植树问题优秀教学设计(通用10篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植树问题优秀教学设计(通用10
篇)
植树问题优秀教学设计 1
一、谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日
──“六·一儿童节”,这也是全世界少年儿童共同的节日。

其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。

今天这节课,我们就一起来研究“植树问题”。

(板书课题:植树问题)
二、引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。

①课件出示图片。

介绍:这是我县新修的一条公路。

公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。

一共需要多少棵树苗?
②理解题意。

a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?
④反馈答案。

方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。

①画图实际种一种。

课件演示:我们用这条线段表示这条绿化带。

“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。

其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。

大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。

比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。

大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。

a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。

(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。


d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。

a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。

以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的'一侧插彩旗,每隔10米插一面(两端要插)。

这条跑道长100米,一共要插多少面彩旗?(学生独立完成。


问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

小结:刚才,我们应用发现的规律,解决了一个实际问题。

我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。

猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

要求:每人先独立画一段路种种看;然后4人一组进行交流。

你们组发现了什么规律?
2. 独立探究,合作交流。

3. 展示小组研究成果,发现规律,验证前面的猜测。

小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。

如果“两端不种”求棵树,你会做了吗?
4. 做一做。

①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。

一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

小结:今天我们研究了植树问题的两种情况。

发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。

以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

四、回归生活,实际应用
1. 一根木头长8米,每2米锯一段。

一共要锯几次?(学生独立完成。


8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。

①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。

从第1棵树到最后一棵树的距离是多少米?
五、全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。

植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

植树问题优秀教学设计 2
一、教学目标:
1、通过探究发现一条线段上两端要种植树问题的规律。

2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

二、教学重点
使学生掌握“两端都要种的植树问题”的解题方法。

三、教学难点
使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

四、教学准备
多媒体课件、小棒、直尺、卡片、探究表。

五、课前互动
1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。

会说吗?请继续……
2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。

(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。

)
3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

教学过程
六、引入课题
生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。

(板书课题:植树问题)
七、引导探究,发现“两端要种”的规律
1、情景导入例题
①课件出示校园图片。

植树不仅能净化空气,还能美化环境。

这是我们学校的新校区,绿化校园是我们的一个重要任务。

植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的*场,*场外面是一条车道。

现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。

你们想成为优秀环境设计师吗?
出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。

一共需要多少棵树苗?
②理解题意。

a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题
b、理解“两端”“一边”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这尺子的`两端?一边又是什么意思?
说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。

一边栽就是在车道的一旁栽。

③算一算,一共需要多少棵树苗?
④反馈。

2、引发猜想
师:三种意见(19棵、20棵、21棵),哪种是正确的呢?
八、解决两端都种求总长度的实际问题
同学们发现规律的能力可真不错。

下面我们玩个站队的游戏。

1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?
师:这个问题与刚才的类型有什么不同?学生试做,反馈。

你运用哪个规律?(间隔长×间隔数=总长度)
2、这一列共有10个同学呢?100个同学呢?
3、这个规律,你能算算我们学校综合楼的长度吗?
出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。

从第一棵到最后一棵一共多少米?学生口答。

(示意选拔设计师)
小结:刚才,我们应用发现的规律,解决了一个实际问题。

我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

九、回归生活,实际应用
其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?
问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。

(示意选拔设计师)
2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)
出示:广场上的大钟5时敲响5下,8秒钟敲完。

12时敲响12下,需要多长时间?
学生讨论,汇报。

(示意选拔设计师)
十、全课总结
1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!
小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?
全长除以间隔长度。

2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

植树问题优秀教学设计 3
教学目标:
1.使孩子透过生活中的事例,初步体会解决植树问题的方法。

2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。

3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。

教学重点:
用解决植树问题的方法解决实际问题。

教学难点:
栽树的棵数与间隔数之间的关系。

教具准备:多媒体课件。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的'重要方式。

”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。

”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。

在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。

还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)
透过这节课的学习,我们要解决哪些问题呢?
1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2.能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:
1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。

一共需要多少棵树苗?(生读题)
师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

②透过上面的分析,你能找出什么规律?和同桌或小组内说说。

③此刻你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。

2.孩子自学探讨。

(师巡视)
3.班内交流。

孩子回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:
1.做一做:118页孩子独立完成。

订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

2.122页第2题。

独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)
1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。

