高一物理必修一【追及相遇问题】(完整资料).doc
(完整版)高中物理相遇和追及问题(完整版)
、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。
高一物理追及相遇问题
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高一物理必修一追及与相遇问题
汽车的速度是多大?汽车运动的位移又是多大?
[方法一] 公式法
当汽车的速度与自行
x汽
车的速度相等时,两车之
间的距离最大。设经时间t
x
两车之间的距离最大。则:
x自
v汽 at v自 t v自 / a 2s
xm
x自
x汽
v自t
1 2
at 2
6m
那么,汽车经过多少时间能追上自行车?此时
汽车的速度是多大?汽车运动的位移又是多大?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯, 当绿灯亮时汽车以3m/s2的加速度开始加速行 驶,恰在这时一辆自行车以6m/s的速度匀速 驶来,从后边超过汽车。试求:汽车从路口 开动后,在追上自行 车之前经过多长时间 两车相距最远?此时 距离是多少?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯,
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候。
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候 是分析讨论两物体在相同时间内能否到 达相同的空间位置的问题。
(1)追及
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻
高一物理必修1--追及和相遇问题
高一物理必修1--追及和相遇问题两个物体同时在同一条直线上(或互相平行的直线上)做直线运动,可能相遇或碰撞,这一类问题称为“追及和相遇”问题。
“追及和相遇”问题的特点:(1)有两个相关联的物体同时在运动。
(2)“追上”或“相遇”时两物体同时到达空间同一位置。
“追及和相遇”问题解题的关键是:准确分析两个物体的运动过程,找出两个物体运动的三个关系:(1)时间关系(大多数情况下,两个物体的运动时间相同,有时运动时间也有先后)。
(2)位移关系。
(3)速度关系。
在“追及和相遇”问题中,要抓住临界状态:速度相同。
速度相同时,两物体....间距离最小或最大。
如果开始前面物体速度大,后面物体速度小,则两个物体间距离越来越大,当速度相同时,距离最大;如果开始前面物体速度小,后面物体速度大,则两个物体间距离越来越小,当速度相同时,距离最小。
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/2的加速度开始加速行驶,恰在这时一辆自行车以6m/的速度匀速驶来,从后边超过汽车。
试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析]:[方法一]:临界状态法汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。
设经时间t两车之间的距离最大。
则v自a某自某汽△某v汽=at=v自∴t=ΔSm=S自-S汽=v自t-==26311at2=6某2m-某3某22m=6m22v/m/[探究]:汽车经过多少时间能追上摩托车此时汽车的速度是多大汽车运动的位移又是多大?[方法二]:图象法在同一个V-t图象中画出自行车和汽车的速度-时间图线,如图所示。
其中Ⅰ表示自行车的速度图线,Ⅱ表示汽车的速度图线,自行车的位移S自等于图线Ⅰ与时间轴围成的矩形的面积,而汽车的位移S当t=t0时矩形与三角形的面积之差最大。
(word完整版)高中物理必修一追及与相遇问题专题练习及答案.doc
追击和相遇问题一、追击问题的分析方法 :A. 根据追逐的两个物体的运动性质, 选择同一参照物 , 列出两个物体的位移方程 ;B.找出两个物体在运动时间上的关系; 相关量的确定C.找出两个物体在位移上 的数量关系 ;D. 联立议程求解 .说明 : 追击问题中常用的临界条件 :⑴速度小者追速度大者 , 追上前两个物体速度相等时 , 有最大距离 ;⑵速度大者减速追赶速度小者 , 追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .1.一车处于静止状态 , 车后距车 S0=25 处有一个人 , 当车以 1 的加速度开始起动时 , 人以 6 的速度匀速追车 , 能否追上 ?若追不上 , 人车之间最小距离是多少答案 .S 人 -S 车 =S 0∴ v 人 t-at2/2=S0即 t 2-12t+50=02× 50=-56<0=b -4ac=122-4方程无解 . 人追不上车 当 v 人=v 车 at 时 , 人车距离最小 t=6/1=6sS min =S 0+S 车 -S 人 =25+1× 62/2-6 × 6=7m2.