三角形的四心习题及解析
三角形“四心
一. 知识点总结1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心. 2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OB A OC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOCsin S S S A OB A OC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是内心ABC ∆的充要条件是)|CB |CB |CA |CA (OC )|BC |BC |BA |BA (OB )ACAC |AB |AB (OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成:0)e e (O C )e e (O B )e e (O A 322131=+⋅=+⋅=+⋅O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心解析:因为ABAB是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先ABAB 是什么?没见过!想想,一个非零ACB1e 2e PBCHA图6向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
三角形“四心”问题
三角形“四心”问题一、三角形的“重心”1、重心的定义:中线的交点,重心将中线长度分成2:1三角形中线向量式:AM ⃗⃗⃗⃗⃗⃗ =12(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 2、重心的性质:(1)重心到顶点的距离与重心到对边中点的距离之比为2:1。
(2)重心和三角形3个顶点组成的3个三角形面积相等。
(3)在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即(x A +x B +x C 3,y A +y B +y C3).3、常见重心向量式:设O 是∆ABC 的重心,P 为平面内任意一点 ①OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ②PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) ③若AP⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞),则P 一定经过三角形的重心 ④若AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC ),λ∈[0,+∞),则P 一定经过三角形的重心二、三角形的“垂心”1、垂心的定义:高的交点。
锐角三角形的垂心在三角形内; 直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外。
2、常见垂心向量式:O 是∆ABC 的垂心,则有以下结论: 1、OA⃗⃗⃗⃗⃗ ∙OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ∙OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ 2、|OA⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2 3、动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |cosC ),λ∈(0,+∞),则动点P 的轨迹一定通过∆ABC 的垂心4、奔驰定理推论:S ∆BOC :S ∆COA :S ∆AOB =tanA:tanB:tanC ,tanA ∙OA ⃗⃗⃗⃗⃗ +tanB ∙OB⃗⃗⃗⃗⃗ +tanC ∙OC ⃗⃗⃗⃗⃗ =0⃗ . 三、三角形的“内心”1、内心的定义:角平分线的交点(或内切圆的圆心)。
三角形的四心习题及解析
三角形的四心习题及解析一、单选题1. ( )△ ABC 中,若/ A :/ B :/ C = 1 : 2: 3, G 为厶 ABC 的重心,则△ GAB 面积:△ GBC 面积:△ GAC 面 积=(A ) 1: 2:,3( B ) 1 :3 : 2( C )2: 1 : 3 ( D ) 1 : 1: 1。
答案:(D )/■△ GAB 面积:△ GBC 面积:△ GAC 面积=1: 1: 1答案:(C ) 答案:(B )2 22.()如图,△ ABC 中,AB = AC ,两腰上的中线相交与G ,若/ BGC = 90°22, 贝 U BE 的长为多少? ( A ) 2( B )2^2( C ) 3 ( D )4。
,且BC解析:T AB = AC ,且 GABC 的重心 A BE = CD ■- BG = CG BC 2:2--BG = — == 2*2v'2ABE = 3BG =-皂=32 2又 T / BGC = 90 ° ,BC = 2.23.()如图,等腰△ ABC中,AB = AC = 13,BD = CD = 5,O ABC 的外心,?( A ) 117( B )24119( C ) 121( D ) 123。
242424 G 为△ ABC 的重心解析ABC为等腰三角形,二A D丄BCAD = '•. 132—52=12,连接 OB,令 OD = x ,贝UOB =OA = AD-0D= 12(12 — x) 2= x 2 + 52 x =119故选(B ) 244. ()如图,D 、E 分別为AB 、AC 中点,BE 、CD 交于F,若斜线部分的面积为7,则△ ACD 的面积为多少?( A ) 21( B ) 24( C ) 28( D ) 35。
答案:(A)5. ()直角三角形 ABC 中,/ A = 90°, O 为外心,G 为重心,若AC= 6, AB = 8,则2 4 5 7 OG=?(A)-(B )(C ) -(D )。
平面几何三角形四心竞赛题A卷及答案
三角形四心竞赛训练题1一、填空题1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。
2、在△ABC 中,∠A=40º,为△ABC 的内心,则∠BOC = 度。
3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。
4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。
5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。
二、解答题6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求证:∠BAO=∠DAC 。
7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的23。
8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证:ABCBT TC S ∆⋅=。
9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。
10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内切圆相切。
11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。
12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。
13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60º;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。
14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。
15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180º16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。
初中数学竞赛专项训练之三角形的四心及性质、平移、旋转、覆盖附答案
初中数学竞赛专项训练之三角形的四心及性质、平移、旋转、覆盖一、填空题:1、G 是△A BC 的重心,连结AG 并延长交边BC 于D ,若△ABC 的面积为6cm 2, 则△BGD 的面积为( )A. 2cm 2B. 3 cm 2C. 1 cm 2D. 23 cm 22、如图10-1,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角的平分线交于E 点,则∠AEB 是( ) A. 50° B. 45° C. 40° D. 35°3、在△ABC 中,∠ACB =90°,∠A =20°,如图10-2,将△ABC 绕点C 按逆时针方向旋转角α到∠A ’C ’B ’的位置,其中A ’、B ’分别是A 、B 的对应点,B 在A ’B ’上,CA ’交AB 于D ,则∠BDC 的度数为( ) A. 40° B. 45° C. 50° D. 60°4、设G 是△ABC 的垂心,且AG =6,BG =8,CG =10,则三角形的面积为( ) A. 58 B. 66 C. 72 D. 845、如图10-3,有一块矩形纸片AB CD ,AB =8,AD =6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,△CEF 的面积为( ) A. 2 B. 4 C. 6 D. 86、在△ABC 中,∠A =45°,BC =a ,高BE 、CF 交于点H ,则AH =( )A.a 21 B. a 22C. aD. a 2 7、已知点I 是锐角三角形ABC 的内心,A 1、B 1、C 1分别是点I 关于BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ) A. 30° B. 45° C. 60° D. 90°8、已知AD 、BE 、CF 是锐角△ABC 三条高线,垂心为H ,则其图中直角三角形的个数是( ) A. 6 B. 8 C. 10 D. 12二、填空题1、如图10-4,I 是△ABC 的内心,∠A =40°,则∠CIB =__2、在凸四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠ABC =90°,则∠DAB 的度数是_____3、如图10-5,在矩形ABCD 中,AB =5,BC =12,将矩形ABCD 沿对角线对折,图10-1B 图10-2 D A EB C AD E B C F图10-3 图10-4A BCD E D ’图10-5然后放在桌面上,折叠后所成的图形覆盖桌面的面积是_______4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过____秒钟后,△OAB 的面积第一次达到最大。
专题17 相似三角形中的四心问题专练(一)(解析版)-九下数学专题培优训练
专题17 相似三角形中的四心问题专练(一)班级:___________姓名:___________得分:___________一、选择题1.已知直角三角形的两条直角边长分别为3,4,则该三角形的重心与外心的距离为()A. 12B. 52C. 53D. 56【答案】D【分析】本题考查了勾股定理、直角三角形斜边上的中线性质、重心的性质;熟练掌握勾股定理和重心定理,熟记直角三角形的外心是斜边的中点是解题的关键.根据勾股定理求出斜边的长度,根据斜边中线长为斜边长的一半求出斜边的中线CD,由重心定理即可得出GD的长.【解答】解:如图所示:设D为AB的中点,连接CD,∵∠ACB=90°,∴斜边AB=√32+42=5,∴斜边AB的中线CD=12×5=52,∵直角三角形的外心就为直角三角形斜边上的中点,∴D为Rt△ABC的外心,∵重心是三角形中线的交点,故重心G在中线CD上,∴由重心定理得:GD=13CD=13×52=56.2.如图,点E为△ABC的内心,过点E作MN//BC交AB于点M,交AC于点N.若AB=7,AC=5,BC=6,则MN的长为()A. 3.5B. 4C. 5D. 5.5【答案】B【分析】连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以MN6=7−BM7,则BM=7−76MN①,同理可得CN=5−56MN②,把两式相加得到MN的方程,然后解方程即可.本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了相似三角形的判定与性质.【解答】解:连接EB、EC,如图,∵点E为△ABC的内心,∴EB平分∠ABC,EC平分∠ACB,∴∠1=∠2,∵MN//BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN//BC,∴△AMN∽△ABC,∴MNBC =AMAB,即MN6=7−BM7,则BM=7−76MN①,同理可得CN=5−56MN②,①+②得MN=12−2MN,∴MN=4.3.在△ABC中,AC=6,AB=14,BC=16,点D是△ABC的内心,过D作DE//AC交BC于E,则DE的长为()A. 169B. 163C. 83D. 569【答案】C【分析】过点B作BH//AC,交AD的延长线于点H,由内心的性质可证AB=BH=14,DE=EC,通过证明△ACF∽△HBF,可求CF的长,通过证明△DEF∽△ACF,可求DE 的长.本题考查了相似三角形的判定和性质,三角形的内心的性质,利用相似三角形的性质求出CF的长是本题的关键.【解答】解:如图,过点B作BH//AC,交AD的延长线于点H,∵点D是△ABC的内心,∴∠BAD=∠CAD,∠ACD=∠DCB,∵DE//AC,BH//AC,∴∠H=∠DAC,∠EDC=∠ACD,∴∠H=∠BAD,∠EDC=∠ECD,∴AB=BH=14,DE=EC,∵BH//AC,∴△ACF∽△HBF,∴ACBH =CFBF,∴614=CF16−CF∴CF=245,∵DE//AC,∴△DEF∽△ACF,∴DEAC =EFFC,∴DE6=245−DE245∴DE=83,4.如图,已知点B,D在AC的两侧,E,F分别是△ACD与△ABC的重心,且EF=2,则BD的长度是()A. 4B. 5C. 6D. 7【答案】C【分析】本题考查三角形的重心的性质,相似三角形的判定和性质;解题的关键是作辅助线,灵活运用三角形重心的性质及相似三角形的判定与性质来解题,连接DE并延长,交AC于点O,连接BO.根据重心的性质得出FB=2FO,ED=2EO,再证明△EOF∽△DOB,根据相似三角形对应边成比例求出BD=3EF.【解答】解:如图,连接DE并延长,交AC于点O,连接BO.∵点E为△ADC的重心,∴点O为AC的中点,FB=2FO;又∵点F为△ABC的重心,∴点F在线段BO上,ED=2EO;∴OFOB =OEOD=13,又∵∠EOF=∠DOB,∴△EOF∽△DOB,∴EFBD =OFOB=OEOD=13,∴BD=3EF=6.5.如图,在△ABC中,点O为重心,则S△DOE:S△DCE=()A. 1:4B. 1:3C. 1:2D. 2:3【答案】B【分析】本题考查的是相似三角形的判定与性质,先根据题意得出DE是△ABC的中位线是解答此题的关键.利用三角形重心的定义得出D是AB的中点,E是AC的中点,根据题意判断出DE是△ABC的中位线,故可得出△ODE∽△OCB,由此可得出ODOC =12,进而可得出结论.【解答】解:由三角形重心的定义得出D是AB的中点,E是AC的中点,∵在△ABC中,两条中线BE,CD相交于点O,∴DE是△ABC的中位线,∴△ODE∽△OCB,∴ODOC =12,∴ODCD =13,∵△DOE与△DCE等高,∴S △DOE :S △DCE =OD :CD =1:3.6. 如图,点G 是△ABC 的重心,GD//BC ,则S △ADG :S △ABC 等于( ).A. 2:3B. 4:9C. 2:9D. 无法确定【答案】C【分析】此题主要考查了相似三角形的判定与性质和三角形重心的性质等知识,根据已知得出S ADG :S △ANC =(23)2是解题关键.根据重心的性质得出AG GN =21,以及AG AN =23,即可得出S ADG :S △ANC 的比值,再利用三角形中线的性质得出S △ANC =S △ABN ,进而得出答案.【解答】解:延长AG 到BC 于点N ,∵点G 是△ABC 的重心,GD//BC ,∴AG GN =21, ∴AG AN =23,∴S ADG :S △ANC =(23)2=49,∵根据G 是△ABC 的重心,则AN 是三角形中线,∴S △ANC =S △ABN ,∴S ADG :S △ABC =4:18=2:9.二、填空题7.如图,G是△ABC的重心,AG⊥GC,AC=4,则BG的长为__________.【答案】4【分析】本题考查了三角形重心,直角三角形斜边上的中线的性质,掌握三角形重心的定义是关键,延长BG交AC于D点,G是△ABC的重心,故BD为△ABC的中线;又AG⊥GC,AC,故GD为Rt△AGC斜边上的中线,根据直角三角形斜边上中线的性质可知GD=12即可得到BG=2GD=AC.【解答】解:如图,延长BG交AC于D点,∵G是△ABC的重心,∴BD为△ABC的中线,又∵AG⊥GC,∴GD为Rt△AGC斜边上的中线,∴GD=1AC,2∵G是△ABC的重心,∴BG=2GD=AC=4,8.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.AD与BC相交于点F,连结BE,DC,已知EF=2,CD=5,则AD=_____________.【答案】253【分析】本题考查的是三角形的内接圆与内心、外接圆与外心,掌握三角形的内心的定义、圆周角定理、相似三角形的判定定理和性质定理是解题的关键.