白光LED 光谱特性及司辰节律因子

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第40卷㊀第12期2019年12月
发㊀光㊀学㊀报
CHINESEJOURNALOFLUMINESCENCE
Vol 40
No 12
Dec.ꎬ2019
㊀㊀收稿日期:2019 ̄07 ̄10ꎻ修订日期:2019 ̄08 ̄04
㊀㊀基金项目:国家自然科学基金(61975072)ꎻ福建省自然科学基金(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻ福建省高校创新团队培育
计划(光电材料与器件应用)ꎻ福建省教育厅科技项目(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻ福建省重大教学改革项目(FBJG20180015)ꎻ漳州市自然科学基金(ZZ2019J01ꎬZZ2016J40)资助项目
SupportedbyNationalNaturalScienceFoundationofChina(61975072)ꎻNaturalScienceFoundationofFujianProvince(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻProgramforInnovativeResearchTeaminScienceandTechnologyinFujianProvinceUniversity(OptoelectronicMaterialsandDeviceApplication)ꎻNaturalScienceFoundationofFujianHigherEducationInstitutions(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻFoundationofFujianProvinceGreatTeachingReform(FBJG20180015)ꎻNaturalScienceFoundationofZhangzhou(ZZ2019J01ꎬZZ2016J40)
文章编号:1000 ̄7032(2019)12 ̄1514 ̄09
白光LED光谱特性及司辰节律因子
沈雪华1ꎬ2ꎬ陈焕庭1ꎬ2∗ꎬ陈赐海1ꎬ2ꎬ林惠川1ꎬ2ꎬ李㊀燕1ꎬ2ꎬ陈福昌1ꎬ2
(1.闽南师范大学物理与信息工程学院ꎬ福建漳州㊀363000ꎻ
2.福建省光电材料与器件应用行业技术开发基地ꎬ福建漳州㊀363000)
摘要:为分析白光LED的光 ̄电 ̄热特性及其变化ꎬ在热沉温度和驱动电流可控的条件下ꎬ测试了温度㊁电流
对白光LED光谱分布的影响ꎬ建立了白光LED光功率和光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)预测模型ꎮ相关性分析显示光谱蓝白比㊁色温及司辰节律因子之间高度相关ꎬ光谱蓝白比与色温㊁光谱蓝白比与司辰节律因子均存在线性关系ꎬ表明由光谱分布变化预测光谱色温漂移及其非视觉生物效应的可能性ꎮ实验结果表明ꎬ白光LED光功率㊁蓝白比㊁色温及司辰节律因子的预测值与实测值吻合较好ꎬ最大预测误差分别不超过4.22%㊁1.54%㊁1.31%和2.15%ꎻ同时ꎬ白光LED光谱蓝白比可作为一种有效手段ꎬ用于预测光谱色温及司辰节律因子ꎬ进而评估其光学特性和非视觉生物效应ꎮ
关㊀键㊀词:白光LEDꎻ功率预测ꎻ色温漂移ꎻ司辰节律因子ꎻ非视觉生物效应中图分类号:TN312.8㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194012.1514
SpectralCharacteristicsandCircadianActionFactorofWhiteLEDs
SHENXue ̄hua1ꎬ2
ꎬCHENHuan ̄ting1ꎬ2∗
ꎬCHENCi ̄hai1ꎬ2ꎬLINHui ̄chuang1ꎬ2ꎬLIYan1ꎬ2ꎬCHENFu ̄chang1ꎬ2
(1.DepartmentofPhysicsandInformationEngineeringꎬMinnanNormalUniversityꎬZhangzhou363000ꎬChinaꎻ
2.OptoelectronicMaterialsandDeviceApplicationIndustryTechnologicalDevelopmentBaseofFujianProvinceꎬZhangzhou363000ꎬChina)
∗CorrespondingAuthorꎬE ̄mail:htchen23@qq.com
Abstract:Toanalyzetheoptical ̄electrical ̄thermalcharacteristicsofwhiteLEDsꎬeffectsoftempera ̄tureandcurrentonthespectralpowerdistributionofthewhiteLEDweretestedunderthecontrolla ̄bleheatsinktemperatureandcurrent.Onthebasisꎬpredictionmodelsforspectralopticalpowerandblue ̄whiteratio(theratiobetweenblueopticalpowerandwhiteopticalpower)ofthewhiteLEDwereproposed.Correlationanalysisprovedthattheblue ̄whiteratiowashighlycorrelatedwiththecorrelatedcolortemperature(CCT)aswellascircadianactionfactor(CAF).Moreoverꎬlinearre ̄lationshipsbothexistbetweenblue ̄whiteratioandCCTꎬandbetweenblue ̄whiteratioandCAF.Itindicatesthepossibilitywhichqualitativelypredictingcolortemperaturedriftandnon ̄visualbiologi ̄
caleffectsofthewhitespectrumfromchangingspectralpowerdistribution.Experimentalresultsshowthatꎬthemaximumpredictionerrorsofspectralopticalpowerꎬblue ̄whiteratioꎬCCTandCAFofthewhiteLEDwerewithin4.22%ꎬ1.54%ꎬ1.31%and2.15%ꎬrespectively.Meanwhileꎬthespectralblue ̄whiteratiocanbeusedasaneffectivemethodtopredictCCTandCAFofthespectrumꎬ
. All Rights Reserved.
㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1515㊀andthustoevaluatethespectralopticalpropertiesandnon ̄visualbiologicaleffects.
Keywords:whiteLEDsꎻopticalpowerpredictionꎻcolortemperaturedriftꎻcircadianactionfactorꎻnon ̄visualbio ̄logicaleffects
1㊀引㊀㊀言
发光二极管(Light ̄emittingdiodeꎬLED)因具有低功耗㊁长寿命和环境友好等优点ꎬ近年逐渐向通用照明领域普及[1 ̄3]ꎮ在白光LED制造中ꎬ以蓝光GaN基LED芯片与YAGʒCe荧光粉结合的方式最为普遍ꎮ通用照明中ꎬLED器件通常集成了多个LED芯片ꎬ且输入功率随着应用需求的提高不断增大ꎬ导致器件内部热量聚集[4]ꎮ而蓝光LED芯片和荧光粉均具有温度敏感特性ꎬ高温环境下蓝光GaN基LED芯片和荧光粉的光学特性会有不同程度的下降ꎬ引起光谱功率㊁光通量㊁色温等光学参数的变化ꎬ最终影响照明质量[5 ̄6]ꎮ因此ꎬ大功率白光LED器件的热效应和热管理成为当前LED研究和制造领域备受关注的问题[7]ꎮ光照除了提供视觉信息ꎬ还参与生物节律㊁大脑认知等生理功能的调节ꎬ即所谓 非视觉生物效应 ꎮ作为新一代照明光源ꎬLED的非视觉生物效应更为明显ꎬ相关研究不断深入ꎮ司辰节律因子(CircadianactionfactorꎬCAF)是由Berman提出的用以表征光的非视觉生物效应强度的因子ꎬ在多数研究中被采用[8]ꎮ郑莉莉等[9]通过计算三基色白光LED光源在不同电流下的司辰节律因子ꎬ对可调色温的三基色白光LED光源进行非视觉效应研究ꎮ宋丽妍等着重探讨了以LED为背光源的平板显示屏对人体非视觉生物效应的影响[10]ꎮ鲁玉红等针对人体在不同波长蓝光LED照射下的反应进行了研究[11]ꎮ陈仲林等将光的非视觉生物效应用于指导住宅㊁隧道和教室等场所的照明工程建设[12 ̄13]ꎮ
本文通过测试研究了白光LED的光 ̄电 ̄热特性及其变化ꎬ建立了白光LED光功率及光谱蓝白比预测模型ꎬ分析了光谱蓝白比与色温㊁司辰节律因子的相关性ꎮ研究发现驱动电流和温度改变时ꎬ白光LED辐射光谱中的蓝光发射光谱和荧光粉发射光谱会有不同程度的变化ꎬ进而引起光功率改变㊁色温漂移和司辰节律因子变化ꎮ实验结果验证了本文提出的白光LED光功率和光谱蓝白比预测模型及其建立过程的正确性ꎬ表明了根据光谱蓝白比预测其色温漂移和非视觉生物效应强弱的合理性ꎬ可用于对特定白光LED光学性能的预测㊁分析和改进ꎮ
2㊀白光LED光谱的光 ̄电 ̄热特性2.1㊀白光LED光谱的光 ̄热特性分析
白光LED器件中ꎬ蓝光LED芯片发出的初始蓝光一部分被荧光粉吸收并转化为黄光ꎬ透射的蓝光和转换的黄光混合形成白光ꎮ蓝光LED芯片辐射蓝光以及荧光粉层辐射黄光的过程都伴随着热量的产生ꎮ因实际散热条件有限ꎬ白光LED器件内部热量无法及时传导ꎬ芯片结温和荧光粉层温度随着热量积累逐渐升高ꎬ导致芯片和荧光粉层光学性能下降ꎮ为探讨温度对LED芯片及荧光粉层的作用ꎬ本文在一定电流驱动下ꎬ通过改变热沉温度测试了白光LED的光谱分布变化ꎬ如图1ꎮ其中ꎬ驱动电流为350mAꎬ温度范围为25~85ħꎬ测试间隔为15ħꎮ
3
450750
姿/nm
I
n
t
e
n
s
i
t
y
/
(
m
W
·
n
m
-
1
)
4
2
1
500
400
85℃
25℃
25℃
40℃
55℃
70℃
85℃
700
650
600
550
图1㊀350mA电流驱动下白光LED的光谱功率分布Fig.1㊀SpectralpowerdistributionofwhiteLEDwithinjec ̄tioncurrentof350mA
图1中ꎬ以虚线为界ꎬ左边为蓝光光谱分布ꎬ右边为荧光光谱分布ꎮ由图1可见ꎬ蓝光LED芯片发射峰强度明显随温度升高而降低ꎬ并且由于能带随着温度升高而收缩ꎬ其光谱整体红移ꎮ对于荧光光谱而言ꎬ因蓝光LED芯片激发波长受温度影响发生偏移ꎬ与荧光粉发射光谱匹配度降低ꎬ转换的黄光减少ꎬ导致荧光光谱强度整体呈下降
. All Rights Reserved.
