八年级数学上册-用待定系数法求一次函数的解析式教案新版沪科版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2 一次函数
第3课时 用待定系数法求一次函数的解析式
教学目标
1.知识与技能
会用待定系数法求解一次函数的解析式.体会二元一次方程组的实际应用. 了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.过程与方法
经历探索求一次函数解析式的过程,感悟数学中的数与形的结合.
3.情感、态度与价值观
培养抽象的数学思维和与人合作的学习习惯,形成良好的学习态度.
重、难点与关键
1.重点:待定系数法求一次函数解析式.
2.难点:灵活运用有关知识解决相关问题.
3.关键:熟练应用二元一次方程组的代入法、•加减法解一次函数中的待定系数. 教学方法
采用“问题解决”的方法,让学生在问题解决中感受一次函数的内涵. 教学过程
一、创设情景,提出问题 1.复习:画出函数y=2x, 的图象
2引入新课:在上节课中我们学习了再给定一次函数表达式的前提下,可以说出它的图象的特征及有关性质;反之,如果给你函数的图象,你能不能求出函数的表达式呢?这就是这节课我们要研究的问题。
332
y x =-+图1 图2 y=2x 332
y x =-+
二.提出问题,形成思路
1.求下图中直线的函数表达式。
分析与思考:(1)题是经过原点的一条直线,因此是正比例函数,可设它的表达式为y=kx ,将点(1,2)代人表达式得2=k,从而确定该函数的表达式为y=2x.
(2)题设直线的表达式为y=kx+b,因为此直线经过点(0,3),(2,0),因此将这两个点的坐标代人,可得关于k 、b 的二元一次方程组,从而确定了k 、b 的值,确定了表达式.(写出解答过程)
2.反思小结:确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件。
初步应用,感悟新知
【例4】已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.
【思路点拨】求一次函数y=kx+b 的解析式,关键是求出k 、b 的值,从已知条件可以列出关于k 、b 的二元一次方程组,并求出k 、b .
【教师活动】分析例题,讲解方法.
【学生活动】联系已学习的二元一次方程组,以此为工具,解决问题,参与教师讲例,主动思考.
解:设这个一次函数的解析式为y=kx+b .
依题意得:352491
k b k k b b +==⎧⎧⎨⎨-+=-=-⎩⎩解得 这个一次函数的解析式为y=2x-1.
像这样先设出一次函数的解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法。
图1 图2
师生整理归纳
【方法流程】
【教师活动】引导学生归纳总结出:
数学的基本思想方法:数型结合.
二、随堂练习,巩固深化
三、巩固练习
1. 根据图象求解析式
2.已知一次函数的图象, 如何求函数的解析式?
1、已知:y是x的正比例函数,当x=2时,y=6,求y与x的函数表达式
2、一次函数图象经过点(0,2)和点(4,6)。
求出一次函数的表达式。
y
x
(3,5)
(-4,-9)
3
5
-
4
-
9
四、课堂小结
五、布置作业
1.求函数解关系的一般步骤:“一设、二列、三解、四写”
2.数形结合解决问题的一般思路.。