质点乙由 B 点向东以 10 的速度做匀速运动 , 同时质点甲从距乙 12 远处西侧 A 点以 4 的加速度做初速度为零的匀加速直线运动 . 求 : ⑴当甲、乙速度相等时 , 甲离乙多远 ?⑵甲追上乙需要多长时间?此时甲通过的位移是多大?答案 . ⑴ v 甲 =v 乙 =at 时 , t=2.5sS=S 乙-S 甲+S AB=10× 2.5-4 × 2.5 2/2+12=24.5m ⑵ S 甲 =S 乙 +S AB at 2/2=v 2t+S AB t 2-5t-6=0t=6sS甲=at 2/2=4 × 62/2=72m3. 在平直公路上 , 一辆摩托车从静止出发 , 追赶在正前方100m 处正以 v =10m/s 的速度匀速前进的卡车 . 若摩托车的最大速度为 v m =20m/s, 现要求摩托车在 120s 内追上卡车 , 求摩托车的加速度应满足什么答案 . 摩托车 S 1=at12m 2/2+v tv m =at 1=20 卡车 S 2=v o t=10tS 12=S +100T=t1+t 2t≤ 120s a ≥ 0.18m/s 24. 汽车正以 10m/s 的速度在平直公路上前进, 发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动, 汽车应在距离自行车多远时关闭油门, 做加速度为6m/s2的匀减速运动 , 汽车才不至于撞上自行车?答案 .S 汽车≤ S 自行车 +d当v 汽车 =v 自行车时 , 有最小距离v汽车 =v 汽车0-at t=1sd 0=S 汽车 -S 自行车 =v 汽车0t-at 2/2-v 自行车=3m 故 d≥3m解二 : S=S自行车 +d-S 汽车=(v 自行车 t+d)-(v t-at 2汽车 0 /2)=d-6t+3t 2=d-3+3(t-1) 2当 t=1s 时 , S 有极小值S =d-3 S ≥01 1d ≥3m二、相遇问题的分析方法:A.根据两物体的运动性质, 列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置, 找出两个物体位移之间的关系;D.联立方程求解.5. 高为 h 的电梯正以加速度 a 匀加速上升 , 忽然天花板上一螺钉脱落, 求螺钉落到底板上的时间.答案 .S 梯 -S 钉 =h∴h=vt+at 2/2-(vt-gt 2/2)=(a+g)t2/26. 小球 1 从高 H处自由落下 , 同时球 2 从其正下方以速度v0竖直上抛 , 两球可在空中相遇. 试就下列两种情况讨论的取值范围.⑴在小球 2 上升过程两球在空中相遇;⑵在小球 2 下降过程两球在空中相遇.答案 .h 1+h2=Hh1=gt 2/2 h2=v0t-gt2/2∴t=h/v 0⑴上升相遇t<v /g∴ H/v >v /g v 2 >gH0 0⑵下降相遇t>v 0/g t′ <2v0/g∴H/v 0>v0/g v 02<gH0 0 0 2 >gH/2H/v <2v /g v2即 Hg>v0 >Hg/27. 从同一抛点以 30m/s 初速度先后竖直上抛两物体, 抛出时刻相差 2s, 不计空气阻力 , 取 g=10m/s2, 两个物体何时何处相遇 ? 答案 .S 1=v0(t+2)-g(t+2) 2/22S2=v0t-gt /2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以 2v0竖直上抛一物体后 , 又以初速度 v0在同一地点竖直上抛另一物体 , 若要使两物体在空中相遇 , 则两物体抛出的时间间隔必须满足什么条件 ?( 不计空气阻力 )答案 . 第二个物体抛出时与第一个物体相遇t 1=2× 2v0/g第二个物体落地时与第一个物体相遇t 2=2× 2v0/g-2v 0/g=2v 0/g∴ 2v 0/g ≤Δ t ≤ 4v0/g追及相遇专题练习1.如图所示是A、 B 两物体从同一地点出发,沿相同的方向做直线运动的v-t 图象,由图象可知()图 5A . A 比B 早出发 5 s B .第 15 s 末 A、 B 速度相等C.前 15 s 内A的位移比 B 的位移大50 m D.第20 s末A、B位移之差为25 m 2. a、 b 两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是()A .a、 b 加速时,物体 a 的加速度大于物体 b 的加速度B. 20 秒时, a、 b 两物体相距最远- 1 υ/(m ·s )C. 60 秒时,物体 a 在物体 b 的前方D .40 秒时, a、 b 两物体速度相等,相距200 m3. 公共汽车从车站开出以 4 m/s 的速度沿平直公路行驶, 2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为 2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发处多远?(3)摩托车追上汽车前,两者最大距离是多少?4. 汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动. 