根据三角形的内心的定义得到BD=CD,△BDF∽△ADB,根据相似三角形的性质列出比例式,代入计算即可.【解答】解:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE,∴BD⏜=CD⏜,∴BD=CD=5,由圆周角定理得,∠CAD=∠CBD,∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∴∠DBE=∠DEB.∴DE=DB=5,∴DF=DE−EF=3,∵∠DBC=∠BAD,∠BDF=∠ADB,∴△BDF∽△ADB,∴DFDB =DBAD,∴AD=BD2DF =253,9.如图,△ABC中,AB=AC=3√10,BC=6,且若CD经过△ABC的外心O交AB于D,则CD=______.【答案】9013【分析】延长AO交BC于F,作DE⊥BC于E,如图,证明AF垂直平分BC得到∠AFC= 90°,BF=CF=3,再利用勾股定理计算出AF=9,设⊙O的半径为r,则OC=OA=r,OF=9−r,根据勾股定理得到(9−r)2+32=r2,则可解得r=5,设DE=x,EF=y,根据平行线分线段成比例定理,由DE//AF得到DEAF =BEBF,则x=3(3−y),由OF//DE得4 x =33+y,再利用代入消元求出y=1513,然后根据平行线分线段成比例定理,利用OF//DE可求出CD.本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.也考查了三角形外心和等腰三角形的性质.【解答】解:延长AO交BC于F,作DE⊥BC于E,如图,∵AB=AC,OB=OC,∴AF垂直平分BC,∴∠AFC=90°,BF=CF=12BC=3,在Rt△ACF中,AF=√(3√10)2−32=9,设⊙O的半径为r,则OC=OA=r,OF=9−r,在Rt△OCF中,(9−r)2+32=r2,解得r=5,∴OF=4,设DE=x,EF=y,∵DE//AF,∴DEAF =BEBF,即x9=3−y3,则x=3(3−y),∵OF//DE,∴OFDE =CFCE,4x=33+y,∴43(3−y)=33+y,解得y=1513,∵OF//DE,∴OCCD =CFCE,即5CD=33+1513,∴CD=9013.10.如图,点G是△ABC的重心,GE//BC,如果BC=12,那么线段GE的长为.【答案】4【分析】本题考查三角形的重心,属于基础题.先根据三角形重心性质得到AG=2GD,再证明△AGE∼△ADC,根据相似三角形的性质即可计算GE的长.【解答】解:因为点G是△ABC的重心,所以AG=2GD,BD=DC=12BC=6,因为GE//BC,所以△AGE∼△ADC,所以AGAD =GEDC,即GE6=23,所以GE=4.11.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=6,则点A到BC的距离为______【答案】18【分析】本题考查的是相似三角形的判定与性质,三角形的重心有关知识,根据题意作图,利用重心的性质AD:GD=3:1,同时还可以求出△ADE∽△GDH,从而得出AD:GD=AE:GH=3:1,根据GH=6即可得出答案.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×6=18,三、解答题12.如图,在4×4的方格中,点A,B,C为格点.(1)利用无刻度的直尺在图1中画△ABC的中线BE和重心G;(2)在图2中标注△ABC的外心O并画出外接圆及切线CP.【分析】(1)根据中线的概念作图;(2)根据线段垂直平分线的定义作图.本题主要考查作图−应用与设计作图,解题的关键是掌握三角形的高线、中线以及角平分线的定义.【解答】解:(1)如图所示,BE和点G即为所求;(2)如图所示,⊙O和PC即为所求.13.已知:如图1,△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,∠CAB的三等分线AE、AF分别与CD交于点E、F,连结BE并延长与AC交于点M,连结MF并延长与BC交于点N.(1)求∠ABE的度数;(2)求证:点F是△BCM的内心;(3)如图2,若AB=4,点Q为线段BC上一动点,点P是平面内一点,且∠PDQ=90°,DP DQ =12,当点Q从点C运动到点B时,求点P运动的路径长.【分析】本题主要考查了相似三角形的判定与性质,掌握住相似三角形的判定与性质是解答的关键.(1)根据已知∠ACB=90°,AC=BC,得出CD是△ABC的对称轴,从而找出∠CAB的三等分线,求出∠ABE的度数;(2)依据三线合一得出∠CAB的三等分线,由对称的性质得出BF是∠MBC的平分线,从而得出结论;(3)由点H是BD的中点得出BD=CD,然后依据比值得出DHCD =DPDQ,再找出∠CDQ=∠HDP,从而得出△HDP∽△CDQ,然后依据相似三角形的性质逐步解答即可.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵CD⊥AB于点D,∴直线CD是△ABC的对称轴,∴∠ABE=∠BAE,∴AE、AF是∠CAB的三等分线,∴∠BAE=15°,∴∠ABE=15°;(2)连结BF,由三线合一可知CD是∠ACB的角平分线,∴AE、AF是∠CAB的三等分线,∴AF是△AEC的角平分线,根据轴对称的性质可得:BF是∠MBC的平分线,∴点F是△BCM的内心;(3)取BD的中点H,连接HP,∵点H是BD的中点,BD=CD,∴DHCD =12,∴DPDQ =12,∴DHCD =DPDQ,∵CD⊥AB,∠PDQ=90°,∴∠CDQ+∠QDB=90°,∠QDB+∠HDP=90°,∴∠CDQ=∠HDP,∴△HDP∽△CDQ,∴∠DHP=∠DCQ=45°,HPCQ =12,∴点P运动的路径是线段,且路径长等于CQ的一半,∵AB=4,∴BC=2√2,∴点P运动的路径长为√2.14.如图,在△ABC中,AD为边BC上的中线,且AD平分∠BAC.嘉淇同学先是以A为圆心,任意长为半径画弧,交AD于点P,交AC于点Q,然后以点C为圆心,AP长为半径画弧,交AC于点M,再以M为圆心,PQ长为半径画弧,交前弧于点N,作射线CN,交BA的延长线于点E.(1)通过嘉淇的作图方法判断AD与CE的位置关系是______,数量关系是______;(2)求证:AB=AC;(3)若BC=24,CE=10,求△ABC的内心到BC的距离.【答案】(1)AD//CE;EC=2AD;(2)证明:∵AD//CE,∴∠BAD=∠E,∠DAC=∠ACE,∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠ACE=∠E,∴AC=AE,由(1)知△ABD∽△EBC,∴ABEB =BDBC=12,∴EB=2AB,即AB=AE,∴AB=AC.(3)解:∵BC=24,CE=10,∴BD=12,AD=5,∵AB=AC,BD=CD,∴AD⊥BD,设△ABC内心到BC距离为r,∴ABBD =5−rr,∴5−r13=r12,∴60−12r=13r∴25r=60,∴r=125.【分析】(1)由作图方法可知∠DAC=∠ACE,则AD//CE,根据BC=2BD,可证CE=2AD;(2)由(1)知△ABD∽△EBC,证出BE=2AB,得AB=AE,又AC=AE,则AB=AC;(3)设△ABC内心到BC距离为r,可得ABBD =5−rr,即可求出r.本题是圆的综合题目,考查了内心的定义、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识.【解答】解:(1)∵嘉淇的作图方法可知∠DAC=∠ACE,∴AD//CE,∴△ABD∽△EBC,∴BDBC =ADCE,∵AD为边BC上的中线,∴BC=2BD,∴CE=2AD,故答案为:AD//CE,EC=2AD;(2)证明:∵AD//CE,∴∠BAD=∠E,∠DAC=∠ACE,∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠ACE=∠E,∴AC=AE,由(1)知△ABD∽△EBC,∴ABEB =BDBC=12,∴EB=2AB,即AB=AE,∴AB=AC.(3)解:∵BC=24,CE=10,∴BD=12,AD=5,∵AB=AC,BD=CD,∴AD⊥BD,设△ABC内心到BC距离为r,∴ABBD =5−rr,∴5−r13=r12,∴60−12r=13r∴25r=60,∴r=125.15.如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG;(3)若∠ADG=45°,DF=1,则有两个结论:①AD⋅BD的值不变;②AD−BD的值不变,其中有且只有一个结论正确,请选择正确的结论,证明并求其值.【分析】(1)先证∠DBC=∠BAD,再证∠DBC+∠ABD=90°,即∠ABC=90°,可得出结论;(2)如图1,连接DE,分别证∠BFD=∠ABD,∠BFD=∠DGC,则∠DFE=∠DGE,因为D为△BCE内心,所以∠DEG=∠DEB,可得△DEF≌△DEG,即可得出结论;(3)先判断AD−BD的值不变,如图2,在AD上截取DH=BD,连接BH、BG,先证AB=√2BG,BD=DH,再证△ABH∽△GBD,求出AH的长,即可证明AD−BD=2.本题考查了圆的有关概念及性质,切线的判定定理,全等三角形的判定与性质,相似三角形的判定与性质等,综合性质较强,解题关键是能够熟练掌握各方面的知识,并能够灵活运用圆的有概念及性质和相似三角形的判定与性质等.【解答】(1)证明:∵D为△BCE内心,∴∠DBC=∠DBE,∵∠DBE=∠BAD.∴∠DBC=∠BAD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:如图1,连接DE,∵∠DBC=∠BAD,∠DBC=∠DBE,∴∠DBE=∠BAD,∴∠ABF+∠BAD=∠ABF+∠DBE,∴∠BFD=∠ABD,∵∠DGC=∠ABD,∴∠BFD=∠DGC,∴∠DFE=∠DGE,∵D为△BCE内心,∴∠DEG=∠DEB,在△DEF和△DEG中{∠DFE=∠DGE ∠DEG=∠DEF DE=DE,∴△DEF≌△DEG(AAS),∴DF=DG;(3)解:AD−BD的值不变;如图2,在AD上截取DH=BD,连接BH、BG,∵AB是直径,∴∠ADB=∠AGB=90°,∵∠ADG=45°,∴∠ABG=∠ADG=45°,∴AB=√2BG,∵∠BDH=90°,BD=DH,∴∠BHD=45°,∴∠AHB=180°−45°=135°,∵∠BDG=∠ADB+∠ADG=90°+45°=135°,∴∠AHB=∠BDG,∵∠BAD=∠BGD,∴△ABH∽△GBD,∴AHDG =ABBG=√2,∵DG=1,∴AH=√2,∵AD−BD=AD−DH=AH,∴AD−BD=√2.16.如图1,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图2,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.(i)如图3,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);(ii)若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.(内心是三角形三个内角的角平分线交点)【分析】此题主要考查了相似三角形的判定以及三角形的内心作法和作一角等于已知角,此题综合性较强,注意从已知分析获取正确的信息是解决问题的关键.(1)根据已知条件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出结论;(2)(i)根据作一角等于已知角即可得出△ABC的自相似点;(ii)根据∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各内角的度数.【解答】解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴CD=12AB,∴CD=BD,∴∠BCE=∠ABC,∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB,∴△BCE∽△ABC,∴E是△ABC的自相似点;(2)(i)如图所示,作法:①在∠ABC内,作∠CBD=∠A,②在∠ACB内,作∠BCE=∠ABC,BD交CE于点P,则P为△ABC的自相似点;(ii)∵P是△ABC的内心,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∵△ABC的内心P是该三角形的自相似点,∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,∴∠A+2∠A+4∠A=180°,∴∠A=180°7,∴该三角形三个内角度数为:180°7,360°7,720°7.17.我们知道:三角形三条角平分线的交点叫做三角形的内心,已知点I为△ABC的内心(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长(2)过点I作直线交AB于点M,交AC于点N.①如图2,若MN⊥AI,求证:MI2=BM•CN②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求1AM +1AN的值.【分析】本题考查三角形综合题、相似三角形的判定和性质、三角形的内心、角平分线的性质、平行线的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.(1)如图1中,作IE⊥AB于E.设ID=x.由△BEI≌△BDI,可得ID=IE=x,BD=BE=1,AE=2,在Rt△AEI中,根据AE2+EI2=AI2,可得方程,解方程即可;(2)如图2中,连接BI、CI.首先证明△AMI≌△ANI(ASA),再证明△BMI∽△INC,可得NI2=BM⋅CN,由此即可解决问题;(3)过点N作NG//AD交MA的延长线于G.由∠ANG=∠AGN=30°,推出AN=AG,NG,由AI//NG,推出比例式,即可求得答案.【解答】解:(1)如图1中,作IE⊥AB于E.设ID=x.∵AB=AC=3,AI平分∠BAC,∴AD⊥BC,BD=CD=1,在Rt△ABD中,AD=√AB2−BD2=√32−12=2√2,∵∠EBI=∠DBI,∠BEI=∠BDI=90°,BI=BI,∴△BEI≌△BDI,∴ID=IE=x,BD=BE=1,AE=2,在Rt△AEI中,∵AE2+EI2=AI2,∴22+x2=(2√2−x)2,∴x=√22,∴ID=√22.(2)如图2中,连接BI、CI.∵I是内心,∴∠MAI=∠NAI,∵AI⊥MN,∴∠AIM=∠AIN=90°,∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°−α−β,∵∠ABC=180°−2α−2β,∴∠MBI=90°−α−β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴BMNI =NINC,∴NI2=BM⋅CN,∵NI=MI,∴MI2=BM⋅CN.(3)过点N作NG//AD交MA的延长线于G.∴∠ANG=∠AGN=30°,∴AN=AG,NG=√3AN,∵AI//NG,∴AMMG =AING,∴AMAM+AN =√3AN,∴1AM +1AN=√34.。
三角形的“四心”练习
三角形的“四心”练习三角形是几何学中的基本图形之一,它具有丰富的性质和特点。
在三角形中,存在着四个特殊的点,被称为“四心”。
它们分别是垂心、重心、外心和内心。
本文将针对这四个心进行练习和探究。
垂心是三角形三条高线的交点,它与三角形的顶点相连,形成了三条互相垂直的直线。
我们以一个具体的例子来进行实践。
假设三角形ABC中,AB = 5cm,BC = 6cm,AC = 7cm。
首先,我们需要确定三个顶点A、B、C的坐标。
假设A点坐标为(0, 0),B点坐标为(5, 0),C点坐标为(3.5, 4)。
接下来,我们绘制出三角形ABC,并求出垂心H的坐标。
通过计算,得出三角形ABC的三边的中点分别为D(2.5, 0)、E(4.25, 2)和F(1.75, 2)。
然后,我们通过计算斜率,得出垂直于三边的直线方程,分别为x = 4.25、x = 1.75和y = 2。
将这三条直线带入到相交点的方程中,我们可以得出垂心H的坐标为(3, 1.33)。
在本次练习中,我们通过确定三个顶点的坐标,计算三边的中点,并求出相互垂直的直线方程,最终得出了垂心H的坐标。
接下来,我们将对重心进行练习。
重心是三角形三条中线的交点,它将三角形等分成六个小三角形。
同样以例子来进行实践。
依旧以三角形ABC,我们可以通过绘制出三角形ABC,并求出重心G的坐标。
通过计算,得出三角形ABC的三边的中点分别为D(2.5, 0)、E(4.25, 2)和F(1.75, 2)。
我们通过计算两个点的中点,得到DF中点M的坐标为(2.25, 1)。
同样地,我们计算出AE中点N的坐标为(2.75, 1)和BC中点P的坐标为(4, 2)。
将这三个中点带入到相交点的方程中,我们可以得出重心G的坐标为(3, 1)。
在本次练习中,我们通过确定三个顶点的坐标,计算三边的中点,并求出相互交点的方程,最终得出了重心G的坐标。
接下来,我们将对外心进行练习。
外心是三角形外接圆的圆心,它与三个顶点的距离都相等。
第6章平面向量专题5 三角形四心问题常考题型专题练习——【含答案】