1516㊀发㊀㊀光㊀㊀学㊀㊀报第40卷
趋势ꎮ蓝光光谱光功率和荧光光谱光功率随温度的变化趋势如图2所示ꎮ
30030
80
T /℃
O p t i c a l p o w e r /m W
4002001505040
20
70
605025035010090
P opt,b(w)P opt,b(w)
图2㊀350mA电流驱动下蓝光光谱光功率和荧光光谱光
功率
Fig.2㊀Opticalpowerofbluespectrumandphosphorspec ̄
trumwithinjectioncurrentof350mA
图2中ꎬPoptꎬb(w)表示蓝光光谱光功率ꎬPoptꎬp(w)
表示荧光光谱光功率ꎮ保持驱动电流为350mAꎬ当热沉温度控制为25ħ时ꎬ蓝光光谱光功率为
114.09mWꎬ荧光光谱光功率为289.04mWꎻ当热沉温度升高到85ħ时ꎬ蓝光光谱光功率降至110.57mWꎬ荧光光谱光功率降至258.65mWꎬ二
者下降幅度分别为3.09%和10.51%ꎮ
观察图2可见ꎬ蓝光光谱光功率和荧光光谱光功率均与热沉温度近似呈线性关系ꎬ则可设
Poptꎬb(w)(IFꎬ0ꎬT)=a1T+a2ꎬ(1)Poptꎬp(w)(IFꎬ0ꎬT)=b1T+b2ꎬ
(2)
其中ꎬa1㊁a2㊁b1㊁b2均为常数ꎬ可通过对测量数据进行曲线拟合而获得ꎮa1㊁b1分别表示蓝光光谱光功率㊁荧光光谱光功率随热沉温度的变化系数ꎬ
由两曲线倾斜程度可知a1<b1<0ꎮ
从图2及二者功率下降幅度可见ꎬ荧光粉层
受温度的影响较大ꎬ原因主要体现在3个方面:(1)温度升高ꎬGaN基蓝光芯片晶格振动加强ꎬ缺陷周围的载流子非辐射复合加剧ꎬ内量子效率下降ꎬ产生的初始蓝光能量减少[2]ꎻ(2)蓝光峰值波长因热效应发生红移ꎬ使得与荧光粉的匹配度下降[14]ꎻ(3)温度升高ꎬYAG荧光粉Ce3+4f基态与
5d激发态之间的能量差减小ꎬ光转换效率下降[15]ꎮ蓝光光谱功率在温度升高时变化不大ꎬ原因在于:虽然蓝光芯片辐射的初始蓝光随温度升高而减少ꎬ但荧光粉层因热效应致使吸收的蓝光能量也减少ꎬ因而透射的蓝光辐射通量减少不明显ꎮ
2.2㊀白光LED光谱的光 ̄电特性分析
白光LED器件中ꎬGaN基蓝光LED芯片会将注入电能转化为初始蓝光并射入荧光粉层ꎬ驱动电流的大小决定了初始蓝光光谱的光功率ꎮ此外ꎬ驱动电流不同意味着加载功率不同ꎬ则其他条件相同的情况下封装器件内部聚集热量亦不同ꎬ引起GaN基芯片和荧光粉的热猝灭效应也存在差异ꎮ
载流子密度在量子阱区域的速率方程[16]
如下:
dndt=J
qd-An-Bn2-Cn3-JLqd1
ꎬ(3)
在稳态条件下ꎬ
dn
dt
=0ꎬ则J
qd=An+Bn2+Cn3+JLqd1
ꎬ(4)
其中ꎬJ为电流密度ꎬq为单位电荷量ꎬd为有源区厚度ꎬAn为非辐射复合率ꎬBn2为辐射复合率ꎬCn3为俄歇复合率ꎬJL为漏电流密度ꎬd1为在P型束缚层少数载流子扩散长度ꎮ俄歇复合率Cn3取决于材料能带结构ꎬ且Cn3ʈexp-3Eg2kTæèç
öø
÷ꎮ对于窄能带结构LED(如InGaAsP ̄LED)ꎬ其n3较大ꎬ俄歇复合率较强ꎮ对于宽禁带结构LED(如AlGaInP ̄LEDꎬGaN ̄LED)ꎬ因其n3较小ꎬ俄歇复合率很低ꎬ在老化过程中ꎬ认为基本不变ꎬ故可不予考虑ꎮ一般在双异质结和多量子阱结构中JL≪Jꎬd1ʈdꎮ
非辐射复合速率An取决于缺陷密度NT:
Anʈ

(τp+τn)ʈnσυNT2

(5)
其中ꎬτn=
1σnυnNTꎬτp=1
σpυpNTꎬτp
和τn分别为电
子和空穴寿命ꎬσ为俘获截面ꎬυ为热速率ꎮ在低电流密度范围ꎬn很小ꎬAn>Bn2ꎬ该范围
内光功率与电流密度关系如下式所示:
LʈBn2
ʈBA

Jqd
()
2ꎬ(6)
在大电流密度范围ꎬBn2>Anꎬ则光功率与电流密度的关系为:
L=Bn2ʈ

ed
ꎬ(7)
在大电流区域ꎬ理想情况下LED光功率将与输入电流近似成线性比例ꎮ但在实际情况下ꎬ随着电
. All Rights Reserved.
㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子
1517
㊀流增大ꎬLED有源区产生的热量将在器件内部急剧累积ꎬ造成内量子以及外量子效率下降[17]ꎬ因此光功率与输入电流不能成理想线性比例ꎮ
从以上讨论可知ꎬLED光功率 ̄电流特性曲线可分为非线性和线性两个区域ꎮ非线性区域内ꎬ有源区缺陷密度将直接影响光功率大小ꎬ导致光功率非线性变化ꎮ而线性区域由于非辐射复合通道趋于饱和状态ꎬ非辐射复合变化对光功率影响不明显[18]ꎮ
由于本文研究采用控温热沉控制LED芯片
温度ꎬLED芯片有源区的热量可及时传导至外界ꎬ即LED输出光功率和负载电流为线性关系:
Poptꎬb(w)(IFꎬT0)=c1IF+c2ꎬ
(8)Poptꎬp(w)(IFꎬT0)=d1IF+d2ꎬ(9)
其中ꎬc1㊁c2㊁d1㊁d2均为常数ꎬ可利用曲线拟合由测量数据获得ꎮc1㊁d1分别表示蓝光光谱光功率㊁
荧光光谱光功率随驱动电流的变化系数ꎮ
通过改变驱动电流测试白光LED的光谱分布变化ꎬ如图3所示ꎬ其中ꎬ热沉温度控制为
55ħꎬ电流范围为200~450mAꎬ测试间隔为50mAꎮ
3450750
姿/nm
I n t e n s i t y /(m W ·n m -1)
4210
500400450mA
200mA 250mA 300mA 350mA 400mA 450
mA
700650600550200mA
图3㊀恒温55ħ下白光LED的光谱功率分布Fig.3㊀SpectralpowerdistributionofwhiteLEDwithheat
sinktemperatureof55ħ
图3表明ꎬ当热沉温度一定时ꎬ白光LED发出的蓝光光谱和荧光光谱均随驱动电流发生较大变化ꎬ电流对二者影响作用明显ꎮ蓝光光谱光功率与荧光光谱光功率随电流的变化趋势如图4ꎮ
图4中ꎬ保持热沉温度为55ħꎬ当驱动电流为200mA时ꎬ蓝光光谱光功率为66.14mWꎬ荧光光谱光功率为166.97mWꎻ当驱动电流增加到
450mA时ꎬ蓝光光谱光功率为142.78mWꎬ荧光光谱光功率为342.56mWꎬ二者增加幅度分别为115.88%和105.16%ꎮ
300200
450
Input current /mA
O p t i c a l p o w e r /m W
40020015050250
150
400
350
300
250350100500
P opt,b(w)P opt,p(w)
图4㊀恒温55ħ下的蓝光光谱光功率和荧光光谱光功率Fig.4㊀Opticalpowerofbluespectrumandphosphorspec ̄
trumwithheatsinktemperatureof55ħ
2.3㊀白光LED光谱功率预测
白光LED输出的白光由蓝光光谱和荧光光谱构成ꎬ假设Poptꎬw为白光LED输出光功率ꎬ则有
Poptꎬw=Poptꎬb(w)+Poptꎬp(w)ꎬ
(10)
同时考虑驱动电流和热沉温度对光谱的影响[19]ꎬ当热沉温度为恒定值时ꎬLED输出光功率与负载电流呈线性函数ꎻ当负载电流为恒定值时ꎬLED输出光功率与热沉温度呈线性函数ꎻ进而可构建蓝光光谱光功率值和荧光光谱光功率值分别与负载电流和热沉温度之间的二维函数:
Poptꎬb(w)(IFꎬT)=(a1T+a2)(c1IF+c2)


(11)Poptꎬp(w)(IFꎬT)=
(b1T+b2)(d1IF+d2)


(12)
其中e㊁f分别为白光LED在工作点(IFꎬ0㊁T0)的蓝光光谱光功率值和荧光光谱光功率值ꎮ
因此ꎬ白光LED总输出光功率为:Poptꎬw(IFꎬT)=
(a1T+a2)(c1IF+c2)


(b1T+b2)(d1IF+d2)


(13)
由于a1㊁a2㊁b1㊁b2㊁c1㊁c2㊁d1㊁d2㊁e㊁f均为常数ꎬ公式(13)表明ꎬ白光LED光功率是关于驱动电流和热沉温度的函数ꎮ若已知驱动电流和热沉温度ꎬ可根据公式(13)预测白光LED的光功率ꎮ
3㊀色温漂移及非视觉生物效应分析
3.1㊀光谱色温漂移分析
相对色温(CorrelatedcolortemperatureꎬCCT)
. All Rights Reserved.