设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与 A 车相同,则从绿灯亮时开始()A. A车在加速过程中与B车相遇B. A、B相遇时速度相同C. 相遇时A车做匀速运动D.两车不可能再次相遇5.同一直线上的 A、B两质点,相距 s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为 v 的匀速直线运动, B 从此时刻起做加速度为 a、初速度为零的匀加速直线运动.若 A在 B前,两者可相遇几次?若 B在 A前,两者最多可相遇几次?6. 一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h 的速度向它靠近. 快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止 . 试判断两车是否会相碰7.一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则 a 应满足什么8. A、B两车沿同一直线向同一方向运动,A车的速度v A=4 m/s, B车的速度v B=10 m/s. 当B车运动至A车前方 7 m 处时,B车以a=2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要多长时间?在 A 车追上 B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差 2 s,不计空气阻力,两物体将在何处何时相遇?10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以 4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为 6 m/s2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1.【答案】 D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线与时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知, B 物体比 A 物体早出发 5 s ,故 A 选项错; 10 s 末 A、B 速度相等,故 B 选项错;由于位移的数值等于图线与时间轴所围“面积”,所以前15 s 内 B 的位移为150 m, A 的位移为100 m,故 C 选项错;将图线延伸可得,前 20 s 内 A 的位移为 225 m , B 的位移为 200 m ,故 D 选项正确.2.【答案】 C【解析】 υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大. 据此得出正确的答案为 C 。
高一物理 追及和相遇问题
【典型例题】(一).匀加速运动追匀速运动的情况:(开始时v1<v2):v1<v2时,两者距离变大;v1=v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇(即追上)一次。
【例1】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?(二).匀速运动追匀加速运动的情况:(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
【例2】一个步行者以6m/s的最大速率跑步去追赶被红绿灯阻停的公共汽车,当它距离公共汽车25m时,绿灯亮了,车子以1m/s2的加速度匀加速起动前进,则()A.人能追上汽车,追车过程中共跑了36mB.人不能追上汽车,人和车最近距离为7mC.人不能追上汽车,自追车开始后人和车间距越来越大D.人能追上汽车,追上车前人共跑了43m(三).匀减速运动追匀速运动的情况(同上)【例3】A、B两列火车,在同轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s.因大雾能见度低,B车在距A车700 m时才发现前方有A车,这时B车立即刹车,但B车要经过1 800 m才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.(四).匀速运动追匀减速运动的情况:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
高中物理追击、追及和相遇问题
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
高中物理必修一专题三 追击相遇问题
8.某汽车在高速公路上行驶的速度是 108km/h,若驾驶员发现前方 80m 处发生了交通事故,马上紧急刹车,汽车 以恒定的加速度经过 4s 才停下来. (1)该汽车是否会有安全问题? (2)如果驾驶员看到交通事故时的反应时间是 0.5s,该汽车是否会有安全问题?