1三角形四心问题三角形四心的向量形式设O 为△ABC 所在平面上一点,内角A,B,C 所对的边分别为a,b,c,则(1) O 为△ABC 的外心⇔||=||=||=.(2)O 为△ABC 的重心⇔++=0.(2) O 为△ABC 的垂心⇔·=·=·.(4)O 为△ABC 的内心⇔a+b +c =0.1、已O 知是ABC ∆的外心,||4AB =,||2AC =,则()(AO AB AC += ) A .10 B .9C .8D .6【答案】A . 【解答】解:如图,O 是ABC ∆的外心,且||4AB =,||2AC =,则()AO AB AC AO AB AO AC +=+ 221111||||164102222AB AC =+=⨯+⨯=. 故选:A .12、已知△ABC 和点M 满足.若存在实数m 使得成立,则m =__________.【答案】3【解析】由条件知是的重心,设是边的中点,则,而,所以,故选B.3、(多选)在给出的下列命题中,正确的是( )A. 设O A B C 、、、是同一平面上的四个点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线B.若向量a b 和是平面α上的两个向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的C .已知平面向量OA OB OC 、、满足,||||AB AC OA OB OA OC AO AB AC λ⎛⎫⋅=⋅=+ ⎪⎝⎭则ABC △为等腰三角形D.已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形 【答案】ACD4.已知O 为ABC ∆的外心,1,,3cosA AO AB AC αβαβ==++若则的最大值为( )A .13B .12C .23D .341【分析】如图所示,以BC 边所在直线为x 轴,BC 边的垂直平分线为y 轴建立直角坐标系(D 为BC 边的中点).由外接圆的性质可得BOD COD BAC ∠=∠=∠.由1cos 3A =,不妨设外接圆的半径3R =.则3OA OB OC ===.可得B ,C ,O 的坐标,设(,)A m n .则ABC ∆外接圆的方程为:22(1)9x y +-=.(*)利用向量相等AO AB AC αβ=+,可得(2)(22)1m m m n n n αβαβ⎧-=-+⎪⎨-=--⎪⎩,又1αβ+≠时,否则CO CB α=,由图可知是不可能的.可化为22()11m n βααβ⎧-=⎪⎪⎨-⎪=⎪+-⎩,代入(*)可得22228()()9(1)(1)βααβαβαβ---+=+-+-,化为18()932αβαβ+=+,利用重要不等式可得218()932()2αβαβ+++,化为28()18()90αβαβ+-++,即可解出.【解答】解:如图所示,以BC 边所在直线为x 轴,BC 边的垂直平分线为y 轴建立直角坐标系(D 为BC 边的中点).由外接圆的性质可得BOD COD BAC ∠=∠=∠.由1cos 3A =,不妨设外接圆的半径3R =.则3OA OB OC ===. 1cos 3OD COD OC ∠==,221.22OD DC OC OD ∴==-. (22,0)B ∴-,(22,0)C ,(0,1)O ,(,)A m n .则ABC ∆外接圆的方程为:22(1)9x y +-=.(*) AO AB AC αβ=+,(m ∴-,1)(22,)(22,)n m n m n αβ-=--+-,旗开得胜1∴(22)(22)1m m m nn nαβαβ⎧-=--+-⎪⎨-=--⎪⎩, 1αβ+≠时,否则CO CB α=,由图可知是不可能的.∴可化为22()11m n βααβ⎧-=⎪⎪⎨-⎪=⎪+-⎩,代入(*)可得22228()()9(1)(1)βααβαβαβ---+=+-+-, 化为18()932αβαβ+=+,利用重要不等式可得218()932()2αβαβ+++,化为28()18()90αβαβ+-++,解得34αβ+或32αβ+. 又1αβ+<,故32αβ+应舍去. ∴34αβ+, 故αβ+的最大值为34. 故选:D .。
微专题 平面向量痛点问题之三角形“四心”问题(解析版)
微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0 .(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0 .(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0 .【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +AC AC 所在的直线上. AB ⋅PC +BC ⋅PC +CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA ⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0 ⇔P 为△ABC 的重心.【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC 的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD =DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC ,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD ,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC ,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC ,由已知得BC =a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC ,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC ⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +AC ACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】C 【解析】因为AB AB 为AB 方向上的单位向量,AC AC 为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +AC AC,即AP =λAB AB +AC AC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB +cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B 【解析】因为IB =IA +AB ,IC =IA +AC ,所以aIA +bIB +cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC ),所以IA =-(b ⋅AB +c ⋅AC )a +b +c =-b a +b +c ⋅AB +c a +b +c AC =-1a +b +c b ⋅AB +c ⋅AC=-bc a +b +c AB c +AC b=-bc a +b +c AB AB +AC AC ,所以IA 在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yAC x ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN =NC ,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC ,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A 【解析】PA =PB =PC 表示P 到A ,B ,C 三点距离相等,P 为外心.故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA =( )A.4B.-4C.2D.-2【答案】B 【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB |⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA +OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO =( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D 【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA 2,得BH ⋅HC =CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC 2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH ⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB ,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC ,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC =0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC =0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B 正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA +5HB +6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB +6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC =0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO =( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC 【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC .故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB 2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与ABAB cos B +AC ACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB 2=12AB2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC =0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF =13λAE +13μAF ,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB AB cos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C=AB BC cos π-B AB cos B +AC BC cos C AC cos C =-BC +BC =0,∴AB AB cos B +AC AC cos C与BC 垂直,又∵AH ⊥BC ,∴AB AB cos B +AC AC cos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD ,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD ,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE ,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB +12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC ,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA +λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【答案】C【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA +λ(AB +AC ),λ>0,则OP -OA =2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC ,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC =35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×AD AO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC =36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13 ,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D 【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC =0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0 ,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP =OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD ,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC +OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab =22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB ,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO ,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,因此,BC ⋅AD+CA ⋅BE +AB ⋅CF =0,D 对.故选:BCD .17.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78B.AB =62C.∠A =2∠CD.sin ∠A =14【答案】ABC【解析】有题意可知:OA =OB =OC =1.对于A :2OA +3OB +4OC =0 ⇒2OA =-3OB -4OC.两边同时平方得到:4OA 2=9OB 2+16OC 2+24OB ⋅OC.解得OB ⋅OC =-78,故A 正确.对于B :2OA +3OB +4OC =0 ⇒2OA -2OB =-5OB -4OC ⇒2AB =5OB +4OC.两边再平方得到:4AB 2=25OB 2+16OC 2+40OB ⋅OC.结合A 可得:AB =62.所以B 正确.对于C :2OA +3OB +4OC =0 ⇒3BO =2OA +4OC.两边平方得到:9BO 2=4OA 2+16OC 2+16OA OCcos ∠AOC .解得cos ∠AOC =-1116.同理可得cos ∠AOB =14,cos ∠BOC =-78.∵∠AOB =2∠C ,∠COB =2∠A .∴cos2∠C =14<12,所以π3<2∠C <π2,则2π3<4∠C <π,cos2∠A =-78<-22,所以3π4<2∠A <π,∵cos4∠C =2cos 22∠C -1=2×142-1=-78=cos2∠A ,2∠A =4∠C .∴∠A =2∠C .故C 正确;由cos2∠A =2cos 2∠A -1=-78,所以cos 2∠A =116,所以sin 2∠A =1516,所以sin ∠A =±154,显然sin ∠A =154,故D 错误.故选:ABC .18.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG【答案】ABCD【解析】在△ABC 中,O ,H ,G 分别是外心、垂心和重心,画出图形,如图所示.对于B 选项,根据三角形的重心性质由重心的性质可得G 为AD 的三等分点,且GA =-2GD ,又D 为BC 的中点,所以GB +GC =2GD ,所以GA +GB +GC =-2GD+GD =0 ,故选项B 正确;对于A 与C 选项,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,∴△AHG ∽△DOG ,∴GH OG =AH OD =AGDG=2,∴GH =2OG ,AH =2OD ,故选项A ,C 正确;对于D ,过点G 作GE ⊥BC ,垂足为E ,∴△DEG ∽△DNA ,则GE AN =DG DA=13,∴△BGC 的面积为S △BGC =12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC =S △AGB =13S △ABC ,选项D 正确.故选:ABCD19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-4【答案】AB【解析】选项A :因为AO =OD ,所以O 为AD 中点,由题易知AO =OD =12OB +OC ,故A 正确.选项B :若AO =2OD ,则点O 为△ABC 的重心,(三角形重心的性质)则OB =2EO,故B 正确.选项C :若AO =3OD ,则OB =OD +DB =14AD +12CB =14×12AB +AC +12AB -AC=58AB -38AC,故C 错误.选项D :若点O 为△ABC 的外心,BC =4,则OD ⊥BC ,(三角形外心的性质)故OB ⋅BC =OD +DB ⋅BC =-12BC 2=-8,故D 错误.故选:AB20.