一共能够种多少棵树?
2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。

一共有几个车站?
3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。

王村到李村大约有多远?
孩子完成后师批阅订正,发现问题及时解决。

六、总结延伸:
这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。

植树问题优秀教学设计 4
教学内容:
人教版四年级下册《数学广角——植树问题》例一及相应练习
教材分析:
本册《数学广角》主要渗透有关植树问题的一些思想方法。

通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。

植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。

在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。

本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)
设计理念:
自主探索,凸显学生个性;合作探究,构建和谐课堂。

教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

3.能够借助图形,利用规律来解决简单植树的问题。

二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

3.培养学生的合作意识,养成良好的交流习惯。

三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:
从实际问题中发现植树问题(两端都种)的数学模型。

教学难点:
灵活运用植树问题(两端都种)的数量关系,正确解答生活中的实际问题。

教具准备:
课件、纸条、表格、直尺等。

教学过程:
一、课前交流,激趣导入
1、活动交流
师:同学们,我知道你们都聪明、好学、上进。

今天我很高兴能与大家一起探索数的奥妙,你们欢迎吗?
谢谢你们的掌声。

下面请大家伸出你们懂事的双手,让老师看一看,可以吗?
大家认真地看一看,将来我们就是要凭借这一双手,创造我们的幸福生活。

同样也是这一双手,还藏着很多数学奥秘,你们想知道吗?
2、教学“间隔”含义
师:看着老师举起的这只右手,你们看见了几个手指?
学生齐说:“5个手指头”。

师:很好。

你们再看看,这5个手指间有几个空格?
生:4个
师:很好!在数学上我们把这样的“空格”叫做间隔(板书)。

大家再仔细观察自己的手,5个手指之间有4个间隔。

那么,4个手指间有几个间隔呢?3个手指,2个手指呢?同桌互相说一说。

师:你们发现手指数与间隔数的规律了吗?谁能勇敢地站起来告诉老师吗?
答案:手指的个数比间隔数多“1”或间隔数比手指少1。

3、导入课题
实际生活中的“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔。

今天,我们就以植树为例,一起来探索数学里间隔的奥秘。

(板书课题:植树问题)
课前导入这一部分,学生配合的比较好。

而且学生之间发现“手指数与间隔数之间的联系”,这是非常好的,但是,我在这觉得这样是不是有点多余。

可是我又觉得这里,让学生初步的感知这一数量之间的关系,其实是一个铺垫作用。

想想也有此理。

二、动手操作,初步感知
1、创设情景(课件出示)
师:我们学校为了进一步美化校园环境,准备在学校门口这条路的一
边种上白桦树。

师:你们想不想看看学校打算怎么种吗?我们一起来看看具体要求吧!
2、理解题意
[出示要求]:我们学校准备在学校门口长100米的这条路一边种上白桦树,每隔5米栽一棵(两端都栽),请问一共需要多少棵树苗?
师:我想请一个同学来读一读,从这份要求,你能获得哪些信息?同学们可以小声交流一下,然后把你们交流的结果向全班同学汇报。

(师根据学生汇报板书:总长、间距、间隔数、棵树)。

师:两端都栽你们怎么认为的呢?
指名说一说,然后师实物演示。

师:每隔5米是什么意思?你能用自己理解的方式来告诉你的同学吗?
教师在学生汇报的基础上归纳小结。

(两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间距是5米)
师:好,你们能帮帮老师算一算,学校需要准备多少棵树苗呢?
3、自主探究
生:自由做题
师:指点几个学生上台板演。

同学们做完了吗?我们看同样的要求却出现了不同的答案。

你们同意哪个呢?那学校究竟该买多少棵树苗呢?是20还是21……
这个环节,不知是不是学生基础比较差,还是……我从学生的小组中发现只有一种答案没有别的,别的就是很离谱的过程。

