人教版数学四年级下册乘法交换律教案(精推3篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学四年级下册乘法交换律教案(精推3篇)
〖人教版数学四年级下册乘法交换律教案第【1】篇〗
教学目标
使学生理解和掌握乘法交换律和结合律,并能用字母表示,培养学生分析、推理的能力。

教学重点
懂得乘法交换律和结合律的算理,会用字母表示
教学难点
培养学生分析、推理的能力。

教学准备
教学程序
一、导入新课
⒈前面我们已经学习了加法的交换律和加法的结合律,什么是加法交换律,什么是加法结合律?如何用字母来表示。

2、今天我拉来研究乘法的一些规律性知识,这就是乘法的交换律和结合律。

二、教学新课
⒈教学乘法交换律。

(1)出示例题图
a)请同学们观察图,说说从图中你知道了些什么?
提问:如何求问题?
b)小组讨论:这两组解法有什么相同和不同的地方。

c)出示3*5=()*(),请同学们把等式填写完整。

(2)启发学生根据这个等式照样子再说出几组这样的等式。

a)指名说说,相应板书。

b)请同学们依次计算出结果,验证看能否用等号连接。

c)讨论:每组中两个算式有什么样的关系?每算式有什么相同及不同点。

(3)学生回答,教师归纳出:两个数相乘,交换因数的位置,它们的积不变。

说明:这就是乘法交换律
(4)指出:乘法交换律也可以用字母表示,如果用ab表示两个因数,怎样表示乘法交换律?
(5)我们曾经用交换因数位置再乘一遍的方法来验算,这实际上是应用了乘法的交换律
练习:计算,并用乘法交换律来验算。

12×17
⒉教学乘法结合律。

(1)出示例题,请同学们读一读。

(2)同学们独立完成,指名板演,并分别说说每种解题的思路。

讨论:这两种解题方法有什么相同和不同的地方。

将两个算式写一个算式。

(3)请同学们根据这个乘法算式再写出几个算式。

a)指名说说,并做出相应板书。

b)请同学们说说是根据什么特征来写出这些等式的。

c)同学们计算,验证这些算式能否用等号连接。

d)引导同学们仔细归纳,你发现了什么?
e)指出:这就是乘法结合律
(4)如果用字母来abc来表示这个三个因数,你能用字母表示乘法结合律吗?
⒊完成试一试
三、完成想想做做
学生独立完成,集体评讲。

四、布置作业。

〖人教版数学四年级下册乘法交换律教案第【2】篇〗
教学内容:
九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。

教学要求:
1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.增强合作意识,激发学生学习数学的兴趣。

教学过程:
一、猜谜引入
1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

生:(积极举手,低声喊)纽扣。

师:你为什么会想到是纽扣
生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。

将加法交换律说给同学们听听。

2.提问:用字母如何表示加法交换律、结合律呢
适时板书:a+b=b+a a+b+c=a+(b+c)
3.设问:乘法有没有类似的规律今天我们就来学习乘法的一些运算定律。

(板书课题)
[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。

以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。

]
二、猜测验证
1.猜一猜:乘法可能有哪些运算定律
生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:
2.提问:乘法是否具有你们猜测的规律呢怎样确认自己的猜测看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
3.学生分组研究,教师巡视。

(及时参与学生的讨论,寻找教学资源)
[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。

]
4.交流。

(1)生1:我们小组经过讨论认为乘法有交换律。

比如:35二53,016=160等等。

两个乘数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人可以列成算式:48=32,也可以用84=32。

这就说明4乘8等于8乘4。

因此,乘法和加法一样,也有交换律。

提问:有没有不同意见指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

提问:你能用自己的语言描述一下乘法交换律吗
生:两个数相乘,交换乘数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。

学生
齐读。

师:和你们说的有什么不同
生1:我们说的是乘数,但书上说的是因数。

生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

师:会用字母表示吗板书:ab=ba)。

电脑出示练习十七第2题。

师:请你判别一下,有没有运用乘法交换律并说明理由。

[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

(2)生4:我们发现乘法也有结合律。

如:(32)4=3(24)。

生5:我们也同意这种观点。

我们是用应用题来说明的。

比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

生6:我们是用算式来说明的,如:(3467)23=34状6723)。

提问:同学们能用自己的语言描述一下乘法结合律吗
生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

师:你说得很准确,有什么好方法帮助记忆
生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

生9:我还发明了一种好的记忆方法,用手势表示。

(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

师:这个记忆方法确实很好,我们大家一起来试一试。

师:怎样用字母表示乘法结合律板书:(ab)c=a(bc)
[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。

教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。

]
5.比较加法运算定律和乘法运算定律。

师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方
生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。

]
三、运用
1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助
生:我们验算乘法时就应用了乘法的交换律。

2.基本练习。

3.发展练习。

利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=()
[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。

]
四、小结。

(略)
〖人教版数学四年级下册乘法交换律教案第【3】篇〗
教学内容
四年级(下册)第61~62页。

教学目标
1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程
一、复习旧知、导入新课
1.出示:
你能在下列的内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。

4○10=10○4 (2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。

如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:
加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。

同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。


二、举例验证探索规律
(一)探索乘法交换律。

1.情景中感知乘法交换律。

出示例题。

(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。

所以,这两道算式可以用什么符号联结?
板书:3×5=5×3。

【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的'意义可以列出两种不同的乘法算式。

让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。


2.举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3.总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。

(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。


板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。


4.回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想
到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。


【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。


(二)探索乘法结合律。

1.初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。

(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢你会列式计算吗?
组织学生交流。

选择列为(5×3)×4和5×(3×4)的同学板演。

2.引导比较。

提问:两道算式完全一样吗有什么不同(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。

第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。


提问:两道题的运算顺序不同,为什么得数还相同呢(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5×3)×4=5×(3×4)。

3.举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。

你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4.总结规律。

讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(a×b)×c=a×(b×c)。

【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。

鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究
中享受数学学习的成功。

】。

相关文档
最新文档