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC =0B.AG ⋅BC =-73 C.AO ⋅BC =72D.OH =OA +OB +OC【答案】ACD【解析】对于A 选项,由垂心的性质可知AH ⊥BC ,则AH ⋅BC=0,A 对;对于B 选项,设D 为BC 的中点,则AG =23AD,AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +AC ,所以,AG =23AD =13AB +AC ,所以,AG ⋅BC =13AC +AB ⋅AC -AB =13AC 2-AB 2 =73,B错;对于C 选项,由外心的性质可知OB =OC ,则OD ⊥BC ,∴AO ⋅BC =AD +DO ⋅BC =AD ⋅BC =12AB +AC ⋅AC -AB =12AC 2-AB 2 =72,C 对;对于D 选项,由AH ⎳OD 得AH OD =AGGD=2,所以AH =2OD ,因为OD =OB +BD =OB +12BC =OB +12OC -OB =12OB +OC,所以OH -OA =AH =2OD =OB +OC ,即OH =OA +OB +OC,D 对.故选:ACD .三、填空题21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.【答案】6,-6 【解析】设点C a ,b ,∵G (2,0)是△ABC 的重心,所以,-6+6+a 3=22+4+b 3=0,解得a =6b =-6 ,故点C 的坐标为6,-6 .故答案为:6,-6 .22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA=1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .【答案】①③【解析】由题意可知:OA =OB =OC =1.①2OA +3OB +4OC =0 ,则2OA =-3OB -4OC ,两边同时平方得到:4=9+24OB ⋅OC +16,解得:OB ⋅OC =-78,故①正确.②2OA +3OB +4OC =0 ,则2OA -2OB =-5OB -4OC ,2BA =-5OB -4OC ,两边再平方得到:4AB 2=25+16+40OB ⋅OC=6.所以|AB =62,所以②不正确.③2OA +3OB +4OC =0 ,4OC =-3OB -2OA ,两边平方得到:16=9+4+12OA ⋅OB =13+12OA OB cos ∠AOB ,cos ∠AOB =14,∠AOB ∈0,π2,同理可得:cos ∠BOC =-78,∠BOC ∈π2,π ,∠AOB =2∠C ,∠COB =2∠A .故cos2C =14,cos2A =-78,且∠C ∈0,π4 ,∠A ∈π4,π2,cos4C =2cos 22C -1=2×14 2-1=-78=cos2A ,即∠A =2∠C .故③正确.故答案为:①③23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB=___________.【答案】-72【解析】如图:E ,F 分别为CB ,CA 的中点,则OE ⊥BC ,OF ⊥AC∴OC ⋅AB =OC ⋅CB -CA =OC ⋅CB -OC ⋅CA=OE +EC ⋅CB -OF +FC ⋅CA=OE ⋅CB +EC ⋅CB -OF ⋅CA -FC ⋅CA=-12|CB |2--12|CA |2 =12CA |2- CB |2 =12×9-16 =-72.故答案为:-72.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.【答案】①②③④【解析】对于①,若△ABC 是钝角三角形,由tan C =-tan (A +B )=-tan A +tan B1-tan A tan B得tan A +tan B +tan C =tan A tan B tan C <0,故①正确,对于②,若△ABC 是锐角三角形,则A +B >π2,有0<π2-B <A <π2且0<π2-A <B <π2,则cos B =sin π2-B<sin A ,同理得cos A <sin B ,故cos A +cos B <sin A +sin B ,故②正确,对于③,由HG ⋅BC =(AG -AH )⋅BC =AG ⋅(AC -AB )=12(AC 2-AB 2)=4,故③正确,对于④,若sin B =25,tan C =34,则sin C =35,sin B <sin C <22,则B <C <π4,故A >π2>C >B ,故④正确,故答案为:①②③④25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN =2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.【答案】596【解析】分别取AB ,AC 的中点E ,F ,连接OE ,OF ,因为O 为△ABC 的外心,∴OE ⊥AB ,OF ⊥AC ,∴AB ⋅OE =0,AC ⋅OF =0,∵BN =2NC ,∴BN =23BC ,∴AN =AB +BN =AB +23BC =AB +23(AC -AB )=13AB +23AC ,∴AO ⋅AB =12AB +EO ⋅AB =12AB 2=92,AO ⋅AC =12AC +FO ⋅AC =12AC 2=252,∴AN ⋅AO =13AB +23AC ⋅AO =13AB ⋅AO +23AC ⋅AO =13×92+23×252=596故答案为:59626.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,则∠A =___________.【答案】π3【解析】首先我们证明一个结论:已知O 是△ABC 所在平面上的一点,a ,b ,c 为△ABC 的三边长,若a ⋅OA +b ⋅OB +c ⋅OC =0 ,则O 是△ABC 的内心.证明:OB =OA +AB ,OC =OA +AC ,则a ⋅OA +b ⋅OB +c ⋅OC =0 ⇔(a +b +c )⋅OA +b ⋅AB +c ⋅AC =0 ,等式两边同时除以a +b +c 得,AO =bc a +b +c AB |AB |+AC |AC | ,AB |AB |表示AB 方向上的单位向量,同理AC |AC |表示AC 方向上的单位向量,则由平行四边形定则可知bc a +b +c AB |AB |+AC |AC |表示∠BAC 的角平分线方向上的向量,则AO 为∠BAC 的角平分线,同理BO 、CO 分别为∠ABC ,∠ACB 的角平分线,所以O 是△ABC 的内心.于是我们得到本题的一个结论aGA +bGB +cGC =0 .又∵cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,∴由正弦定理与题目条件可知sin A :sin B :sin C =a :b :c =cos A :cos B :cos C .由sin A :sin B =cos A :cos B 可得sin A cos B -cos A sin B =sin (A -B )=0,可得A =B ,同理可得B =C ,C =A ,即A =B =C =π3.故答案为:π3.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA =11+OF OA=11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-3228.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC =___________【答案】6-23【解析】解法1:不难发现,△ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID =IE =IF =r ,显然四边形BDIF 是正方形,所以BD =BF =r ,从而AD =2-r ,CF =23-r ,易证AE =AD ,CE =CF ,所以AE =2-r ,CE =23-r ,故AE +CE =2+23-2r =AC =4,从而r =3-1,AD =2-r =3-3,AI ⋅BC =AI ⋅AC -AB =AI ⋅AC -AI ⋅AB =AI ⋅AC ⋅cos ∠IAC -AI ⋅AB ⋅cos ∠IAB=AE ⋅AC -AD ⋅AB =AD AC -AB =2AD =6-23.故答案为:6-23.解法2:按解法1求得△ABC 的内切圆半径r =3-1,由图可知AI在BC 上的投影即为3-1,所以AI ⋅BC =3-1 ×23=6-23.故答案为:6-23.。
平面向量与三角形的“四心”问题
平面向量与三角形的“四心”综合问题【例题精讲】例题1 已知O ,N ,P 在△ABC 所在平面内,且|OA ―→|=|OB ―→|=|OC ―→|,NA ―→+NB ―→+NC ―→=0,且P A ―→·PB ―→=PB ―→·PC ―→=PC ―→·P A ―→,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心【解析】由|OA ―→|=|OB ―→|=|OC ―→|知,O 为△ABC 的外心; 由NA ―→+NB ―→+NC ―→=0知,N 为△ABC 的重心;因为P A ―→·PB ―→=PB ―→·PC ―→,所以(P A ―→-PC ―→)·PB ―→=0, 所以CA ―→·PB ―→=0,所以CA ―→△PB ―→,即CA △PB ,同理AP △BC ,CP △AB ,所以P 为△ABC 的垂心,故选C.例题2 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y △[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463C .4 3D .62【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部, 其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.【知识小结】三角形“四心”的向量表示(1)在△ABC 中,若|OA ―→|=|OB ―→|=|OC ―→|或OA ―→2=OB ―→2=OC ―→2,则点O 是△ABC 的外心.(2)在△ABC 中,若GA ―→+GB ―→+GC ―→=0,则点G 是△ABC 的重心.(3)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎫AB ―→+12BC ―→,λ△(0,+∞),则直线AP 过△ABC 的重心. (4)OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→或者|OA ―→|2+|OB ―→|2=|OB ―→|2+|OC ―→|2=|OC ―→|2+|OA ―→|2,则点O 为三角形的垂心.(5)|BC ―→|·OA ―→+|AC ―→|·OB ―→+|AB ―→|·OC ―→=0,则点O 为三角形的内心.(6)对于△ABC ,O ,P 为平面内的任意两点,若OP ―→=OA ―→+λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|+AC ―→|AC ―→|(λ>0),则直线AP 过△ABC 的内心.【变式练习】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ△(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【解析】选C 由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.2.在△ABC 中,|AB ―→|=3,|AC ―→|=2,AD ―→=12AB ―→+34AC ―→,则直线AD 通过△ABC 的( )A .重心B .外心C .垂心D .内心解析:选D △|AB ―→|=3,|AC ―→|=2,△12|AB ―→|=34|AC ―→|=32.设AE ―→=12AB ―→,AF ―→=34AC ―→,则|AE ―→|=|AF ―→|.△AD ―→=12AB ―→+34AC ―→=AE ―→+AF ―→,△AD 平分△EAF ,△AD 平分△BAC ,△直线AD 通过△ABC 的内心。
三角形的四心问题(最全面精品)
三角形的外心、内心、重心、垂心序号名称定义图形性质1 三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心)1.三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径;2.锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外2 三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心)1.三角形的内心到三边的距离相等,都等于三角形内切圆半径;2.直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一3 三角形的重心三角形的三条中线交于一点,这点称为三角形的重心1.三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2;2.重心和三角形3个顶点组成的3个三角形面积相等;3.重心到三角形3个顶点距离的平方和最小4 三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心1.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;2.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外AB COIKHEFDAB CMABCDEFGA BCDEFO三角形的外心定义:三角形外接圆的圆心叫做三角形的外心.三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上.性质:三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径. 用三角形的三边和面积表示外接圆半径的公式SR 4abc公式中 是这三角形的三条边,S 为三角形的面积.证明:例题精讲一、求三角形的外接圆的半径 1、直角三角形如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径.2、一般三角形①已知一角和它的对边例2如图,在△ABC 中,AB =10,∠C =100°,求△ABC 外接圆⊙O 的半径. (用三角函数表示)COCO例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径.②已知两边夹一角例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. .③已知三边例5如图,已知,在△ABC 中,AC =13,BC =14,AB =15,求△ABC 外接圆⊙O 的半径.ABCODABCOD E ABCOD E三角形的内切圆定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心性质:内心到三角形三边的距离相等;内心与顶点连线平分内角. 内切圆半径;一般三角形中,r=c b S++a 2(S 为三角形面积)Rt △中,r=2b ca -+(a,b 为直角边,c 为斜边)例题精讲:探索1:如图,在△ABC 中,点O 是内心,∠ABC=50°,∠ACB =70°,求∠BOC 的度数.变式1:在△ABC 中,点O 是内心,∠BAC=50°,求∠BOC 的度数.变式2:在△ABC 中,点O 是内心,∠BOC=120°,求∠BAC 的度数.探索2:.已知△ABC 的三边长分别为a ,b ,c ,它的内切圆半径为r ,你会求△ABC 的面积吗?探索3:如图,直角三角形的两直角边分别是a ,b,斜边为c 求其内切圆的半径r和外接圆半径R.二、求三角形的内切圆的半径 1、直角三角形例 已知:在△ABC 中,∠C =90°,AC =b ,BC =a ,AB =c 求△ABC 外接圆⊙O 的半径.2、一般三角形 ①已知三边例 已知:如图,在△ABC 中,AC =13,BC =14,AB =15求△ABC 内切圆⊙O 的半径r.②已知两边夹一角例 已知:如图,在△ABC 中,sin ∠B=53,AB =5,BC =6 求△ABC 内切圆⊙O 的半径r.ABCOE Dbca A BCO E FDABCOD③已知两角夹一边例 已知:如图,在△ABC 中,∠B =60°,∠C =45°,BC =6 求△ABC 内切圆⊙O 的半径r.(精确到0.1)总之,只要通过边、角能确定三角形,就可以借鉴上面的方法求出这个三角形的外接圆和内切圆的半径.三角形的重心三角形重心是三角形三条中线的交点. 性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1.2.重心和三角形3个顶点组成的3个三角形面积相等.3.重心到三角形3个顶点距离的平方最小.例:已知:△ABC ,E 、F 是AB ,AC 的中点.EC 、FB 交于G. 求证:EG=1/2CGABCO D例:在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线.根据重心性质知:例题精讲:⑴求线段长例如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC 的重心,GE⊥AC于点E,若BC=6cm,则GE= cm.解:⑵求面积例在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积.解:如图,若G 是ABC ∆的重心,且GH ∥BC ,则GH:BC=如图,若G 是ABC ∆的重心,且GE ∥,CB GF ∥AB ,则=∆GEBF四边形S S ABC。
