωz y x dv z y x 球面内部, 则I= [ ]A. ⎰⎰⎰ΩΩ=dv 的体积B.⎰⎰⎰1042020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰104020sin dr r d d θϕθππ4. I=⎰+Ly dy xe dx x 22 其中L 是由y=x-1, y=1, x=1所围区域的正向边界曲线, 则I=[ ]A. 21B. )1(21-e C. 2eD. e5. 若级数∑∞=--11)1(n nn x n 的收敛域是 [ ]A. (-1, 1)B. [-1, 1]C. [)1,1-D. (]1,1-三.解答下列各题 (本题共5小题,每小题6分,满分30分)1. 计算I=⎰⎰Ddxdy x D={(x, y)x y x ≤+22}。

高等数学下B参考答案

高等数学下B参考答案
收敛区间为(-1,1)。(2分)
设 ,
B卷参考答案共2页,此页为第1页
(2分)
(2分)
6、解: (2分)
(2分)ห้องสมุดไป่ตู้
(2分)
于是,
(2分)
四、解:由题意,
(2分)
又 (3分)
由 得, (3分)
(4分)
五、解: (4分)
(4分)
(2分)
B卷参考答案共2页,此页为第2页
高等数学下答案高等数学下册答案高等数学答案高等数学习题答案高等数学课后答案高等数学上册答案高等数学试题及答案高等数学试卷及答案高等数学第五版答案高等数学第六版答案
B卷
中原工学院信息商务学院
2007~2008学年 第1学期
专升本网络、软件__专业高等数学课程期末考试答案
题号










总分
一、填空题(每空3分,共15分)
1、则 =
2、切平面方程为 或 ,法线方程为
3、 或
4、
二选择题(每题3分,共15分)
1、B 2、D3、B 4、B 5、D
三、求解下列各题(每小题8分,共48分)
1、解:
(4分)
(4分)
2、解: (4分)
(4分)
3、解:原式 (4分)
(4分)
4、解:由高斯公式
原式 (4分)
= (4分)
5、 ,当 收敛。而 , 发散,(2分)

高等数学下册试题集

高等数学下册试题集
二、填空题(每小题4分,共计24 分)
1、设 ,则 ,在点 处的梯度 。
2、设 ,则 1。
3、 由曲线 所围成的闭区域,则 。
4、函数 在点 处沿从点 到点 所确定方向的方向导数是。
5、曲线 在点 处的切线方程为,法平面方程为。
6、改变积分次序 。
三、计算题(每小题7分,共计49分)
1、求 。
2、求椭球面 的平行于平面 的切平面方程。
求微分方程 的通解。
三、计算三重积分 ,其中 是由柱面 与平面 ,x=0所围成的第一卦限内的区域。(9分)
四、计算 ,其中 为球面 的外侧。
(9分)
五、计算曲线积分 ,其中L:自点A= 沿曲线 到点B= 的一段有向曲线弧(9分)
六、求级数 的收敛域与和函数。(9分)
七、求极限 (4分)
高等数学II(A卷 重修)
六、求级数 的收敛域与和函数。(9分)
七、求极限 (4分)
等数学试卷(下期04)
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(每小题4分,共8分)
1、二重积分 (其中D:0≤y≤x2,0≤x≤1)的值为
答( )
2、设∑为球面x2+y2+z2=a2在z≥h部分,0<h<a,则
五、(10分)确定 的值,使曲线积分 与路径无关,
并求 分别为 , 时曲线积分的值。
六、(10分)化三重积分 为柱面坐标及球面坐标系下的三次积分,其中 是由 和 ,所围成的闭区域。
七、(10分)求 ,其中∑为锥面 的外侧。
八、(4分)设 在点 的某一邻域内具有二阶连续导数,且 ,证明级数
绝对收敛。
高等数学II(A卷)096
1.1.(本小题6分)

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。

(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。

(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。

B 3。

D 4。

B 5.D分,共18分)为任意常数),4. 2 , 5。

6。

分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。

……。

.3分 (6)分分=……………6分时有极大值2,有极小值。

在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。

3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。

,所以…………。

5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。

(A)(B)(C)(D)5.广义积分当( )时收敛。

(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。

(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x ⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x 。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→xx x 11lim20_____.2. 曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

大学《高等数学》期中期末考试卷解析(共四套)

大学《高等数学》期中期末考试卷解析(共四套)

#"0
#"0
T)&"%$RS
*&""+#-".0675%###""&""+#-".0 "%#5-#,%#
&"’
4 #
&
""# #
>?@!&"$
,789:-#5x+#-".#0!3!!##""& -!h\"#[N !""uk#"#0 l#3!#""0#[!!#""0!#"#0"$ !#"uk#"#0 l#!!#""0ü- )0#[3!#" "0!# "#0"$
大学《高等数学》期中期末考试卷解析(共四套)
《高等数学》期中考试试题及答案解析(A卷)………………………………2 《高等数学》期中考试试题及答案解析(B卷)………………………………10 《高等数学》期末考试试题及答案解析(上册)………………………………18 《高等数学》期中考试试题及答案解析(下册)………………………………26
《高等数学》期中考试试题及答案解析(A卷)
"!./0"""#10#20$3#4"%3$
’ !""/1 #1!""µ¯°
" #:;79:’6 (1&61( $36
78#0<1
#0
<"
"#2
#
!!"$ (