1518㊀发㊀㊀光㊀㊀学㊀㊀报第40卷
是评价白光品质的一个重要光学指标ꎬ其值主要取决于白光光谱中蓝光成分的比例(本文简称蓝白比)ꎮ当光谱蓝白比增大时ꎬ色温值将增大ꎬ白光向冷白方向漂移ꎻ反之色温减小ꎬ白光向暖白方向漂移[6ꎬ20 ̄21]ꎮ从前文分析可知ꎬ热沉温度和驱动电流会影响白光光谱中蓝光光谱和荧光光谱ꎬ因而可能改变光谱中的蓝光比例ꎬ引起色温漂移ꎮ设光谱蓝白比为kꎬ则有
k(IFꎬT)=
Poptꎬb(w)
Poptꎬw

f(a1T+a2)(c1IF+c2)
f(a1T+a2)(c1IF+c2)+e(b1T+b2)(d1IF+d2)

(14)
可见ꎬ光谱蓝白比k亦是关于驱动电流和热沉温度的函数ꎮ驱动电流或热沉温度的改变ꎬ不仅会引起白光LED光功率的变化ꎬ也会导致色温漂移ꎮ若已知白光LED的驱动电流和热沉温度变化情况ꎬ则可由公式(14)评价光谱色温漂移趋势ꎮ
将热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ对应各工作点的光谱蓝白比k与色温CCT作相关性分析ꎬ如图
5所示

k
C C T /K
58500.285
0.280
0.2950.290575057005600
0.300
565058005900
图5㊀测试白光LED光谱蓝白比k与色温CCT之间的
关系
Fig.5㊀RelationshipbetweenmeasuredresultsofkandCCT
forwhiteLED
可见ꎬ光谱蓝白比k与光谱色温KCCT之间存
在较高的线性相关度ꎬ设二者关系如下:
KCCT=g1k+g2ꎬ
(15)
其中g1㊁g2均为常数ꎮ显然ꎬ光谱蓝白比k的变化可以反映其色温漂移情况ꎮ3.2㊀光谱司辰节律因子变化分析
光的非视觉生物效应主要通过本征感光视网膜神经节细胞(Intrinsicallyphotosensitiveretinal
ganglioncellꎬipRGC)控制人体褪黑激素的分泌ꎬ进而参与人体生理节律的调节[22]ꎮ司辰节律因子能反映光源对人体非视觉生物效应的影响ꎬ数值越大影响越大ꎬ其定义如下[23 ̄24]:
acv
=ʏ780
380P(λ)C(λ)dλʏ
780380
P(λ)V(λ)dλ
ꎬ(16)
其中ꎬacv为司辰节律因子(CAF)ꎻP(λ)为光源的光谱功率分布ꎻC(λ)是由Gall等提出的光谱生理响应曲线[25]ꎬ峰值波长在450nm附近ꎻV(λ)为明视觉下的光谱光视效率函数ꎬ峰值波长为555nmꎮC(λ)及V(λ)曲线如图6所示ꎬC(λ)主
要覆盖蓝光波段ꎬ说明人体在该波段的生物敏感度较高ꎬ而V(λ)主要覆盖黄光波段ꎬ说明人体在该波段的视觉敏感度较高ꎮ
白光光谱中的蓝光成分增加时ꎬ意味着白光光谱与生理响应曲线的重叠部分增加ꎬ光谱的司辰节律因子必然增大ꎬ此时光谱对人体的非视觉生物效应作用增强ꎮ很显然ꎬ光谱的蓝白比k变化将导致司辰节律因子(CAF)的变化ꎬk增大时ꎬCAF增大ꎬk减小时ꎬCAF也减小ꎮ
姿/nm
R e l a t i v e i n t e n s i t y
0.8500
700
6000.60.40
0.2400
1.0C (姿)V (姿)
图6㊀光谱生理响应曲线C(λ)和明视觉光视效率曲
线V(λ)
Fig.6㊀Spectralphysiologicalresponsecurveandspectrallu ̄
minousefficiencycurve
对热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ各工作点的光谱蓝白比k与司辰节律因子(CAF)进行相关性分析ꎬ如图7所示ꎮ
显然ꎬ光谱蓝白比k与司辰节律因子(CAF)之间同样存在较高的线性相关度ꎬ设二者关系如下:
acv=h1k+h2ꎬ
(17)
其中h1㊁h2均为常数ꎮ光谱蓝白比k的变化反映
. All Rights Reserved.
㊀第12期
沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1519
㊀k
CAF
0.570.285
0.280
0.2950.2900.580.560.550.540.530.300
图7㊀测试白光LED光谱蓝白比k与司辰节律因子CAF
之间的关系
Fig.7㊀RelationshipbetweenmeasuredresultsofkandCAF
forwhiteLED
了司辰节律因子的变化ꎬ因而可用于评价光谱产生的非视觉生物效应ꎮ
由图5㊁图7及其分析表明ꎬ光谱蓝白比k与色温CCT及司辰节律因子(CAF)均高度线性相关ꎮ因此ꎬ光谱色温CCT和CAF跟随温度及驱动电流的变化规律应与蓝白比k的变化趋于一致ꎮ当驱动电流不变㊁温度升高时ꎬ色温值和司辰节律因子应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响增强ꎮ当温度恒定㊁驱动电流增加时ꎬ色
温值和司辰节律因子也应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响亦增强ꎮ
4㊀实验结果与分析
本文通过HAAS ̄2000高精度快速光谱仪及
专用积分球对YAGʒCe荧光材料封装的白光LED进行光学测量ꎬ完成实验验证ꎮ其中恒流驱动由上位机控制软件控制ꎬ而LED恒温设置和调整则由CL ̄200温控装置实现ꎮ
图8㊁9分别为白光LED在不同温度及不同电流驱动下对应光功率㊁蓝白比k预测值和实测值对比情况ꎮ温度测试范围为25~85ħꎬ测试间隔为5ħꎻ电流测试范围为150~500mAꎬ测试间隔为50mAꎮ
在图8(a)光功率预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为190.91mWꎬ若热沉温度升高到85ħꎬ光功率降至174.36mWꎬ降低8.67%ꎬ下降速率为0.2758mW/ħꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为558.56mWꎻ若热沉温度升高到85ħꎬ光功率降至510.83mWꎬ降低8.55%ꎬ下降速率为
0.7955mW/ħꎮ
在图8(b)光功率实测数据中ꎬ150mA恒流
驱动下ꎬ热沉温度为25ħ时ꎬ光功率为183.19
mWꎻ若热沉温度升高到85ħꎬ光功率降至169.30mWꎬ降低7.58%ꎬ下降速率为0.2315mW/ħꎮ在
500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为553.69mWꎻ若热沉温度升高到85ħꎬ光功率
600500400300200100030253540455055
606570
758085150
250350450T /℃O p t i c l p o w e r /m W
(a )
600
500400300200100030253540455055
606570
758085150
250350450I /m
A
T /℃
O p t i c l p o w e r /m W
(b )
I /m
A
图8㊀白光LED光功率输出ꎮ(a)预测值ꎻ(b)实测值ꎮFig.8㊀OpticalpowerofwhiteLED.(a)Predictions.(b)
Measurements.