三角形中的四心问题
三角形中的“四心”问题重心:三角形的三条边上的中线的交点如果三角形ABC 中三边BC 、CA 、AB 上的中点分别是D 、E 、F 则AD 、BE 、CF 的交点为O ,O 为三角形ABC 的重心⎪⎪⎩⎪⎪⎨⎧++=++===+=++=++=3332,,200yyyy x x x x CBAC B A重心可以得到这些,要证明是否过重心或者是否为重心也就是要证明这些,垂心:三角形当中三条高的交点如果三角形的三条高交与H 一点,则H 就是三角形的垂心,那么我们可以得到0,0,0=⋅=⋅=⋅ 如果⋅=⋅=⋅则P 为三角形的垂心要判断一个点是否过垂心或者就是垂心就是要证明这些或者某些 内心;三角形中的三条角平分线的交点三角形三条角平分线交与一点O,则这个点O 就是三角形中的内心,那么我们可以得到O 点到三角形的三边的距离相等,其次⎫⎛+=⎫⎛+=⎫⎛=λλλ,,O 是内心也就是三角形的内切圆的圆心,既然是角平分线在向量中就是要单位向量相加,所以要证明一个点是否为内心或者一直线是否过内心就是要单位向量相加,其中还可以与切线长定理合用。
外心;三角形的三边上三条线段的垂直平分线的交点如果三角形三边AB 、AC 、BC 的垂直平分线交与P 点,则P 点就是三角形的外心,也就是三角形的外接圆的圆心,则可以得到AB=AC=BC ,向量当中可以得到()()0,0=⋅+=⋅+()0=⋅+要证明外心就是要看起定义,与其相关的例题:例1 已知O 是平面内一定点,A 、B 、C 是平面内不共线的三个点,其中()+∞∈,0λ,动点P 满足:()()()())_(____________________2.4.3tan tan .2sin sin .1写出所有正确的序号命题是的外心;其中正确的过时,动点的重心;过时,动点的垂心;过时,动点的内心;过时,动点ABC P OC OB ABC P ABC P AC B C AB OA OP ABC P AC B C AB OA OP ∆⎪⎫ ⎛+++=∆⎪⎫⎛++=∆⎪⎭⎫⎝⎛++=∆⎪⎭⎫⎝⎛++=λλλλ例2 若O 是三角形ABC=+=+则O是三角形ABC的___________垂________心例3 已知C为线段AB上的一点,P为直线AB外一点,满足522==____)0(上一点且为PCI>⎪⎫⎛++==λλ15-例4 已知O为三角形ABC的外心,AB=4,AC=6,BC=8则_________=⋅10例5 若P为三角形ABC心内的为则___0ABCP∆=+例6 已知O为三角形ABC的外心,外接圆的半径为1,且⋅=++0543的值为__2_ 例7 (1)点 O,P为()心的是,则所在平面内两个点,___31ABCOABC∆++=∆()()()心的是,则平面内一点,为)(心的是则平面上一点,且是所对的边,分别是角中,)(心的是则平面内一点,为)(____________0 4______________,,,,,,3____,2222222ABCOABCOABCOcbaABCPCBAcbaABCABCOABCO∆=+=+=+∆∆=++∆∆∆+=+=+∆例843__cos,12,3,2=∠=++===∆BACyxyxACABABCO则且的外心,且是。
三角形四心问题
三角形四心问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP ⃗⃗⃗⃗⃗ =13[(1-λ)OA ⃗⃗⃗⃗⃗ +(1-λ)OB ⃗⃗⃗⃗⃗ +(1+2λ)OC ⃗⃗⃗⃗⃗ ],λ∈R ,则点P 的轨迹一定经过( ). A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .△ABC 的外心【训练1】 已知O 为△ABC 所在平面内一点,若动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )(λ≥0),则点P 的轨迹一定经过△ABC 的( ). A .外心 B .内心 C .垂心 D .重心例2 已知O 为△ABC 所在平面上一点,且OA ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2=OB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ 2=OC ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ 2,则O一定为△ABC 的( ).A .外心B .内心C .重心D .垂心【训练2】 若P 是△ABC 所在平面上一点,PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =PC ⃗⃗⃗⃗⃗ ·PA⃗⃗⃗⃗⃗ ,则P 是△ABC 的( ).A .外心B .内心C .重心D .垂心例3 在△ABC 中,AB=5,AC=6,cos A=15,O 是△ABC 的内心,若OP⃗⃗⃗⃗⃗ =x OB ⃗⃗⃗⃗⃗ +y OC ⃗⃗⃗⃗⃗ ,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ).A .10√63B .14√63C .4√3D .6√2【训练3】 已知O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,λ∈(0,+∞),则点P 的轨迹一定经过△ABC 的( ).A .外心B .内心C .重心D .垂心例4 在△ABC 中,O 为其外心,OA ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ =√3,且√3OA ⃗⃗⃗⃗⃗ +√7OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,则边AC 的长是 .【训练4】 在△ABC 中,设AC ⃗⃗⃗⃗⃗ 2-AB ⃗⃗⃗⃗⃗ 2=2AM ⃗⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ ,那么动点M 形成的图形必经过△ABC 的( ).A .垂心B .内心C .外心D .重心。
立体几何中三角形的四心问题
立体几何中三角形的四心问题一、外心问题(若PA=PB=PC,则O 为三角形ABC 的 外心)例1.设P 是ΔABC 所在平面α外一点,若PA ,PB ,PC 与平面α所成的角都相等,那么P 在平面α内的射影是ΔABC 的( )A.内心B.外心C.垂心D.重心如图所示,作PO ⊥平面α于O ,连OA 、OB 、OC ,那么∠PAO 、∠PBO 、∠PCO 分别是PA 、PB 、PC 与平面α所成的角,且已知它们都相等.∴Rt ΔPAO ≌Rt ΔPBO ≌Rt ΔPCO. ∴OA =OB =OC ∴应选B.例2. Rt △ABC 中,∠C =90°,BC =36,若平面ABC 外一点P 与平面A ,B ,C 三点等距离,且P 到平面ABC 的距离为80,M 为AC 的中点.(1)求证:PM ⊥AC ;(2)求P 到直线AC 的距离;(3)求PM 与平面ABC 所成角的正切值.解析:点P 到△ABC 的三个顶点等距离,则P 在平面ABC 内的射影为△ABC 的外心,而△ABC 为直角三角形,其外心为斜边的中点.证明 (1)∵PA =PC ,M 是AC 中点,∴PM ⊥AC解 (2)∵BC =36,∴MH =18,又PH =80,∴PM =8218802222=+=+MH PH ,即P 到直线AC 的距离为82; (3)∵PM=PB=PC ,∴P 在平面ABC 内的射线为△ABC 的外心,∵∠C=90° ∴P 在平面ABC 内的射线为AB 的中点H 。
∵PH ⊥平面ABC ,∴HM 为PM 在平面ABC 上的射影,则∠PMH 为PM 与平面ABC 所成的角,∴tan ∠PMH =9401880==MH PH 例3.斜三棱柱ABC —A 1B 1C 1的底面△ABC 中,AB=AC=10,BC=12,A 1到A 、B 、C 三点的距离都相等,且AA1=13,求斜三棱柱的侧面积。
解析:∵A 1A=A 1B=A 1C∴ 点A 1在平面ABC 上的射影为△ABC 的外心,在∠BAC 平分线AD 上 ∵ AB=AC ∴ AD ⊥BC∵ AD 为A 1A 在平面ABC 上的射影∴ BC ⊥AA 1 ∴ BC ⊥BB 1∴ BB 1C 1C 为矩形,S=BB 1×BC=156取AB 中点E ,连A 1E∵ A 1A=A 1B ∴ A 1E ⊥AB∴ 12)2AB (AA E A 2211=-= ∴ 1111120AA C C AA B B S S ==∴ S 侧=396二、内心问题(若P 点到三边AB,BC,CA 的距离相等,则O 是三角形ABC 的 内心)例4.如果三棱锥S —ABC 的底面是不等边三角形,侧面与底面所成的角都相等,且顶点S 在底面的射影O 在ΔABC 内,那么O 是ΔABC 的( )A.垂心B.重心C.外心D.内心解 (1)利用三垂线定理和三角形全等可证明O 到ΔABC 的三边的距离相等,因而O 是ΔABC 的内心,因此选D.说明三角形的内心、外心、垂心、旁心、重心,它们的定义和性质必须掌握.质找出与平面平行的直线。
高考专题:平面向量中的三角形“四心”问题题型总结
专题:平面向量中三角形“四心”问题题型总结在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA uu u r +GB uuu r +GC u u u r =0或PG u u u r =13(PA uu u r +PB uu u r +PC uuu r )(其中P 为平面内任意一点).反之,若GA uu u r +GB uuu r +GC u u u r =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33. (2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA u u u r ·HB u u u r =HB u u u r ·HC u u u r =HC u u u r ·HA u u u r 或HA u u u r 2+BC uuu r 2=HBu u u r 2+CA uu u r 2=HC u u u r 2+AB u u u r 2.反之,若HA u u u r ·HB u u u r =HB u u u r ·HC u u u r =HC u u u r ·HA u u u r ,则H 是△ABC 的垂心.(3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC uuu r |·IA u u r +|CA uu u r |·IB u u r +|AB u u u r |·IC u u r =0.反之,若|BC uuu r |·IA u u r +|CA uu u r |·IB u u r +|AB u u u r |·IC u u r =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA uu u r +OB uuu r )·BA uu u r =(OB uuu r +OC u u u r )·CB uu u r =(OC u u u r +OA uu u r )·AC u u u r =0或|OA uu u r |=|OB uuu r |=|OC u u u r |.反之,若|OA uu u r |=|OB uuu r |=|OC u u u r |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP uuu r =OA uu u r +λ(AB u u u r +AC u u u r ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.[解析] 由原等式,得OP uuu r -OA uu u r =λ(AB u u u r +AC u u u r ),即AP u u u r =λ(AB u u u r +AC u u u r ),根据平行四边形法则,知AB u u u r +AC u u u r 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特殊线段所在直线重合,这可从已知等式出发,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满足关系OA uu u r +2OB uuu r +3OC u u u r =0,试求S △BOC ∶S △COA ∶S △AOB之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB u u u r =2OB uuu r ,1OC u u u u r =3OC u u u r ,由条件,得OA uu u r +1OB u u u r +1OC u u u u r =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积,所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA uu u r +2OB uuu r +3OC u u u r =0与三角形的重心性质GA uu u r +GB uuu r +GC u u u r =0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满足关系λ1OA uu u r +λ2OB uuu r +λ3OC u u u r =0,则S △BOC ∶S△COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG u u u r =OA uu u r +OB uuu r +OC u u u r 2, 对于△ABC 的垂心H ,设OH u u u r =m (OA uu u r +OB uuu r +OC u u u r ),则AH u u u r =AO u u u r +m (OA uu u r +OB uuu r +OC u u u r )=(m -1) OA uu u r +m OB uuu r +m OC u u u r .由AH u u u r ·BC uuu r =0,得[(m -1) OA uu u r +m OB uuu r +m OC u u u r ](OC u u u r -OB uuu r )=0,(m -1) OA uu u r ·(OC u u u r -OB uuu r )+m (OC u u u r 2-OB uuu r 2)=0,因为|OC u u u r |=|OB uuu r |,所以(m -1) OA uu u r ·(OC u u u r -OB uuu r )=0.但OA uu u r 与BC uuu r 不一定垂直,所以只有当m =1时,上式恒成立.所以OH u u u r =OA uu u r +OB uuu r +OC u u u r ,从而OG u u u r =13OH u u u r ,得垂心H 、重心G 、外心O 三点共线,且|HG u u u r |=2|GO u u u r |.[引申推广]重心G 与垂心H 的关系:HG u u u r =13(HA u u u r +HB u u u r +HC u u u r ). [点评] 这是著名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA u u u u r +2MA u u u u r +3MA u u u u r +4MA u u u u r +5MA u u u u r =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 根据三角形中的“四心”知识,可知在△ABC 中满足MA u u u r +MB u u u r +MC u u u u r =0的点只有重心一点,利用类比的数学思想,可知满足本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的详细解答过程如下:对于空间两点A ,B 来说,满足MA u u u r +MB u u u r =0的点M 是线段AB 的中点;对于空间三点A ,B ,C 来说,满足MA u u u r +MB u u u r +MC u u u u r =0,可认为是先取AB 的中点G ,再连接CG ,在CG 上取点M ,使MC =2MG ,则M 满足条件,且唯一;对于空间四点A ,B ,C ,D 来说,满足MA u u u r +MB u u u r +MC u u u u r +MD u u u u r =0,可先取△ABC 的重心G ,再连接GD ,在GD 上取点M ,使DM =3MG ,则M 满足条件,且唯一,不妨也称为重心G ;与此类似,对于空间五点A ,B ,C ,D ,E 来说,满足MA u u u r +MB u u u r +MC u u u u r +MD u u u u r +ME u u u r =0,可先取空间四边形ABCD 的重心G ,再连接GE ,在GE 上取点M ,使EM =4MG ,则M 满足条件,且唯一.。
平面向量痛点问题之三角形“四心”问题(解析版)--高一数学微专题