10-11高数二(A卷)期未考答案1 北京信息科技大学

10-11高数二(A卷)期未考答案1    北京信息科技大学

4分
7分 四.7 分*2=14 分
1、计算曲线积分 ∫
L
2 y d s ,其中 L 是抛物线 y = x 上点(0,0)与点(1,1)之间的弧.
2、 用格林公式计算 ∫ ( 2 x − y + 4 )d x + ( 5 y + 3 x − 6 )d y , 其中 L 为三顶点分别为
L
( 0, 0) , ( 3, 0) , (3,2)的三角形正向边界。
∫∫
D
∂ 2u ∂ 2u ( 2 + ) dxdy ∂x ∂y 2
v 证明:设 n 与 x 轴正方向夹角为 α ,则曲线的切向量与 x 轴正方向夹角为 π ---2 分 θ =α + 2
所以, v =
∂u ∂n
∂u ∂u ∂u ∂u cosα + sinα = sinθ − cosθ ∂y ∂x ∂y ∂x
北京信息科技大学 2010-2011学年第2学期 《高等数学》176学时课程期末考试试卷标准答案(A卷) 一.7 分*2=14 分 1. 已知函数 z = x 2 y + y 2 , 求全微分 dz 。
解 :dz =
∂z ∂z dx + dy LLLLL (2) ∂x ∂y
= 2 xydx + (x 2 + 2 y)dy LL (7)
(
3
a,3 a,3 a
)
7分
由于问题的实质是在曲面 xyz = a 位于第一卦限内的部分上求一点,使其到原点 的距离平方为最小,而最小距离是存在的。因此应把 a 分成三个 等的正数,即 x = y = z = 3 a ,这时它们的平方和为最小。 2.设 f ( x, y) 是连续函数,其中 a, m 为常数,且 a > 0. 证明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 卷 第
1页 蚌埠学院10~11学年第二学期 《高等数学B ②》期末考试试题(A )
注意事项:1、适用班级:10级生物与食品工程系本科班;
10级应用化学与环境工程系本科班
2、本试卷共1页。

满分100分。

3、考试时间:120分钟。

4、考试方式:闭卷
5、答案全部写在答题纸上。

试卷和答题纸都要上交。

一、单项选择题(每小题3分,共15分) 1.微分方程22x
y y xe '''-=的特解*
y 形式是 ( ).
(A) x
xe
2 (B)x e b ax 2)(+ (C) x e b ax x 2)(+ (D) x e ax 33
2.方程y 2
+ z 2
– 4 x + 8 = 0 表示 ( ) .
(A ) 单叶双曲面 (B ) 双叶双曲面 (C ) 锥面 (D )旋转抛物面
3.在点P 处,二元函数f 可微的充分条件是 ( ). (A ) f 的全部二阶偏导连续 (B ) f 连续 (C ) f 的全部一阶偏导连续 (D )f 连续且f x
∂∂,
f y
∂∂均存在.件
4.将极坐标系下的二次积分⎰
⎰θπρρθρθρθsin 20
)sin ,cos (d f d 化为直角坐标系下的二
次积分为 ( ). (A) ⎰⎰-+--
-2
2
111111
),(y y
dx y x f dy (B)

⎰---
2
2
2220
),(x x x
x dy y x f dx
(C)


2
2
-2-2-
11
-y y y
y dx y x f dy ),( (D)


2
2
-1+1-1-11
1
-x
x
dy y x f dx ),(
5.若级数∑∞=1
n n u 收敛,则下列级数不收敛的是 ( ).
(A) ∑∞=1
)3(n n u (B) ∑∞=+1
)3(n n u (C) 31
+∑∞=n n u (D) ∑∞
=3
n n u
二、填空题(每小题3分,共15分)
1. 空间曲线2222
2448312x y z z
x y z z ⎧++=⎨-+=⎩在xOy 坐标面上的投影曲线为 . 2. 微分方程x
y
y dx dy x ln
=的通解为 . 3.
(,)(0,0)
sin lim
x y xy x
→ .
4.已知闭区域D 是由分段光滑的曲线L 围成,D 的面积为5,则⎰-L
y d x x d y = .
5.函数
x
-31展开成的)1(-x 幂级数为 .
三、计算题(每小题6分,共54分) 1.求微分方程
x
e
x y dx
dy cos 5cot =+满足4)2
(=π
y 的特解.
2. 求通过点P ( 2,0,-1) 且又通过直线3
21
2
1-=
-=+z y
x 的平面方程.
3.2(,)(1)arctan y y f x y x e x x
=+-,求
(1,0)
y f .
4.设
y
z
z x ln =, 求x
z ∂∂及y
z
∂∂.
5.计算⎰⎰2
2
+2D
dxdy x xy )sin
(,D 由2=x y 和1=y 围成.
6.改变⎰
⎰-11
-10
y y dx y x f dy ),(的积分次序.
7.计算⎰+L
n ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π).
8. 判断级数∑∞
=---11
1
3)
1(n n n n 的敛散性,若收敛,则指出是条件收敛还是绝对收敛. 9. 求幂级数∑

=--1
2
22
12n n n
x
n 的收敛域.
四、应用证明题(每小题8分,共16分)
1. 求函数33
3z x y xy =+-的极值. 2. 证明曲线积分⎰-+-)
4 ,3()
2 ,1(2232)36()6(dy xy y x dx y xy 在整个xOy 面内与路径无关,
并计算积分值.
装 订 线 内 不 要 答 题。

相关文档
最新文档