红岗区二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红岗区二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.3
2.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()
A.0.1 B.0.2 C.0.3 D.0.4
3.有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是()
A.0 B.1 C.2 D.3
4.△ABC的外接圆圆心为O,半径为2,++=,且||=||,在方向上的投影为()
A.﹣3 B.﹣C.D.3
5.过抛物线y2=﹣4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=﹣6,则|AB|为()A.8 B.10 C.6 D.4
6.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)
7.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为()
A.560m3B.540m3C.520m3D.500m3
8.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β
9. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直
10.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 11.执行如图所以的程序框图,如果输入a=5,那么输出n=( )
A .2
B .3
C .4
D .5
12.已知全集U R =,{|239}x
A x =<≤,{|02}
B y y =<≤,则有( )
A .A Ø
B B .A B B =
C .()R A B ≠∅ ð
D .()R A B R = ð
二、填空题
13.在矩形ABCD 中,
=(1,﹣3),,则实数k= .
14.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
15.不等式()2
110ax a x +++≥恒成立,则实数的值是__________. 16.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
17.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅= ,
若12PF F ∆______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
18.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题: ①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;
②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势; ③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势. 其中正确命题的序号是 .
三、解答题
19.已知命题p :x 2﹣2x+a ≥0在R 上恒成立,命题q :若p 或q 为真,p 且
q 为假,求实数a 的取值范围.
20.已知函数2(x)1ax f x =
+是定义在(-1,1)上的函数, 12
()25
f =
(1)求a 的值并判断函数(x)f 的奇偶性
(2)用定义法证明函数(x)f 在(-1,1)上是增函数;
21.某实验室一天的温度(单位:
)随时间(单位;h )的变化近似满足函数关系;
(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于
,则在哪段时间实验室需要降温?
22.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
23.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.
24.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;
(2)设c n=,求{c n}的前n项和S n.
红岗区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;
故其逆否命题也为真命题;
其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题
故其否命题也为假命题
故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个
故选C
【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.
2.【答案】A
【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,
∵P(﹣3≤ξ≤﹣1)
=
∴
∴P(ξ≥1)=.
【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
3.【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.
综上可知:其中正确命题的是①③.
故选:C.
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
4.【答案】C
【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边
形OCAB是边长为2的菱形,
所以在方向上的投影为ACcos30°=2×=;
故选C.
【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.
5.【答案】A
【解析】解:由题意,p=2,故抛物线的准线方程是x=1,
∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点
∴|AB|=2﹣(x1+x2),
又x1+x2=﹣6
∴∴|AB|=2﹣(x1+x2)=8
故选A
6.【答案】B
【解析】解:∵f(x)是偶函数
∴f(﹣x)=f(x)
不等式,即
也就是xf(x)>0
①当x>0时,有f(x)>0
∵f(x)在(0,+∞)上为减函数,且f(2)=0
∴f(x)>0即f(x)>f(2),得0<x<2;
②当x<0时,有f(x)<0
∵﹣x>0,f(x)=f(﹣x)<f(2),
∴﹣x>2⇒x<﹣2
综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)
故选B
7.【答案】A
【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,
﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积
S1==2=4,
下部分矩形面积S2=24,
故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.
故选:A.
【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.
8.【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
综上D选项中的命题是错误的
故选D
9.【答案】B
【解析】解:∵=(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥,
因此l⊥α.
故选:B.
10.【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算.
11.【答案】B
【解析】解:a=5,进入循环后各参数对应值变化如下表:
p 15 20 结束 q 5 25 n 2 3 ∴结束运行的时候n=3.
故选:B .
【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.
12.【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .
二、填空题
13.【答案】 4 .
【解析】解:如图所示,
在矩形ABCD 中,=(1,﹣3),,
∴=﹣
=(k ﹣1,﹣2+3)=(k ﹣1,1),
∴
•
=1×(k ﹣1)+(﹣3)×1=0,
解得k=4. 故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
14.【答案】 [﹣1,3] .
【解析】解:∵函数y=sin 2x ﹣2sinx=(sinx ﹣1)2
﹣1,﹣1≤sinx ≤1,
∴0≤(sinx ﹣1)2≤4,∴﹣1≤(sinx ﹣1)2
﹣1≤3.
∴函数y=sin 2
x ﹣2sinx 的值域是y ∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
15.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.