平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.6【答案】A【解析】设MG =λMN ,则AG =AM +MG =AM +λMN =AM +λAN -AM=1-λ AM +λAN =x 1-λ AB +yλAC,又因为G 是△ABC 的重心,故AG =13AB +13AC,所以有x 1-λ =13yλ=13⇒1x +1y =31-λ +3λ=3.故选:A2(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】依题意AB +AC -3AG =AG +GB +AG +GC -3AG =GA +GB +GC =0,则G 是△ABC 重心,即充分性成立;若G 是△ABC 重心时,GA +GB +GC =0,可得GA +GB +GC =AG +GB +AG +GC -3AG =AB +AC -3AG =0所以AB +AC -3AG =0 ,必要性成立,故选:C .3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心 B.外心C.垂心D.重心【答案】D【解析】记E 为BC 的中点,连接AE ,作AD ⊥BC ,如图,则AB sin B =AC sin C =AD ,AB +AC =12AE ,因为OP =OA +λAB AB sin B +ACAC sin C,所以AP =OP -OA =λAB AB sin B +ACACsin C=λ|AD |(AB +AC )=λ2|AD |AE,所以点P 在三角形的中线AE 上,则动点P 的轨迹一定经过△ABC 的重心.故选:D .题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA=11+OF OA =11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-322(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-3723(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB +nBCm ,n ∈R ,则m +n =【答案】56【解析】取BC 中点D ,连接AD ,作OE ⊥AB ,垂足分别为E ,∵AB =AC ,∴AD 为∠BAC 的角平分线,∴O ∈AD ;又AB =5,BD =12BC =4,∴sin ∠BAD =45,则tan ∠BAD =43;∵△ABC 周长L =5+5+8=18,面积S =12BC ⋅AD =12×8×52-42=12,∴△ABC 内切圆半径r =OE =2S L =2418=43,∴AE =rtan ∠BAD=1,又OA =12+r 2=53,∴AO =59AD ,∵AD =AB +BD =AB +12BC ,∴AO =59AD =59AB +518BC ,∴m =59,n =518,∴m +n =59+518=56.故答案为:56.题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.【答案】5【解析】如图所示,取AB 的中点E ,连接OE ,因为O 为△ABC 的外心,则OE ⊥AB ,所以AB ⋅AO =|AB ||AO |cos <AB ,AO >=|AB |×12|AB |=12×42=8,同理:AC ⋅AO =12|AC |2=12×22=2,所以AM ⋅AO =12(AB +AC )⋅AO =12AB ⋅AO +12AC ⋅AO =12×8+12×2=5.故答案为:5.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)【答案】外心【解析】如图所示:D 为AB 中点,连接CD ,CA CA cos A +CB CB cos B⋅BA =CA ⋅BA CA cos A +CB ⋅BACB cos B=BA -BA =0,OP -OA +OB 2=OP -OD =DP ,故DP ⋅BA =λCA CA cos A +CB CBcos B ⋅BA =0,即DP ⊥BA ,故P 的轨迹一定经过△ABC 的外心.故答案为:外心3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1 B.2C.1118D.12【答案】C【解析】由题意可知,O 为△ABC 的外心,设外接圆半径为r ,在圆O 中,过O 作OD ⊥AB ,OE ⊥AC ,垂足分别为D ,E ,则D ,E 分别为AB ,AC 的中点,因为AO =λAB +μAC ,两边乘以AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ,AO ,AB 的夹角为∠OAD ,而cos ∠OAD =AD AO=62r =3r ,则r ×6×3r =36λ+μ×4×6×12,得6λ+2μ=3①,同理AO =λAB +μAC 两边乘AC ,即AO ⋅AC =λAB ⋅AC +μAC 2,cos ∠OAC =2r,则r ×4×2r =λ×6×4×12+16μ,得3λ+4μ=2②,①②联立解得λ=49,μ=16,所以λ+μ=49+16=1118.故选:C .题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.【答案】 3025【解析】如图,AH 是△ABC 的BC 边上的高,则AH ⋅BC =0;设AD =λAH ,因为∠ABC =45°,面积为15,所以12BABC sin45°=15,即BA BC =302;BD ⋅BC =BA +AD ⋅BC =BA +λAH ⋅BC =BA ⋅BC +λAH ⋅BC =BA BCcos45°=30.由第一空可知BD ⋅BC =30,所以BD ⋅BC =12BA+13BC ⋅BC =12BA ⋅BC +13BC 2=30;所以BC 2=45,由BA BC =302可得BA =210,即BA 2=40;因为BD =12BA +13BC ,所以BD 2=14BA 2+19BC 2+13BA ⋅BC =14BA 2+19BC2+10=10+5+10=25;故答案为:30 25.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S△AOB S △AOC=,cos ∠BOC =.【答案】 53-217/-1721【解析】因为2OA +3OB +5OC =0,所以2OA +OC =-3OB +OC ,设M 为AC 的中点,N 为BC 的中点,则OA +OC =2OM ,OB +OC =2ON,所以2OM =-3ON ,所以MN 为△ABC 的中位线,且OM ON=32,所以O 为CD 的中点,所以S △AOC =S △AOD ,又OM AD =12,ON DB =12,所以AD DB =32,所以S △AOD S △BOD =32,所以S △AOB S △AOC=53,同理可得S △BOC S △AOC=23,所以S △AOB S △ABC =12,S △AOC S △ABC =310,又O 为△ABC 的垂心,OD =OC ,设OD =x ,OB =y ,则OC =x ,OE =3y7,所以cos ∠BOD =x y =cos ∠COE =3y7x ,即x 2=37y 2,所以x 2y 2=37,则x y =217所以cos ∠BOD =217,所以cos ∠BOC =cos π-∠BOD =-217,故答案为:53;-2173(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【答案】63/136【解析】因为AH =13AB +25AC,所以BH =BA +AH =-23AB+25AC ,同理CH =CA +AH =13AB -35AC ,由H 为△ABC 的垂心,得BH ⋅AC =0,即-23AB+ 25AC ⋅AC =0,可知25AC 2=23ACAB cos ∠BAC ,即cos ∠BAC =3AC5AB ,同理有CH ⋅AB =0,即13AB - 35AC ⋅AB =0,可知13AB 2=35ACAB cos ∠BAC ,即cos ∠BAC =5AB 9AC,所以cos 2∠BAC =13,sin 2∠BAC =1-cos 2∠BAC =1-13=23,又∠BAC ∈0,π ,所以sin ∠BAC =63.故答案为:63.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1 B.2C.3D.4【答案】B【解析】直角三角形ABC 中,A =90°,D 为BC 中点,△ABC 的重心为G 1,如图所示,AG 1 =23AD =23×12AB +AC =13AB+13AC ,则λ1=μ1=13,λ1+μ1=23;直角三角形ABC 中,A =90°,△ABC 的外心为G 2,则G 2为BC 中点,如图所示,AG 2 =12AB +AC ,则λ2=μ2=12,λ2+μ2=1;直角三角形ABC 中,A =90°,△ABC 的垂心为G 3,则G 3与A 点重合,AG 3 =0,则λ3=μ3=0,λ3+μ3=0;直角三角形ABC 中,A =90°,△ABC 的内心为G 4,则点G 4是三角形内角平分线交点,直角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设内切圆半径为r ,则S △ABC =12bc =12a +b +c r ,得r =bca +b +c,AG 4 =bc a +b +c ⋅AB AB +bc a +b +c ⋅AC AC =bc a +b +c ⋅AB c +bc a +b +c ⋅ACb =b a +b +cAB +ca +b +cAC ,λ=b a +b +c ,μ=c a +b +c ,λ+μ=b a +b +c +c a +b +c =b +ca +b +c <1.λ2+μ2=1最大,所以当λi +μi 取最大值时,i =2.故选:B .2(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心【答案】B【解析】OP =OA +λAB AB +AC AC ,变形得到AP =λAB AB +ACAC,其中AB AB ,ACAC 分别代表AB ,AC 方向上的单位向量,故AB AB +ACAC所在直线一定为∠BAC 的平分线,故直线AP 一定经过△ABC 的内心,HA = HB = HC,即点H 到△ABC 三个顶点相等,故点H 是△ABC 的外心,因为NA +NB +NC =0 ,所以NA +NB =-NC ,如图,取AB 的中点D ,连接ND ,则NA +NB =2ND ,所以NC =-2ND ,故C ,N ,D 三点共线,且CN =2ND ,所以N 是△ABC 的重心,由QA ·QB =QB ·QC 可得QA ·QB -QB ·QC =QA -QC ·QB =CA ·QB=0,故CA ⊥QB ,同理可得CB ⊥QA ,BA ⊥QC ,故Q 为△ABC 三条高的交点,Q 为△ABC 的垂心.故选:B 二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA=0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心【答案】AD【解析】A .由于OA =-OB +OC =-2OD ,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),故O 为△ABC 的重心;选项A 正确.B .向量AC AC ,ABAB,分别表示在边AC 和AB 上取单位向量AC 和AB ,它们的差是向量B C,当OA ⋅AC AC-AB AB =0,即OA ⊥B C 时,则点O 在∠BAC 的平分线上,同理由OB ⋅BC BC -BABA =0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;选项B 错误.C .OA +OB 是以OA ,OB 为边的平行四边形的一条对角线的长,而AB 是该平行四边形的另一条对角线的长,OA +OB ⋅AB =0表示这个平行四边形是菱形,即OA =OB ,同理有OB =OC,故O 为△ABC 的外心.选项C 错误.对于D ,设M 是BC 的中点,AC 2-AB 2=AC +AB ⋅AC -AB =2AO ⋅BC =2AM ⋅BC,即AO -AM ⋅BC =MO ⋅BC =0,所以MO ⊥BC ,所以动点O 在线段BC 的中垂线上,故动点O 的轨迹必通过△ABC 的外心.选项D 正确.故选:AD .4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的23【答案】ACD【解析】对于A 中,根据向量的平行四边形法则,若AM =12AB +12AC =12(AB +AC),则点M 是边BC 的中点,所以A 正确;对于B 中,由AM =2AB -AC ,则AM -AB =AB -AC ,即BM =CB,则B 为CM 的中点,所以B 错误;对于C 中,如图所示,由AM =-BM -CM ,可得AM +BM +CM =0,取BC 的中点D ,可得MA =-2MD,则点M 为△ABC 的重心,所以C 正确;对于D 中,由AM =xAB +yAC ,且x +y =13,所以3AM =3xAB +3yAC且3x +3y =1,设AN =3AM ,可得AN =3xAB +3yAC ,且3x +3y =1,所以N ,B ,C 三点共线,因为AN =3AM ,所以M 为AN 的一个三等分点(靠近A ),如图所示,所以S △MBC =23S △ABC ,即则△MBC 的面积是△ABC 面积的23,所以D 正确.故选:ACD .5(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM【答案】ABD【解析】A . ∵OG =12GH ,∴OG =13OH ,∵G 为重心,所以GA +GB +GC =0,所以OA -OG +OB -OG +OC -OG =0 ,所以OG =13(OA +OB +OC ),∴13OH=13(OA +OB +OC ),所以OH =OA +OB +OC ,所以该选项正确.B .S △BCG =12×BC ×h 1,S △ABC =12×BC ×h 2,由于G 是重心,所以h 1=13h 2,所以S △BCG =13S △ABC ,同理S △ABG =13S △ABC ,S △ACG =13S △ABC ,所以S △ABG =S △BCG =S △ACG ,所以该选项正确.C .AH =AG +GH =2GM +2OG =2(OG +GM )=2OM,所以该选项错误.D .OH =3OG ,∴MG =23MO +13MH ,∴GM =23OM +13HM ,所以AB +AC =2AM =6GM =623OM +13HM =4OM +2HM ,所以该选项正确.故选:ABD6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =0【答案】ACD【解析】对于A ,因为D 为△OAB 中AB 的中点,所以OA +OB =2OD ,所以A 正确;对于B ,因为△ABC 为正三角形,所以OA ⋅OB =OA 2cos120°=-12OA 2,所以OA ⋅OB +OB ⋅OC +OC ⋅OA =-32OA2,所以B 不正确;对于C ,因为AO ⋅AB -AC =AO ⋅CB=0,所以OA ⊥BC ,所以C 正确;对于D ,因为O 为△ABC 的重心,D ,E ,F 分别为边AB ,BC ,CA 的中点,所以CO =2OD ,即2OD +OC =0 ,所以OD +OE +OF =12OA +OB +12OB +OC +12OA+OC=OA +OB +OC =2OD +OC =0 ,所以D 正确.故选:ACD .7(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心【答案】BD【解析】对于A ,依题意如图,但AB ≠CD,故选项A 错误;对于B ,设BC 的中点为D ,由于OA +OB +OC =0 ,即OA =-(OB +OC ),所以OA =-2OD ,所以O 点是△ABC 的重心,故选项B 正确;对于C ,向量平移后不改变方向和模,为相等向量,故选项C 错误;对于D ,根据向量加法的几何意义知,以CA |CA |和CB|CB |为邻边的平行四边形为菱形,点P 在该菱形的对角线上,由菱形的对角线平分一组对角,故P 点的轨迹经过△ABC 的内心,故选项D 正确.故选:BD8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心【答案】ACD【解析】对A :如图所示,OA ⋅OB =OB ⋅OC =OC ⋅OA,则(OA -OC )⋅OB =CA ⋅OB =0,(OB -OC )⋅OA =CB ⋅OA =0,(OB -OA )⋅OC =AB ⋅OC =0,∴OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,∴O 为△ABC 的垂心,A 正确;对B :如图,取AB 的中点D ,连接OD ,由OA +OB +OC =0 ,则OA +OB =2OD =-OC ,∴O ,D ,C 三点共线,又CD 是△ABC 的中线,且|OC |=2|OD |,∴O 为△ABC 的重心,B 错误;对C :如图:D ,E 分别是AC ,BC 的中点,由2OA +OB +3OC =0 ,∴2(OA +OC )+(OB +OC )=0 ,∴4OD +2OE =0 ,∴OE =-2OD ,∴OD =13DE =16AB ,OE =23DE =13AB ,则S △AOC =16S △ABC ,S △BOC =13S △ABC ,S △AOB =12S △ABC ,则S △AOB :S △BOC :S △AOC =3:2:1,C 正确;对D :如图,∵AO ⋅AB |AB |=AO ⋅AC|AC |,∴|AO ||AB |cos ∠BAO |AB |=|AO ||AC |cos ∠CAO |AC|,∴cos ∠BAO =cos ∠CAO ,∴∠BAO =∠CAO ,即AO 为∠BAC 的平分线,同理由CO ⋅CA |CA |=CO ⋅CB|CB|得∠ACO =∠BCO ,即CO 为∠ACB 的平分线,∴O 为△ABC 的内心,D 正确.故选:ACD 三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.【答案】56【解析】连接AO ,延长AO 交BC 于D ,由题意得D 为BC 的中点,OB ⊥OC ,所以OD =BD =CD =12a ,AD =32a .因为∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =94a 2+14a 2-c 22×32a ×12a +94a 2+14a 2-b 22×32a ×12a =0,得b 2+c 2=5a 2.