0.320.290.280.270.2630253540455055
606570758085150250350
450I /m
A
T /℃k
(a )
0.300.290.280.270.2630253540455055
60657570
8085150
250350
450I /m
A
T /℃
k (b )
0.250.300.310.250.310.32图9㊀白光光谱蓝白比kꎮ(a)预测值ꎻ(b)实测值ꎮFig.9㊀Blue ̄whiteratiok.(a)Predictions.(b)Measure ̄
ments.
. All Rights Reserved.
1520㊀发㊀㊀光㊀㊀学㊀㊀报第40卷降至502.91mWꎬ降低9.17%ꎬ下降速率为0.8463
mW/ħꎮ㊀
经计算ꎬ光功率预测值与实测值之间最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎬ误差值较小ꎮ白光LED光功率对比图和数据分析均表明ꎬ白光功率预测值与实测值之间吻合度较高ꎬ由此验证了光功率预测模型的正确性ꎮ
在图9(a)光谱蓝白比k预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2707ꎻ若热沉温度升高到85ħꎬ则增大至0.2872ꎬ增幅为6.10%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2870ꎻ若热沉温度升高到85ħꎬ则增大至0.3041ꎬ增幅为5.96%ꎮ
在图9(b)光谱蓝白比k实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2723ꎻ若热沉温度升高到85ħꎬ则增大至0.2916ꎬ增幅为7.08%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2891ꎻ若热沉温度升高到85ħꎬ则增大至0.3040ꎬ增幅为5.15%ꎮ
经计算ꎬ蓝白比k预测值与实测值之间最大绝对误差为0.0038ꎬ平均绝对误差为0.0011ꎬ最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎮ图9和分析数据显示ꎬ光谱蓝白比预测值与实测值之间吻合度较高ꎬ验证了光谱蓝白比预测模型的正确性ꎮ根据光谱蓝白比k的预测值及公式(15)㊁(17)ꎬ可进一步预测光谱色温CCT和司辰节律因子的变化情况ꎬ分别如图10㊁11所示ꎮ
在图10(a)的光谱色温CCT预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5492Kꎻ若热沉温度升高到85ħꎬ则色温升高至5711Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5710Kꎻ若热沉温度升高到85ħꎬ色温升高至5936Kꎬ光谱亦向冷白方向漂移ꎮ
在图10(b)的光谱色温CCT实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5538Kꎻ若热沉温度升高到85ħꎬ则色温升高至5787Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5730Kꎻ若热沉温度升高到85ħꎬ色温升高至5944Kꎬ光谱亦向冷白方向漂移ꎮ
在图11(a)司辰节律因子(CAF)预测数据中ꎬ
6000
5900
5800
5700
5600
5400
30
253540
455055
606570
758085150
250
350
450
I
/
m
A
T/℃
C
C
T
/
K
(a)
5500
6000
5900
5800
5700
5600
5400
30
253540
455055
606570
758085150
250
350
450
I
/
m
A
T/℃
C
C
T
/
K
(b)
5500
图10㊀白光光谱色温CCTꎮ(a)预测值ꎻ(b)实测值ꎮFig.10㊀CCTofwhitespectrum.(a)Predictions.(b)Measurements.
0.58
0.56
0.54
0.50
30
253540
455055
606570
758085150
250
350
450
I
/
m
A
T/℃
C
A
F
(a)
0.52
0.60
0.58
0.56
0.54
0.50
30
253540
455055
606570
758085150
250
350
450
I
/
m
A
T/℃
C
A
F
(b)
0.52
0.60
图11㊀白光光谱司辰节律因子(CAF).(a)预测值ꎻ(b)实测值ꎮ
Fig.11㊀CAFofwhitespectrum.(a)Predictions.(b)Measurements.
150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5078ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5463ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5461ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5860ꎬ光谱对人体的非视觉生物效
. All Rights Reserved.
㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1521㊀
应的影响亦增强ꎮ
在图11(b)司辰节律因子(CAF)实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5131ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5584ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5486ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5853ꎬ光谱对人体的非视觉生物效应的影响亦增强ꎮ
经计算ꎬ色温CCT预测值与实测值之间最大绝对误差为75.64Kꎬ平均绝对误差为15.10Kꎬ最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子预测值与实测值之间最大绝对误差为0.0120ꎬ平均绝对误差为0.0027ꎬ最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ图10㊁11及数据分析证明了光谱蓝白比k㊁色温CCT和司辰节律因子(CAF)三者之间的高度相关性ꎬ同时验证了公式(15)和(17)的正确性ꎮ5㊀结㊀㊀论
本文结合理论分析和实验测试ꎬ研究了白光LED的光 ̄电 ̄热特性ꎮ通过控制热沉温度和驱动电流ꎬ讨论了温度和电流对白光中的蓝光光谱和荧光光谱的影响ꎬ建立了白光LED光功率预测模型ꎮ通过白光光谱成分变化ꎬ讨论了光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)与温度㊁电流的关系ꎬ并建立光谱蓝白比k预测模型ꎮ相关性分析显示了光谱蓝白比k与色温CCT及司辰节律因子(CAF)高度相关ꎬ光谱色温漂移及非视觉生物效应与蓝白比k的变化趋于一致ꎮ实验结果显示ꎬ白光LED光功率预测值的最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎻ蓝白比k预测值的最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎻ色温
CCT预测值的最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子CAF预测值的最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ验证了所提出的预测模型及其建立过程的正确性ꎮ同时ꎬ实际光谱中蓝白比k㊁色温CCT和司辰节律因子(CAF)分布及变化规律一致ꎬ表明了由光谱蓝白比评价光谱色温漂移和非视觉生物效应的合理性ꎮ
参㊀考㊀文㊀献:
[1]NIANLXꎬPEIXMꎬZHAOZLꎬetal..Reviewofopticaldesignsforlight ̄emittingdiodepackaging[J].IEEETrans.
Compon.Packag.Manuf.Technol.ꎬ2019ꎬ9(4):642 ̄648.
[2]LUOXBꎬHURꎬLIUSꎬetal..Heatandfluidflowinhigh ̄powerLEDpackagingandapplications[J].Prog.EnergyCombust.Sci.ꎬ2016ꎬ56:1 ̄32.
[3]MAYPꎬSUNJꎬLUOXB.Multi ̄wavelengthphosphormodelbasedonfluorescentradiativetransferequationconsideringre ̄absorptioneffect[J].J.Lumin.ꎬ2019ꎬ209:109 ̄115.
[4]KWONSBꎬJEONGSGꎬCHOISHꎬetal..Designofbinder ̄freephosphorpasteforwarmwhiteLEDs[J].Opt.Mater.ꎬ2018ꎬ84:184 ̄188.
[5]钟文姣ꎬ魏爱香ꎬ招瑜.结温对GaN基白光LED光学特性的影响[J].发光学报ꎬ2013ꎬ34(9):1203 ̄1207.
ZHONGWJꎬWEIAXꎬZHAOY.DependenceofGaN ̄basedwhiteLEDcolorimetricparametersonjunctiontemperature
[J].Chin.J.Lumin.ꎬ2013ꎬ34(9):1203 ̄1207.(inChinese)
[6]CHENHTꎬHUISY.Dynamicpredictionofcorrelatedcolortemperatureandcolorrenderingindexofphosphor ̄coatedwhitelight ̄emittingdiodes[J].IEEETrans.Ind.Electron.ꎬ2014ꎬ61(2):784 ̄797.
[7]WANGXXꎬJINGLꎬWANGYꎬetal..TheinfluenceofjunctiontemperaturevariationofLEDonthelifetimeestimationduringacceleratedagingtest[J].IEEEAccessꎬ2019ꎬ7:4773 ̄4781.
[8]BERMANSM.Anewretinalphotoreceptorshouldaffectlightingpractice[J].Light.Res.Technol.ꎬ2008ꎬ40(4):373 ̄376.
[9]郑莉莉ꎬ郭自泉ꎬ严威ꎬ等.三基色白光LED的司辰节律因子研究[J].发光学报ꎬ2016ꎬ37(11):1384 ̄1389.
ZHENGLLꎬGUOZQꎬYANWꎬetal..InvestigationonthecircadianactionfactorofRGBwhiteLEDs[J].Chin.J.Lu ̄
min.ꎬ2016ꎬ37(11):1384 ̄1389.(inChinese)
[10]宋丽妍ꎬ李俊凯ꎬ牟同升.以发光二极管为背光源的平板显示对人体非视觉的影响[J].光子学报ꎬ2013ꎬ42(7): . All Rights Reserved.
1522㊀发㊀㊀光㊀㊀学㊀㊀报第40卷768 ̄771.
SONGLYꎬLIJKꎬMOUTS.Non ̄visualeffectsofflatpaneldisplaywithlightemittingdiodebacklightonhuman[J].
ActaPhoton.Sinicaꎬ2013ꎬ42(7):768 ̄771.(inChinese)
[11]鲁玉红ꎬ王毓蓉ꎬ金尚忠ꎬ等.不同波长蓝光LED对人体光生物节律效应的影响[J].发光学报ꎬ2013ꎬ34(8):1061 ̄1065.