16.【答案】1
231n --
【解析】
考
点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.
17.1
【
解
析
】
18.【答案】 ①③ .
【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A →B 是一一映射,故①正确;
对②设Z 点的坐标(a ,b ),则Z 点对应复数a+bi ,a 、b ∈R ,复合一一映射的定义,故②不正确;
对③,给出对应法则y=tan x ,对于A ,B 两集合可形成f :A →B 的一一映射,则A 、B 具有相同的势;∴
③正确. 故选:①③
【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.
三、解答题
19.【答案】
【解析】解:若P 是真命题.则△=4﹣4a ≤0∴a ≥1; …(3分)
若q 为真命题,则方程x 2
+2ax+2﹣a=0有实根, ∴△=4a 2
﹣4(2﹣a )≥0,即,a ≥1或a ≤﹣2,…(6分)
依题意得,当p 真q 假时,得a ∈ϕ; …(8分)
当p 假q 真时,得a ≤﹣2.…(10分)
综上所述:a 的取值范围为a ≤﹣2.…(12分)
【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时
参数的范围,属于基础题.
20.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。
【解析】
试题分析:(1)11222
125514a f a ⎛⎫=== ⎪⎝⎭+,所以1a =,则函数()2
1x f x x =+,函数()f x 的定义域为()1,1-,关于原点对称,又()()
()22
11x x
f x f x x x --==-=-++-,所以函数()f x 为奇函数;(2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->,()()21
2122
2111x x y f x f x x x ∆=-=
-=++
()()
()()
()()()()
()()()()
22211221121221122222222
1
2
12
1
111111111x x x x x x x x x x x x x x x x x x x x +-+-+---=
=++++++,因为
()11,1x ∈-,()21,1x ∈-,
且12x x <,所以1211x x -<<,则1210x x ->,所以()()()()
2112222
1
10
11x x x x x x -->++,即0y ∆>,所以函数()f x 在
区间()1,1-上为增函数。
试题解析:(1)12225
5
f a ⎛⎫== ⎪
⎝⎭
所以=1a , 定义域为()1,1-,关于原点对称,且()()
()2
2
11x x
f x f x x
x --=
=-
=-++-,所以()f x 为奇函数; (2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->
()()21
21222111x x y f x f x x x ∆=-=-=++()()()()()()()()
22211221122222
21211111111x x x x x x x x x x x x +-+--=++++ 因为()11,1x ∈-,()21,1x ∈-,且12x x <, 所以1211x x -<<,则1210x x ->,所以()()()()
211222
2
1
10
11x x x x x x -->++,
即0y ∆>,
所以函数()f x 在区间()1,1-上为增函数。
考点:1.函数的奇偶性;2.函数的单调性。
21.【答案】
【解析】(1)∵f (t )=10﹣=10﹣2sin (
t+
),t ∈[0,24),
∴
≤
t+
<
,故当
t+
=
时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。
(2)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),
由10﹣2sin(t+)>11,求得sin(t+)<﹣,即≤t+<,
解得10<t<18,即在10时到18时,需要降温。
22.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
【考点】数列的求和;等比数列的通项公式.
【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.
【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;
(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,
则3(1++)=9,
解得,q=1或q=﹣;
故a n=3,或a n=3•(﹣)n﹣3;
(Ⅱ)证明:若a n=3,则b n=0,与题意不符;
故a2n+3=3•(﹣)2n=3•()2n,
故b n=log2=2n,
故c n==﹣,
故c1+c2+c3+…+c n=1﹣+﹣+…+﹣
=1﹣<1.
【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.23.【答案】
【解析】(本小题满分12分)
解:(Ⅰ)设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,
则,
解得,,,…
由于,故n=55.…
(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:
p=,
由题意知X服从二项分布,即:X~B(3,),…
∴P(X=k)=,k=0,1,2,3,
∴EX==,DX==.…
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
24.【答案】
【解析】解:(1)由等差数列通项公式可知:a n=2+(n﹣1)2=2n,
当n=1时,2b1=a1=2,b4=a8=16, (3)
设等比数列{b n}的公比为q,则, (4)
∴q=2, (5)
∴ (6)
(2)由(1)可知:log2b n+1=n (7)
∴ (9)
∴,
∴{c n}的前n项和S n,S n=. (12)
【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.。