故cos A =b 2+c 2-a 22bc=b 2+c 2-15b 2-15c 22bc=25b c +c b=25×34+43 =56.故答案为:56.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.【答案】①②③④⑤【解析】对于①,因为动点P 满足OP =OA +PB +PC,∴AP =PB +PC ,则点P 是△ABC 的重心,故①正确;对于②,因为动点P 满足OP =OA+λAB |AB |+AC |AC |(λ>0),∴AP =λAB |AB |+AC |AC |(λ>0),又AB |AB |+AC |AC |在∠BAC 的平分线上,∴AP与∠BAC 的平分线所在向量共线,所以△ABC 的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),∴AP =λAB |AB |sin B +AC|AC|sin C,(λ>0),过点A 作AD ⊥BC ,垂足为D ,则|AB |sin B =|AC|sin C =AD ,AP =λAD(AB +AC ),向量AB +AC 与BC 边的中线共线,因此△ABC 的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足OP =OA +λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP =λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP ⋅BC =λAB |AB |cos B +AC|AC|cos C⋅BC =λ(|BC |-|BC |)=0,∴AP ⊥BC ,所以△ABC 的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),设OB +OC2=OE,则EP =λAB |AB |cos B +AC|AC|cos C,由④知AB |AB |cos B +AC|AC|cos C⋅BC =0,∴EP ⋅BC=0,∴EP ⊥BC ,∴P 点的轨迹为过E 的BC 的垂线,即BC 的中垂线;所以△ABC 的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.故答案为:①②③④⑤.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC外接圆的半径为2,且三条圆弧沿△ABC三边翻折后交于点P.若AB=3,则sin∠PAC=;若AC:AB:BC=6:5: 4,则PA+PB+PC的值为.【答案】74234/5.75【解析】设外接圆半径为R,则R=2,由正弦定理,可知ABsin∠ACB=3sin∠ACB=2R=4,即sin∠ACB=34,由于∠ACB是锐角,故cos∠ACB=74,又由题意可知P为三角形ABC的垂心,即AP⊥BC,故∠PAC=π2-∠ACB,所以sin∠PAC=cos∠ACB=7 4;设∠CAB=θ,∠CBA=α,∠ACB=β,则∠PAC=π2-β,∠PBA=π2-θ,∠PAB=π2-α,由于AC:AB:BC=6:5:4,不妨假设AC=6,AB=5,BC=4,由余弦定理知cosθ=62+52-422×6×5=34,cosα=42+52-622×4×5=18,cosβ=42+62-522×4×6=916,设AD,CE,BF为三角形的三条高,由于∠ECB+∠EBC=π2,∠PCD+∠CPD=π2,故∠EBC=∠CPD ,则得∠APC=π-∠CPD=π-∠EBC=π-∠ABC,所以PCsinπ2-β=PAsinπ2-θ=ACsin∠APC=ACsin∠ABC=2R=4,同理可得PBsinπ2-α=ABsin∠APB=ABsin∠ACB=2R=4,所以PA+PB+PC=4cosθ+cosα+cosβ=434+18+916=234,故答案为:74;23412(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)【答案】①【解析】设AB 中点D ,对于①若P 为△ABC 的内心,所以P 在∠BAC 的角平分线上,因为AB |AB |为AB 方向上的单位向量,AC|AC |为AC 方向上的单位向量,令AE =AB |AB |+AC|AC |,所以AE 在∠BAC 的角平分线上,即AE 与AP共线,所以存在实数λ使AP =λAE ,即AP =λAB |AB |+AC|AC |,故①正确;对于②,若PA +PB +PC =0,则2PD +PC =0 ,所以P 在中线CD 上且CP =2PD ,即P 为三角形重心,故②错误;对于③,PA =PB =PC,所以P 为△ABC 的外心,故③错误;若AP =13AB +23AC ,则13(AB -AP )+23(AC -AP )=0 ,即PB +2PC =0 ,所以P 为BC 上靠近C 的三等分点,所以BP =2PC ,故△ABC 与△ABP 的面积比为3:2,故④错误.故答案为:①13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.【答案】 49π3/493π;372/327.【解析】由余弦定理得BC 2=25+9-2×5×3×-12=49,∴BC =7.设三角形的外接圆的半径为R , 所以732=2R ,∴R =733,所以△ABC 的外接圆的面积为π×7332=493π.由余弦定理得cos ∠ACB =49+9-252×7×3=1114=1-2sin 2∠ACD ,所以sin ∠ACD =2114,cos ∠ACD =5714.所以sin ∠ADC =sin (∠A +∠ACD )=32×5714-12×2114=217.由正弦定理得3217=CD 32,∴CD =327.故答案为:49π3;372.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心【答案】④【解析】设BC 的中点为D ,∵OP =OB +OC 2+λAB AB cos B +AC AC cos C,∴OP =OD +λAB AB cos B +ACAC cos C ,即DP =λAB AB cos B +ACAC cos C,两端同时点乘BC ,∵DP ⋅BC =λAB ⋅BC AB cos B +AC ⋅BCAC cos C =λAB ⋅BC cos π-B AB cos B +AC ⋅BC cos C ACcos C=λ-BC +BC=0,所以DP ⊥BC ,所以点P 在BC 的垂直平分线上,即P 经过△ABC 的外心故答案为:④.15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】23【解析】如图,延长AO 交BC 于D ,设BC ,AC 分别与圆切于点E ,F ,则OE =OF ,OE ≤OD ,设AD =λAO ,则AD =λxAB +λyAC ,因为B ,D ,C 三点共线,所以λx +λy =1,x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE AO =11+OF AO =11+sin A 2=11+sin π6=23,当且仅当D ,E 重合时等号成立.所以x +y 的最大值为23.故答案为:23.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).【答案】重心【解析】根据已知条件判断P ,C ,D 三点共线,结合重心的定义,判断出P 的轨迹过三角形ABC 的重心.∵点P 满足OP =132-2λ OD +1+2λ OC λ∈R ,且132-2λ +131+2λ =1,∴P ,C ,D 三点共线.又D 是AB 的中点,∴CD 是边AB 上的中线,∴点P 的轨迹一定过ΔABC 的重心.故答案为:重心17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.【答案】16【解析】因为-OA =37OB -OA +17OC-OA ,即OC =-3OA +OB ,取AB 中点D ,连接OD ,则OA +OB =2OD ,故OC =-6OD,故点C ,O ,D 共线,又∠ACO =∠BCO ,故AC =BC ,且CD ⊥AB ,所以cos ∠BAC =DA CA=OD OC =16.故答案为:16.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.【答案】7【解析】如图,∵AB =6,BC =8,B =2π3,且BO =xBA +yBC ,∴BO ⋅BA =|BO |⋅|BA |⋅cos ∠ABO =12|BA |2=18,BO ⋅BC =|BO ||BC |⋅cos ∠CBO =12|BC |2=32,BA ⋅BC =6×8×-12 =-24,∴BO ⋅BA =xBA 2+yBA ⋅BC BO ⋅BC =xBA ⋅BC +yBC2 ,∴18=36x -24y 32=-24x +64y ,整理得,6x -4y =38y -3x =4 ,∴(6x -4y )+(8y -3x )=3x +4y =7.故答案为:719(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO =mAB +nAC ,则实数m =.【答案】45/0.8【解析】由BC =AC -AB 可得BC 2=AC -AB 2=AC 2+AB 2-2AB ⋅AC =4+16-2AB ⋅AC =24,所以,AB ⋅AC =-2,同理可得BA ⋅BC =6,CA ⋅CB =18,故AB AC cos A <0即cos A <0,而A ∈0,π ,故A 为钝角.如下图所示:取线段AC 的中点E ,连接OE ,由垂径定理可得OE ⊥AC ,则AO ⋅AC =AE +EO ⋅AC =AE ⋅AC +EO ⋅AC =12AC 2,同理可得AO ⋅AB =12AB 2,因为AO =mAB +nAC ,则AO ⋅AC =mAB +nAC ⋅AC =mAB ⋅AC +nAC 2=-2m +16n =12AC 2=8;AO ⋅AB =mAB +AC ⋅AB =mAB 2+nAB ⋅AC =12AB 2,即4m -2n =2,故m =45故答案为:45.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.【答案】1319【解析】BC 2=AB 2+AC 2-2AB ⋅AC cos60°=4+25-10=19,故BC =19,设△ABC 的外接圆半径为R ,则R =BC 2sin60°=573,△APB 中,cos ∠APB =R 2+R 2-42R 2=1-2R 2=1319.故答案为:1319.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC =.【答案】8【解析】如图所示,因为O 为△ABC 的外心,取AB 中点E ,则OE ⊥AB ,则AO ⋅AB =OA AB cos ∠OAB =AB OA cos ∠OAC =AB ⋅12AB =12c 2=252,同理AO ⋅AC =12b 2=92,所以OA ⋅BC =OA ⋅AC -AB =-AO ⋅AC -AB =-AO ⋅AC +AO ⋅AB =-92+252=8.故答案为:822(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.【答案】34【解析】∵O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,∴AO ⋅AC -AB =4BO ⋅BC -BA ,∴AO ⋅AC -AO ⋅AB =4BO ⋅BC -4BO ⋅BA ,∴12AC 2-12AB 2=4×12BC 2-4×12BA 2,即b 2-c 2=4a 2-4c 2,即b 2+3c 2=4a 2,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+3c 242bc=3b 2+c 28bc ≥23bc 8bc=34,当且仅当3b =c 时取等号,∴cos A 的最小值为34.故答案为:34.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0 ,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.【答案】33/133【解析】如图,因为O 是△ABC 的外心,所以∠BOC =2∠BAC =π2,∠AOC =2∠ABC =2π3,∠BOA =2∠BCA =5π6,由结论可得S △BOC ⋅OA +S △AOC ⋅OB +S △BOA ⋅OC =0 ,即12R 2sin ∠BOC ⋅OA +12R 2sin ∠AOC ⋅OB +12R 2sin ∠BOA ⋅OC =0 ,可得sin π2⋅OA +sin 2π3⋅OB +sin 5π6⋅OC =0 ,即OA +32OB +12OC =0 .因为AO =λAB +μAC =λ(OB -OA )+μ(OC -OA ),所以(1-λ-μ)OA +λOB +μOC =0 ,所以λ1-λ-μ=32μ1-λ-μ=12 ,即λ+μ1-λ-μ=3+12,即1-(λ+μ)λ+μ=3-1,解得λ+μ=33.故答案为:33.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC 的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC 且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1AC cos C +12AC ,则动点P 的轨迹经过△ABC 的外心【答案】①③④【解析】对于①,若P 为△ABC 的垂心,则AB ⋅PC =0,又AB ⋅AC =2,所以AP ⋅AB =AB ⋅AC +PC =AB ⋅AC +AB ⋅PC =2+0=2,①正确;对于②,取CB 的中点O ,连接OA ,以O 为坐标原点,BC ,OA 所在直线分别为x 轴,y 轴,建立空间直角坐标系,则B -1,0 ,C 1,0 ,A 0,3 ,设P m ,n ,则PA ⋅PB +PC =-m ,3-n ⋅-2m ,-2n =2m 2+2n 2-23n =2m 2+2n -32 2-32,故当m =0,n =32时,PA ⋅PB +PC =2m 2+2n -32 2-32取得最小值,最小值为-32,②错误;对于③,有题意得AP =xAB +yAC =1-2y AB +yAC ,则AP -AB =y -2AB +AC ,即BP =y BA +BC ,如图,设D 为AC 的中点,则BA +BC =2BD ,故BP =2yBD ,故B ,P ,D 三点共线,因为P 是△ABC 的外心,所以BD 垂直平分AC ,所以AB =BC ,③正确;对于④,AP =AB AB cos B +AC AC cos C +12AB +AC ,AP ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C +12AB +AC ⋅BC=AB ⋅BC cos π-B AB cos B +AC ⋅BC cos C AC cos C +12AB +AC ⋅BC =-BC +BC +12AB +AC ⋅BC =12AB +AC ⋅BC ,所以2AP ⋅BC =AB +AC ⋅BC ,如图,设E 是BC 的中点,则AB +AC =2AE ,故2AP ⋅BC =2AE ⋅BC ,即AP -AE ⋅BC =EP ⋅BC =0,故则动点P 的轨迹经过△ABC 的外心,④正确.故答案为:①③④25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )【答案】 重心内心【解析】空1:由已知,AP =λ(AB +AC ),根据平行四边形法则,设△ABC 中BC 边的中点为D ,知AB +AC =2AD ,∴AP =2λAD ,∴AP ⎳AD ,则A ,P ,D 三点共线,∴点P 的轨迹必过△ABC 的重心;空2:由已知,AP =λAB |AB |+AC |AC |,而AB |AB |表示与AB 同向的单位向量,AC |AC |表示与AC 同向的单位向量,∴AP 在∠BAC 的角平分线上,∴点P 的轨迹一定通过△ABC 的内心.故答案为:重心;内心.四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC .(1)求GA +GB +GC ;(2)求证:1p +1q=1.(3)求S 1S 2的取值范围.【解析】(1)延长AG 交BC 于D ,则D 为BC 中点,∴GB +GC =2GD ,∵G 是重心,∴GA =-2GD ,∴GA +GB +GC =-2GD +2GD =0 ;(2)设AB =a ,AC =b ,∵AP =pPB ,∴AP =p 1+p a ,∴a =1+p p AP ∵AQ =qQC ,∴AQ =q 1+q b ,∴b =1+q q AQ ∵AG =23AD =23⋅12(AB +AC )=13a +b =13⋅1+p p AP +13⋅1+q qAQ 且P ,G ,Q 三点共线,∴13⋅1+p p +13⋅1+q q =1,∴1p +1 +1q+1 =3即1p +1q =1;(3)由(2)AP =p 1+p AB ,AQ =q 1+q AC ,∴S 1S2=12AP ⋅AQ ⋅sin ∠BAC 12AB ⋅AC ⋅sin ∠BAC =AP ⋅AQ AB ⋅AC =p 1+p ⋅q 1+q ,∵1 p +1q=1,q=pp-1,可知p>1,∴S1S2=p1+p⋅q1+q=p1+p⋅p2p-1=p22p2+p-1=1-1p2+1p+2=1-1p-122+94,∵p>1,∴0<1p<1,则当1p=12时,S1S2取得最小值49,当1p=1时,S1S2取得最大值12,∵1 p ≠1,则S1S2的取值范围为49,12.。
三角形的四心问题 (1)
解2:作AC边上的中点E,
解3:如图,延长OB至D,使OB=BD;延长OC至E,使CE=2OC.则: 2OB=OD, 3OC=OE.