LUYHꎬWANGYRꎬJINSZꎬetal..InfluenceofdifferentwavelengthblueLEDonhumanopticalbiorhythmeffect[J].
Chin.J.Lumin.ꎬ2013ꎬ34(8):1061 ̄1065.(inChinese)
[12]陈仲林ꎬ李毅ꎬ杨春宇ꎬ等.道路照明中的光生物效应研究[J].照明工程学报ꎬ2007ꎬ18(3):1 ̄5.
CHENZLꎬLIYꎬYANGCYꎬetal..Studyonphotobiomodulationofroadlighting[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(3):1 ̄5.(inChinese)
[13]陈仲林ꎬ胡英奎ꎬ翁季.用司辰视觉研究道路照明安全[J].照明工程学报ꎬ2007ꎬ18(1):31 ̄34.
CHENZLꎬHUYKꎬWENGJ.Studyonroadlightingsafetywithcitopic[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(1):31 ̄34.(inChinese)
[14]肖华ꎬ吕毅军ꎬ徐云鑫ꎬ等.传统白光LED与远程荧光粉白光LED的发光性能比较[J].发光学报ꎬ2014ꎬ35(1):66 ̄72.
XIAOHꎬLYUYJꎬXUYXꎬetal..ThedifferenceofluminousperformancebetweentraditionalphosphorpackagingLEDandremotephosphorLED[J].Chin.J.Lumin.ꎬ2014ꎬ35(1):66 ̄72.(inChinese)
[15]LINCCꎬZHENGYSꎬCHENCHꎬetal..ImprovingopticalpropertiesofwhiteLEDfabricatedbyablueLEDchipwithyellow/redphosphors[J].J.Electrochem.Soc.ꎬ2010ꎬ157(9):H900 ̄H903.
[16]GRILLOTPNꎬKRAMESMRꎬZHAOHMꎬetal..SixtythousandhourlightoutputreliabilityofAlGaInPlightemittingdi ̄odes[J].IEEETrans.DeviceMater.Reliab.ꎬ2006ꎬ6(4):564 ̄574.
[17]LIJSꎬTANGYꎬLIZTꎬetal..Effectofquantumdotscatteringandabsorptionontheopticalperformanceofwhitelight ̄emittingdiodes[J].IEEETrans.ElectronDev.ꎬ2018ꎬ65(7):2877 ̄2884.
[18]PURSIAINENOꎬLINDERNꎬJAEGERAꎬetal..Identificationofagingmechanismsintheopticalandelectricalcharacter ̄isticsoflight ̄emittingdiodes[J].Appl.Phys.Lett.ꎬ2001ꎬ79(18):2895 ̄2897.
[19]CHENHTꎬLEEATLꎬTANSCꎬetal..Dynamicopticalpowermeasurementsandmodelingoflight ̄emittingdiodesbasedonaphotodetectorsystemandphoto ̄electro ̄thermaltheory[J].IEEETrans.PowerElectron.ꎬ2019ꎬ34(10):10058 ̄10068.
[20]周锦荣ꎬ陈焕庭ꎬ周小方.白光LED色温的非线性动态预测模型[J].发光学报ꎬ2016ꎬ37(1):106 ̄111.
ZHOUJRꎬCHENHTꎬZHOUXF.Nonlineardynamicpredictionmodelofwhiteledcolortemperature[J].Chin.J.Lu ̄min.ꎬ2016ꎬ37(1):106 ̄111.(inChinese)
[21]YEHYꎬKOHSWꎬYUANCꎬetal..Electrical ̄thermal ̄luminous ̄chromaticmodelofphosphor ̄convertedwhitelight ̄emit ̄tingdiodes[J].Appl.Therm.Eng.ꎬ2014ꎬ63(2):588 ̄597.
[22]GUOZQꎬLIUKꎬZHENGLLꎬetal..Investigationonthree ̄humpphosphor ̄coatedwhitelight ̄emittingdiodesforhealthylightingbygeneticalgorithm[J].IEEEPhoton.J.ꎬ2019ꎬ11(1):8200110.
[23]GALLDꎬLAPUENTEV.Beleuchtungsrelevanteaspektebeiderauswahleinesförderlichenlampenspektrums[J].Lichtꎬ2002ꎬ54(7 ̄8):860 ̄871.
[24]BELLIALꎬSERACENIM.Aproposalforasimplifiedmodeltoevaluatethecircadianeffectsoflightsources[J].Light.
Res.Technol.ꎬ2014ꎬ46(5):493 ̄505.
[25]GALLD.Themeasurementofcircadianradiationquantities[C].ProceedingsofLichtandGesundheitꎬBerlinꎬ
2004.
沈雪华(1989-)ꎬ女ꎬ福建漳州人ꎬ博士ꎬ讲师ꎬ2016年于重庆大学获得博士学位ꎬ主要从事智能检测与控制㊁半导体照明技术等方面的研究ꎮ
E ̄mail:fj_sxh39@163.
com陈焕庭(1982-)ꎬ男ꎬ福建漳州人ꎬ博士ꎬ教授ꎬ2010年于厦门大学获得博士学位ꎬ主要从事半导体照明技术等方面的研究ꎮ
E ̄mail:htchen23@qq.com
. All Rights Reserved.。

相关文档
最新文档