9.A、B 两车在同一直线上向右匀速运动,B 车在 A 车前,A 车的速度大小为 v1=8m/s,B 车的速度大小为 v2= 20m/s,如图所示。当 A、B 两车相距 x0=28m 时,B 车因前方突发情况紧急刹车(已知刹车过程的运动可视为 匀减速直线运动),加速度大小为 a=2m/s2,从此时开始计时,求: (1)A 车追上 B 车之前,两者相距的最大距离; (2)A 车追上 B 车所用的时间; (3)从安全行驶的角度考虑,为避免两车相撞,在题设条件下,A 车在 B 车刹车的同时也应刹车的最小加速度。
五、追及相遇问题常见情景
(1)速度大者追速度小者
追及类型
ห้องสมุดไป่ตู้图像描述
匀加速 追匀速
匀速追 匀减速
匀加速追 匀减速
相关结论
高一物理必修一【追及相遇问题】
追及相遇问题1、相遇与追击问题得实质研究得两物体能否在相同得时刻到达相同得空间位置得问题。
2、解相遇与追击问题得关键画出物体运动得情景图,理清一个条件、两个关系(1)一个条件: 两者速度相等。
它往往就是物体间能否追上或(两者)距离最大、最小得临界条件,也就是分析判断得切入点。
(2)时间关系(3)位移关系3、相遇与追击问题剖析:(一)追及问题1、追及问题中两者速度大小与两者距离变化得关系。
甲物体追赶前方得乙物体,若甲得速度大于乙得速度,则两者之间得距离。
若甲得速度小于乙得速度,则两者之间得距离。
若开始甲得速度小于乙得速度过一段时间后两者速度相等,则两者之间得距离 (填最大或最小)。
2、追及问题得特征及处理方法:“追及”主要条件就是:两个物体在追赶过程中处在同一位置,常见得情形有三种:⑴初速度为零得匀加速运动得物体甲追赶同方向得匀速运动得物体乙,一定能追上,追上前有最大距离得条件:两物体速度相等。
⑵匀速运动得物体甲追赶同向匀加速运动得物体乙,存在一个能否追上得问题。
判断方法就是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲得位置在乙得后方,则追不上,此时两者之间得距离最小。
②当甲乙速度相等时,甲得位置在乙得前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者就是否同时出发,就是否从同一地点出发。
⑶匀减速运动得物体追赶同向得匀速运动得物体时,情形跟⑵类似。
3、分析追及问题得注意点:⑴要抓住一个条件,两个关系:一个条件就是两物体得速度满足得临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系就是时间关系与位移关系,通过画草图找两物体得位移关系就是解题得突破口。
⑵若被追赶得物体做匀减速运动,一定要注意追上前该物体就是否已经停止运动。
⑶仔细审题,充分挖掘题目中得隐含条件,同时注意vt图象得应用。
(二)、相遇⑴同向运动得两物体得相遇问题即追及问题,分析同上。
高一物理追及相遇问题
挖2掘021/题10/1目0 中的隐含条件.
6
6.解决“追及”和“相遇”问题的方法
(1)数学方法:因为在匀变速运动的位移表达式中有时间
的二次方,我们可列出方程,利用二次函数求极值的方法求
解,有时也可借助v-t图象进行分析.
(2)物理方法:即通过对物理情景和物理过程的分析,找
到临界状态和临界条件,然后列出方程求解.
3
类型
匀减速追 匀速
匀速追 匀加速
匀减速追 匀加速
2021/10/10
图象
说明
开始追及时,后面物体与前面 物体间的距离在减小,当两物 体速度相等时,即 t=t0 时刻: ①若 Δx=x0,则恰能追及,两 物体只能相遇一次,这也是避 免相撞的临界条件. ②若 Δx<x0,则不能追及,此 时两物体最小距离为 x0-Δx. ③若 Δx>x0,则相遇两次,设 t1 时刻 Δx1=x0,两物体第一 次相遇,则 t2 时刻两物体第二 次相遇.
(3)v1是前面物体的速度,v2是后面物体的速度.
2021/10/10
2
类型
匀加速 追匀速
匀速追 匀减速
匀加速追 匀减速
2021/10/10
图象
说明
①t=t0 以前,后面物体与前面 物体间距离增大. ②t=t0 时,两物体相距最远为 x0+Δx. ③t=t0 以后,后面物体与前面 物体间距离减小. ④能追及且只能相遇一次.
解得:t=1 s
x汽-x0=x自
x0=x汽-x自 = 10 m/s+4 m/s·1 s-4 m/s·1 s
2 =7 m-4 m=3 m.
答案 3 m
2021/10/10
8
例2 甲、乙两辆汽车在平直的公路上沿同一方向做直线
(完整版)高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
【人教版教材】高中物理必修1第二章 追及和相遇问题
以B为参照物,公式中的各个量都应是相对于B的 物理量.注意物理量的正负号.