三、内心与向量的结合
三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。 的内心一般用字母表示,它具有如下性质:
1.内心到三角形三边等距,且顶点与内心的连线平分顶角。 2.三角形的面积=三角形的周长内切圆的半径. 3.; 三角形的周长的一半。 4.,
例5.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满
练习1:的外接圆的圆心为O,若,则是的( ) A.外心 B.内心 C.重心 D.垂心
提示:D. 取BC中点D,连接OD,可得,, 可得 , ,同理…… 练习2:若O、H分别是△ABC的外心和垂心.
求证: .
证明: 若△ABC的垂心为H,外心为O,如图. 连BO并延长交外接圆于D,连结AD,CD. ∴,.又垂心为H,,, ∴AH∥CD,CH∥AD,∴四边形AHCD为平行四边形, ∴,故.
变式:若H为△ABC所在平面内一点,且 则点H是△ABC的垂心 证明:
B C H A
即 即 同理,,故H是△ABC的垂心
例4:是平面上一定点,是平面上不共线的三个点,动点满足, ,则点
的轨迹一定通过的( )A.外心 B.内心 C.重心 D.垂 心
解:如图所示AD垂直BC,BE垂直AC, D、E是垂足. = ==+=0 ∴点的轨迹一定通过的垂心,即选.
例1:是的重心.
证明 :如图 三点共线,且分为2:1,是的重心.
例2:P是△ABC所在平面内任一点.G是△ABC的重心.
证明:
∵G是△ABC的重心 ∴=0=0,即 由此可得.(反之亦然)
三角形四心+四心识别练习
三角形“四心”的相关向量结论【考点】重心,垂心,内心,外心常考题型 【四心的概念介绍】(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
【重心】:若O 为△ABC 重心 (1)1:1:1::=∆∆∆AOB COA BOC S S S ; (2)0OA OB OC ++=;(3)动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心(4)动点P 满足 sin sin AB AC OP OA AB B AC C λ⎛⎫ ⎪=+ ⎪⎝⎭+,0λ∈+∞(,),则动点P 的轨迹一定通过△ABC 的重心(5)重心坐标为:33A B C A B Cx x x y y y ++++⎛⎫⎪⎝⎭,. OB【垂心】:若O 为△ABC 垂心 (1)OA OB OB OC OC OA ⋅=⋅=⋅(2)222222OA BC OB CA OC AB +=+=+(3)动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心(4)::tan :tan :tan BOC COA AOBS S S A B C =△△△(5)0tan tan tan =++•••OC C OB B OA A .BB【内心】:若O 为△ABC 内心 (1)::::BOC COA AOBS S S a b c =△△△(2)•••0OA OB OC a b c ++=(3)动点P 满足||||AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭,[0,),λ∈+∞则P 的轨迹一定通过△ABC 的内心(4)0||||||||||AC AB BC BA CA CB OA OB OC AC AB BC CA CB BA ⎛⎫⎛⎫⎛⎫ ⎪⋅-=⋅-=⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭BB【外心】:若O 为△ABC 外心 (1)222OA OB OC ==;(2)动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的外心;(3)若()()()0OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=,则O 是ABC △的外心;(4)::sin 2:sin 2:sin 2BOC COA AOBS S S A B C =△△△;(5)02sin 2sin 2sin =++•••OC C OB BOA A .BB【练习】——四心的识别1.已知点O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足||||AB AC OP OA AB AC λ⎛⎫=++ ⎪⎝⎭,[0,),λ∈+∞则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心2.若O 在△ABC 所在的平面内,a ,b ,c 是△ABC 的三边,满足以下条件:0a OA b OB c OC ⋅+⋅+⋅=,则O 是△ABC 的( )A .垂心B .重心C .内心D .外心3.若O 在△ABC 所在的平面内,且满足以下条件:0||||||||||AC AB BC BA CA CB OA OB OC AC AB BC CA CB BA ⎛⎫⎛⎫⎛⎫ ⎪⋅-=⋅-=⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则O 是△ABC 的( ) A .垂心 B .重心 C .内心 D .外心4.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足: cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( ) A .重心 B .外心 C .内心 D .垂心5.P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的( ) A .重心B .外心C .内心D .垂心6.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+,则点H 是ABC△的( ) A .重心B .外心C .内心D .垂心7.已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的( ). A .重心 B .外心C .内心D .垂心8.已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的( ). A .重心 B .外心 C .内心 D .垂心9.O 是△ABC 所在平面内一点,动点P 满足 sin sin AB AC OP OA AB B AC C λ⎛⎫⎪=+ ⎪⎝⎭+,0λ∈+∞(,),则动点P 的轨迹一定通过△ABC 的( ) A .内心 B .重心C .外心D .垂心10.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的( ). A .重心B .外心C .内心D .垂心11.已知O 是平面上的一定点,AB C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC△的( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的四心习题及解析
一、单选题
1.( )△ABC 中,若∠A :∠B :∠C =1:2:3,G 为△ABC 的重心,则△GAB 面积:△GBC 面
积:△GAC 面积= (A) 1:2:3(B) 1:3:2 (C) 2:1:3(D) 1:1:1。
答案:(D)
解析:∵G 为△ABC 的重心 ∴△GAB 面积:△GBC 面积:△GAC 面积=1:1:1
2.( )如图,△ABC 中,AB =AC ,两腰上的中线相交与G ,若∠BGC =90°,且BC =
22,则BE 的长为多少 (A) 2 (B) 22(C) 3 (D) 4。
答案:(C)
解析:∵AB =AC ,且 G 为△ABC 的 重心 ∴BE =CD ∴BG =CG 又∵∠BGC =90°,
BC =22
∴BG =
2
BC =
2
22=2 ∴BE =
BG 23
=2
3×2=3
3.( )如图,等腰△ABC 中,̅AB =̅AC =13,̅BD =̅CD =5,O 为△ABC 的外心,则 ̅OD = (A
)
24117(B)24119(C)24121(D)24
123。
答案:(B)
解析:∵△ABC 为等腰三角形,∴̅AD ⊥̅BC , AD =
2
2513-=12,连接 ̅OB ,令 ̅OD =x , 则̅OB =̅OA =̅AD -̅OD =
12-x
(12-x )2=x 2+52
x =
24
119
故选(B)
4.( )如图,D 、E 分別为̅AB 、̅AC 中点,̅BE 、̅CD 交于 F ,若斜线部分的面积为 7 ,则
△ACD 的面积为多少 (A) 21(B) 24(C) 28(D) 35。
答案:(A)
解析:连接 ̅BC ,则△BDF =
61△ABC 而△ACD =2
1
△ABC △ACD =3×7=21 平方公分 故选(A) 5.( )直角三角形 ABC 中,∠A =90°,O 为外心,G 为重心,若̅AC =6,̅AB =8,则 ̅OG
= (A)
32(B)34(C)35(D)3
7。
答案:(C)
解析:̅BC =
2286+=10 ̅OC =̅OA =5 ̅OG =315 =3
5
故选(C)
6.( )如图,△ABC 中,̅AB =8,̅AC =6,̅BC =10,M 为 ̅BC 中点,则 ̅AM =
(A)
25(B)35(C)3
10
(D) 5。
答案:(D)
解析:△ABC 直角三角形 ∴M 为外心,̅BM =̅MC =̅AM =
2
10
=5 故选(D) 7.( )由尺规作图得知正三角形的外心、內心、重心均在同一点,请问正三角形外接圆
的面积是內接圆面积的几倍 (A) 2(B)3(C)
2
3
(D) 4。
答案:(D)
解析:外心、內心、重心皆在 O 点
ππ
2
2
OD OA =1
22=4 故选(D)
8.( )如图,△ABC 中,G 为重心,在AD 上取一点 G',使得̅GD =̅G 'D =4,若 ̅CG =6,
̅BG =10,則△ABC 的面积为何 (A) 24(B) 36(C) 48(D) 72。
答案:(D)
解析:△GG'B =2
1
86⨯
⨯=24 △ABC =24×3=72 故选(D) 9.( )如图,G 为為△ABC 的重心,現分別从 A 及 G 作垂线交 ̅BC 于於 A'及 G',则 ̅AA ':
̅GG '= (A) 2:1(B) 3:1(C) 4:1(D)
2
3
:1。
答案:(B)
解析:△BGC =
3
1
△ABC ∴̅GG ':̅AA '=3:1 故选(B)
二:填空题
1.如图,G 是直角△ABC 的重心,∠ABC =90°,且AB =12,BC =8,则△ABG 的面积为
【 】。
答案:16
解析:△ABC 面积=
2
1×8×12=48 ∵G 为△ABC 之重心 ∴△ABG 面积=31
△ABC
面积=
3
1
×48=16 2. G 为正△ABC 的重心,AD 为BC 之中线,BG =16,则:
(1)AC =【 】。
(2)△CDG 面积=【 】。
答案:(1)163;(2)323
解析:(1)∵G 为正△ABC 的重心,BG =16 ∴BE =
23×16=24=23×AC ∴AC =24×3
2
×33=16
3
(2)△CDG 面积=
61△ABC 面积=61×〔43×(163)2
〕=61×4
3×768=323
3.有一正三角形其內切圆的面积为 5π,則其外接圆的面积=【 】。
答案:20π
解析:∵正△的三心共点可推得外接圆面积=內切圆面积=4:1
外接圆面积=5×4=20π
4.如图,G 为重心,在AD 上取一点 G',使得 ̅GD =̅G'D =2,且 ̅CG =3,̅BG =5,则 △GG'B 是直角三角形吗答:【 】。
答案:是
解析:∵̅GD =̅GD ',̅BD =̅DC ∴四边形 BGCG'为平行四邊形 故 ̅BG '=̅CG =3
又 ̅BG =5,̅GG '=2×2=4 △GG'B 边长为 3、4、5,故为直角三角形
5.正△ABC 的边长为 10,在△ABC 內找一点 P 至三顶点等距离,則 ̅AP =【 】。
答案:
3
10
3
解析:∵正△的外心和重心同一点 ∴ ̅AP =
32×高,又 ̅AB =10 ∴高=10×23=53 故 ̅AP =3
2
×53=
3
10
3
6.如图,△PQR 中,∠Q =90°,又∠QPR =45°,已知 G 为△PQR 的重心,若 ̅OG =a ,则
△PQR 的周长=【 】。
(以 a 表示)
答案:a 26a 6+
解析:̅OG =a ,则 ̅QO =̅PO =̅OR =3a ,
̅PR =6a ̅PQ =̅QR =
2
a 6=a 23
则△PQR 周长=a 6a 23a 23++=a 26a 6+
7.如图,AB =BC ,CD =DE ,若△ABF 的面积为 18 ,则△BCE 的面积为【 】。
答案:54
解析:连接AE ∵AB =BC ,CD =DE ∴F 为△AEC 的重心 ∴△BCE 面积=3△ABF 面积=3×18=54
8.如图,△ABC 中,D 、E 、F 为各边中点,∠A =30°,AB =8,AC =6,则阴影部分面
积为【 】。
答案:4
解析:BH =
AB 21
=21×8=4 ∴△ABC 面积=21×6×4=12 ∴斜线部分面积=31△ABC 面积=3
1×12=4
三、计算题
1.如图,△ABC 为正三角形,G 为重心,若AG =20,请问:
(1)AB =
(2)△ABC 面积为多少
答案:(1)∵AD =
AG 23
∴AD =2
3×20=30 ∵△ABC 为正三角形 ∴AD =
AB 23 ∴30=23×AB ,AB =32×30=360
×3
3=203 (2)正△ABC 面积=
43×AB 2=43×(203)2
=4
3×1200=3003 答:(1)203;(2)3003 1.如图,△ABC 中,̅AB =5,̅BC =12,̅AC =13,且 G 为重心,O 为外心,试求 ̅GO 。
答案:∵̅AB 2+̅BC 2=52+122=132=̅AC 2
∴△ABC 为直角三角形,且 ̅AC 为斜边 又 O 为外心 ∴外接圆半径 ̅OB =21̅AC =21.13=2
13
又 G 为重心 ∴̅GO =
31̅OB =31.213=6
13 2.如图,△ABC 中,G 为重心,若 ̅GA =5,̅GB =12,̅GC =13,试求△ABC 的面积。
【
答案:延长AD 至 G',使得 ̅GD =̅G 'D , 故̅G G'=̅GA =5 △GDC 与△G'DB ,
̅BD =̅CD ,̅GD =̅G 'D ,∠GDC =∠G'DB ∴△GDC △G'DB (SAS ), 故 ̅B G'=̅GC =
13
∵̅G G'2
+̅BG 2
=52
+122
=132
=̅B G'2
∴△BGG'为直角三角形 △BGG'=2
1
.12.5=30 △BGD =
21.△BGG'=2
1
.30=15 △ABC =6.△BGD =6.15=90。