邹城市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邹城市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若如图程序执行的结果是10,则输入的x 的值是( )
A .0
B .10
C .﹣10
D .10或﹣10
2. 若,[]0,1b ∈,则不等式2
2
1a b +≤成立的概率为( ) A .
16π B .12π C .8π D .4
π 3. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2
﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )
A .(﹣,﹣2]
B .[﹣1,0]
C .(﹣∞,﹣2]
D .(﹣,+∞)
4. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( )
A .5
B .18
C .24
D .36
5. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )
A .3条
B .2条
C .1条
D .0条
6. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
7. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
8. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
9. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
10.已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )
A .m >2
B .m >4
C .m >6
D .m >8
11.若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0
B .1
C .
D .3
12.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等
于( )
A .
B .
C .24
D .48
二、填空题
13.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
14.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
15.过椭圆
+
=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则
椭圆的离心率为 .
16.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .
17.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
18.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .
三、解答题
19.(本小题满分12分)
一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;
(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.
20.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.
(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.
21.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
22.已知集合A={x|x 2+2x <0},B={x|y=}
(1)求(∁R A )∩B ;
(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.
23.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.
(1)若p=,求A∩B;
(2)若A∩B=B,求实数p的取值范围.
24.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.
邹城市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x<0,时﹣x=10,解得:x=﹣10
当x≥0,时x=10,解得:x=10
故选:D.
2.【答案】D
【解析】
考点:几何概型.
3.【答案】A
【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,
故有,即,解得﹣<m≤﹣2,
故选A.
【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.
4.【答案】D
【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,
∴a3a7=a52=36,
故选:D.
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
5.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,
设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
6.【答案】B
7.【答案】C
【解析】
考点:几何体的结构特征.
8.【答案】
【解析】选B.取AP的中点M,
则P A=2AM=2OA sin∠AOM
=2sin x
2

PB=2OM=2OA·cos∠AOM=2cos x
2,
∴y=f(x)=P A+PB=2sin x
2+2cos x
2
=22sin(x
2

π
4
),x∈[0,π],根据解析式可知,只有B选项符合要求,
故选B. 9.【答案】B 【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 10.【答案】C
【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)
∵函数的定义域为[0,2]
∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m
由题意知,f(1)=m﹣2>0 ①;
f(1)+f(1)>f(2),即﹣4+2m>2+m②
由①②得到m>6为所求.
故选C
【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值
11.【答案】B
【解析】解:∵指数函数的反函数是对数函数,
∴函数y=3x的反函数为y=f(x)=log3x,
所以f(9)=log33=1.
故选:B.
【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.
12.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,
∴△PF 1F 2的面积=.
故选C .
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
二、填空题
13.【答案】 ①②④
【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;
对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,
又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误; 对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1, ∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确; 对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,
设点P 坐标为(x ,y ,0),由|PF|=|PG|,得,即x 2﹣y 2
=1,
∴P 点轨迹所在曲线是双曲线,⑤错误. 故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
14.【答案】1
231n --
【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.
15.【答案】 .
【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),
∵∠F 1PF 2=60°,

=
, 即2ac=b 2
=
(a 2﹣c 2
).
∴e 2+2e ﹣=0,
∴e=
或e=﹣
(舍去).
故答案为:.
【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
16.【答案】 ﹣6 .
【解析】解:由约束条件
,得可行域如图,
使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),
∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.
故答案为:﹣6.
17.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
18.【答案】.
【解析】解:不等式组的可行域为:
由题意,A(1,1),∴区域的面积为
=(x3)=,
由,可得可行域的面积为:1=,
∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与
与坐标原点连线的斜率大于1
的概率为:
=
故答案为:.
【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.
三、解答题
19.【答案】
【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,
∴所求概率为22
44225516
125
C C P C C =-⋅=(6分)
(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,2
22
51
(2)10
C P C ξ===,(9分)
(10分)
∴3314
012105105
E ξ=⨯
+⨯+⨯= (12分) 20.【答案】
【解析】(1)证明:取ED 的中点为O , 由题意可得△AED 为等边三角形,
,,
∴AC2=AO2+OC2,AO⊥OC,
又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,
∴平面AED⊥平面BCDE;…
(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,
则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),
,,,
设面EAC的法向量为,
面BAC的法向量为
由,得,∴,
∴,
由,得,∴,
∴,
∴,
∴二面角E﹣AC﹣B的余弦值为.…
2016年5月3日
21.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请22.【答案】
【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},
B={x|y=}={x|x+1≥0}={x|x≥﹣1},
∴∁R A={x|x≤﹣2或x≥0},
∴(∁R A)∩B={x|x≥0};…
(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;
当a<2a+1时,C≠∅,
应满足,
解得﹣1<a≤﹣;
综上,a的取值范围是.…
23.【答案】
【解析】解:(1)当p=时,B={x|0≤x≤},
∴A∩B={x|2<x≤};
(2)当A∩B=B时,B⊆A;
令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;
当p≤4时,应满足,
解得p不存在;
综上,实数p的取值范围p>4.
24.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.。

相关文档
最新文档