必修1 第二章 匀变速直线运动的研究
例3:某人骑自行车,v1=4m/s,某时刻在他前面7m 处有一辆以v2=10m/s行驶的汽车开始关闭发动机, a=2m/s2,问此人多长时间追上汽车 ( C )
A、6s B、7s C、8s D、9s
•
6.铜山湖远离城市,所以,能够本分 地、无 欲无求 地、自 然而然 地进行 着四季 轮回、 昼夜更 替,春 绿夏艳 秋静冬 安,白 天张扬 着活力 ,夜晚 安守着 宁静。 她,不 近人亦 不远人 ,不为 秋愁亦 不为春 喜,只 顺其自 然地存 在着, 任人亲 疏。
•
7.记得《易.系辞上》说过这样的话 :圣人 与天地 相似, 所以不 违背自 然规律 ;知道 周围万 物而以 其道成 就天下 ,所以 不会有 过失; 乐天知 命,没 有忧愁 ;安于 所居之 地,敦 厚而施 行仁德 ,所以 能爱。
信任成了黄牙小儿的天真妄想。
•
4.浊雾笼罩下的财富不夜城,不仅侵 蚀了星 星的亮 光,而 且泯灭 了心灵 的光芒 ,使我 们的眼 睛近视 、散光 且老花 ,失去 了辨别 真伪、 美丑、 善恶的 天然能 力,使 我们的 心迷茫 且苦闷 。生活 在城市 ,我们 几乎忘 了:夜 ,本该 是黑的 ,本该 是有星 星的, 本该是 安静的 ,本该 带着人 们心安 理得地 歇息的 。
必修1 第二章 匀变速直线运动的研究
(1)追及(速度小追速度大)
甲一定能追上乙,且只相遇一 次,当两者的位移相等时则追 上.
必修1 第二章 匀变速直线运动的研究
(1)追及(速度大追速度小)
判断v甲=v乙的时刻甲乙的位 置情况
①若甲在乙前,则追相遇一次,避免相撞 的临界条件。 ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候
高一物理追及相遇问题(整理)
一、追及相遇问题分析方法1、相遇问题相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
具体分析方法如下:(1)列出两物体运动的位移方程,注意两个物体运动时间之间的关系。
(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系。
(3)寻找问题中隐含的临界条件。
(4)与追及中的解题方法相同。
例题1:甲乙两物体相距S,同时同向沿同一直线运动,甲在前面做初速度为零,加速度为a1的匀加速直线运动,乙在后面做初速度为V0,加速度为a2的匀加速直线运动,则()A.若a1=a2,则两物体可能相遇一次B.若a1>a2,则两物体可能相遇两次C.若a1<a2,则两物体可能相遇两次D.若a1>a2,则两物体也可能相遇一次或不相遇例题2:甲、乙辆汽车沿同一平直公路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为16m/s.已知甲在紧急刹车时加速度a1=3m/s2,乙车紧急刹车时加速度a2=4 m/s2,乙车司机的反应时间为0.5s,求为保证两车在紧急刹车过程中不相撞,甲、乙行驶过程中至少应保持多大距离.2、追及问题的图像关系①匀加速追匀速能追上且只能相遇一次;交点意义:速度相等,两物体相距最远)②匀减速追匀速当V减=V匀时,如果ΔS=S0,则恰能追上,这也是避免相撞的临界条件,只能相遇一次。
若ΔS<S0,则不能追上(其中S0为开始时两物体的距离)交点意义:速度相等时若未追上,则距离最近.若ΔS>S0能相遇两次③匀速追匀加速规律同上②④匀速追匀减速规律同上①⑤匀加速追匀减速规律同上①⑥匀减速追匀加速规律同上②例题3:汽车正以10m/s的速度在平直的公路上前进,突然发现正前方有一辆自行车以4m/s的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为6m/s2的匀减速运动,汽车恰好不碰上自行车,求关闭油门时汽车离自行车多远?课堂练习:1.汽车由静止开始在平直的公路上行驶,0~60s内汽车的加速度随时间变化的图线如右图所示。
高中物理相遇及追及问题[(完整版)]
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
必修一物理追及相遇问题
必修一物理追及相遇问题说起他们的出发时间,小明早了小华十分钟,这可是个关键的“时间差”呀。
小明在路上飞驰,仿佛身后有个“小鬼”在追赶,骑得飞快。
小华慢悠悠,像是享受沿途的风景,每一片树叶、每一缕阳光都吸引着他的注意力。
说真的,小华可是个细腻的人,平时喜欢观察身边的花花草草,骑车的时候可得留点神,别撞上了啥。
不过,慢归慢,心里却总有个声音在说:“小明,我一定会追上你的!”小明就像一颗闪电,没一会儿就甩得小华老远。
可小华心里有数,等会儿还有大把时间呢。
他们的目的地是镇子的那个大公园,那里有他们小时候玩的秋千,还有最爱的冰淇淋摊子。
想到这里,小华心里又甜又期待。
每个人心里都有个“小目标”,小华的目标可不仅仅是追上小明,他还想着一起享受那份美味。
于是,路上的风景变得五光十色,小华骑着骑着,突然发现前方的道路上有一个大坡。
他心里一紧,想:“这下可有好戏了!”小明在坡上冲下去,那速度真是飞起来了,像是从天上掉下来的星星。
小华则是慢慢来,深吸一口气,心想:“这可是我的机会!”一鼓作气,冲上去,他感觉自己像个超人,随着小车的加速,心里简直乐开了花。
在这个坡道上,小明的速度可是厉害得很,等他冲下坡来时,已经快要到达目的地。