这里学生只知道100/5=20(棵)这一答案。

这样使我在讲时就有点难。

师:这样吧同学们以小组为单位,听清楚要求:利用你们准备的学具摆一摆。

也可以用一条线段来代表100米的小路,用你们喜欢的图案表示树。

把你们小组的想法在纸上画一画。

(小组活动)
4、汇报交流,展示思路
师:同学们,你们探究出结果了吗?
生:画线段的方法
生:摆火柴的方法……
师:初步推出棵数=间隔数+1(板书棵数)
这里学生们有一部分的学生知道通过摆一摆的方法去探究出实际需要21棵。

但是没有学生知道用线段来画,许多的学生不知所措。

不知道怎么做。

我在想是不是我讲解不清楚,可是有一部分的学生可以通过摆一摆得出这个规律呀。

这可能对学生了解不够深吧。

也许该用更简单的方法去授课。

用20米长的小路,也许会有更好点的效果。

三、合作探究,发现规律。

1、探索规律
学生汇报,师也同时在黑板具体教学摆一摆及画线段图的方法。

进一步理解间距、间隔数
师:学生都表现的不错,我们再来看一下这种规律发现过程。

这是一条100米的小路,学校要求两端都栽,我先在一头栽上一棵树,隔5米栽一棵,隔5米栽一棵。

现在是几棵树,几个间隔,现在呢?这又是几棵树,几个间隔……。

好了,我不栽了。

请同学们想一想6棵树几个间隔,8棵树几个间隔,10棵树几个间隔,100棵树几个间隔,那15个间隔几棵树,18个间隔几棵树,那20个间隔几棵树。

师:从中你们发现了什么规律?
生:(指名回答,要强调是在什么情况下。

)棵数比间隔数多1,间隔数比棵数少1。

师小结:两端都栽的情况下:“间隔数+1=棵数”
“间隔数=棵数-1”(板书)
请同学自己读一读。

师:同学们,在两端都栽的'情况下,棵数与间隔数有什么关系?
请同学错的上台订正。

师:同学们,我们在刚才探讨了在100米的小路上,两端都栽,每隔5米栽一棵,需要21棵树苗。

我代表学校谢谢你们。

2、运用规律
师:如果让你来设计我们学校这条小路的植树方案,还是这100米长的小路的一边(两端都栽)还可以每隔几米栽一棵?(整米数)
出示:表格。

师:根据学生汇报,完成表格。

这一部分可能是多余的。

我在授课时,发现这样填表格起不了什么大的作用。

四、应用规律,解决问题。

师:现在我们得用用这个规律来解决数学问题
师:还是这条小路,假如每隔两米栽一棵,在两端都要栽的情况下,需要几棵树苗呢?请你们口答这题。

师:假如现在这条小路延长到200米,还是每隔5米一棵(两端都栽),需要几棵树苗呢?
师:如果我种了5棵树,每隔5米栽一棵,从第一棵到最后一棵全长多少米呢。

师:真棒,我发现学生学的非常的认真!我们刚据探讨出来的规律就运用的这么好。

老师真佩服大家。

运用植树的规律不仅能解决植树的问题,还能解决我们生活的实际问题。

其实在日常生活中,在我们的周围有很多类似于植树问题的事件,同学们你能列举一些这样的事例吗?(学生汇报后,师用课件展示生活中的事例图片。

)
师再出示:安装路灯、电线杆、设立车站、摆花盆、走楼梯、建楼房、排队做早操等等。

五、提升思维,巩固练习
师:看来,数学知识与我们的实际生活有很密切的联系,我们平时一定认真观察,多留心身边的事物。

师:运用今天所学的知识我们可以解决生活中一些相关的实际问题。

1、做一做
在全长1000米的街道两旁安装路灯(两端都装),每隔50米安装一座。

一共安装了多少座路灯?
2、想一想
在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?
3、猜一猜。

甲、乙、丙谁说的对?
有100人参加春游活动,这列队伍中如果每两人平均距离是1米,请问这列队伍全长多少米?
甲说:100米
乙说:99米
丙说:101米
六、质疑:学习到这里,同学们想一想有没有什么不明白的地方,有的可以提出来我们一起解决。

七、归纳:(同学们学得真不错,让我们一起完成一首儿歌吧!)教学儿歌
小树苗,栽一栽,两端都栽问题来,间数多1是棵数,棵数少1是间数,怎样求出间隔数?。

相关文档
最新文档