小华这时候可是用尽了全力,渐渐地,小明的身影在远处模糊不清。
小华心里一惊,“不行,我得加油!”心里想着:“你慢,我慢,慢得可不是我小华!”于是,他咬牙坚持,脚下的踏板像装了马达似的,哐哐作响。
哎呀,真是风云变幻呀!就在小华奋力追赶的时候,小明突然停了下来,转头一看,原来前面有个小狗狗在路边玩耍。
他忍不住停下来看,心里想着:“这小狗真可爱!”小华这时可乘着机会,风一样地往前冲,心里简直是大喊:“这可是我的机会!”小明愣了一下,等他回过神,才发现小华已经快追上来了!这下可热闹了,两个小伙伴就像是游戏里的角色,竞争得热火朝天。
就这样,他们的距离逐渐缩短,小华的脸上绽放出了自信的笑容,真是个逆袭的好时机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】
追及相遇问题
1.相遇和追击问题的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2. 解相遇和追击问题的关键
画出物体运动的情景图,理清三大关系
(1)时间关系:
(2)位移关系:
(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
3. 相遇和追击问题剖析:
(一)追及问题
1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离(填最大或最小)。
2、追及问题的特征及处理方法:
“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:
⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为
临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:
⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意vt图象的应用。
(二)、相遇
⑴同向运动的两物体的相遇问题即追及问题,分析同上。
⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
4.相遇和追击问题的常用解题方法
画出两个物体运动示意图,分析两个物体的运动性质,找出临界状态,确定它们位移、时间、速度三大关系。
(1)基本公式法——根据运动学公式,把时间关系渗透到位移关系和速度关系中列式求解。
(2)图像法——正确画出物体运动的v--t图像,根据图像的斜率、截距、面积的物理意义结合三大关系求解。
(3)相对运动法——巧妙选择参考系,简化运动过程、临界状态,根据运动学公式列式求解。
(4)数学方法——根据运动学公式列出数学关系式(要有实际物理意义)利用二次函数的求根公式中Δ判别式求解例1. A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s速度匀速行驶,
A车立即做加速度大小为a的匀减速直线运动。
要使两车不相撞,a应满足什么条件?
例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。
试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?
1.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始(C )
A.A车在加速过程中与B车相遇
B.A、B相遇时速度相同
C.相遇时A车做匀速运动
D.两车不可能再次相遇
2.公共汽车从车站开出以4 m/s的速度沿平直公路行驶,2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s2,试问:
(1)摩托车出发后,经多少时间追上汽车?
(2)摩托车追上汽车时,离出发处多远?
(3)摩托车追上汽车前,两者最大距离是多少?
3.同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动.若A在B前,两者可相遇几次?若B在A前,两者最多可相遇几次?
4.一列货车以28.8 km/h的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m才停止.试判断两车是否会相碰.
5.一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则a应满足什么条件?
6. A、B两车沿同一直线向同一方向运动,A车的速度vA=4 m/s,B车的速度vB=10 m/s.当B车运动至A车前方7 m处时,B 车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,
则A车追上B车需要多长时间?在A车追上B车之前,二者之间的最大距离是多少?
7. 从同一地点以30 m/s的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇?
8. 汽车正以10 m/s的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s2 的匀减速运动,求
汽车开始减速时,他们间距离为多大时恰好不相撞?。