莲花县高中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莲花县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. (理)已知tan α=2,则=( )
A .
B .
C .
D .
2. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .6
3. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )
A .2
B .6
C .4
D .2
4. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
5. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个
6. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
7. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .
B .
C .
D .
8. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<< 9. 下列命题中正确的是( )
A .复数a+bi 与c+di 相等的充要条件是a=c 且b=d
B .任何复数都不能比较大小
C .若=,则z 1=z 2
D .若|z 1|=|z 2|,则z 1=z 2或z 1=
10.f ()=,则f (2)=( )
A .3
B .1
C .2
D .
11.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )
A .24
B .80
C .64
D .240 12.设i 是虚数单位,则复数
21i
i
-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
二、填空题
13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .
15.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 16.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 18.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1
(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
三、解答题
19.(本题满分15分)
正项数列}{n a 满足12
1223+++=+n n n n a a a a ,11=a .
(1)证明:对任意的*
N n ∈,12+≤n n a a ;
(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*
N n ∈,32
121
<≤-
-n n S .
【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.
20.已知椭圆C :
+
=1(a >b >0)的一个长轴顶点为A (2,0),离心率为
,直线y=k (x ﹣1)与
椭圆C 交于不同的两点M ,N , (Ⅰ)求椭圆C 的方程;
(Ⅱ)当△AMN 的面积为时,求k 的值.
21.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公
差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2
的等差数列(d ≠0).
(1)若a 20=40,求d ;
(2)试写出a 30关于d 的关系式,并求a 30的取值范围;
(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
22.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并
按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).
(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中
.当数据的方差最大时,写出的值.(结论不要求证明)
(注:,其中为数据的平均数)
23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)
(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.
(2)求使f(x)﹣g(x)<0成立x的集合.
24.(本小题满分12分)某市拟定2016年城市建设,,
A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,
A B C三项重点工程竞标成功的概率分
别为a,b,1
4()
a b
,已知三项工程都竞标成功的概率为
1
24
,至少有一项工程竞标成功的概率为3
4
.
(1)求a与b的值;
(2)公司准备对该公司参加,,
A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
莲花县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:∵tan α=2,∴
=
=
=
.
故选D .
2. 【答案】C
【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2
=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)
抛物y 2
=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,
∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .
【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
3. 【答案】B
【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2
=4,
表示以C (2,1)为圆心、半径等于2的圆.
由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).
∵AC=
=2,CB=R=2,
∴切线的长|AB|==
=6.
故选:B .
【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
4. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
5. 【答案】B
【解析】解:a ※b=12,a 、b ∈N *
,
若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;
若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,
所以满足条件的个数为4+11=15个.
故选B
6.【答案】A
【解析】解:函数f(x)=的图象如下图所示:
由图可得:当k∈(0,1)时,y=f(x)与y=k的图象有两个交点,
即方程f(x)=k有两个不同的实根,
故选:A
7.【答案】C
【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,
∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],
∵在定义域内任取一点x0,
∴x0∈[﹣5,5],
∴使f(x0)≤0的概率P==
故选C
【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键8.【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 9. 【答案】C
【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.
C .∵
=
,则z 1=z 2,正确;
D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .
10.【答案】A
【解析】解:∵f ()=,
∴f (2)=f (
)=
=3.
故选:A .
11.【答案】B 【解析】 试题分析:805863
1
=⨯⨯⨯=
V ,故选B. 考点:1.三视图;2.几何体的体积. 12.【答案】B
【解析】因为
所以,对应的点位于第二象限 故答案为:B 【答案】B
二、填空题
13.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即
)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.
14.【答案】 [,3] .
【解析】解:直线AP 的斜率K==3,
直线BP 的斜率K ′=
=
由图象可知,则直线l 的斜率的取值范围是[,3],
故答案为:[,3],
【点评】本题给出经过定点P 的直线l 与线段AB 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.
15.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得
10×2+10×9
2×c =200,∴c =4.
答案:4
16.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立, 则满足,
即,
∴
解得﹣4<a <0,
综上:a 的取值范围是(﹣4,0]. 故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
17.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 18.【答案】②④⑤
【解析】解析:构造函数()()x
g x e f x =,()[()()]0x
g x e f x f x ''=+>,()g x 在R 上递增,
∴()x
f x e
-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;
构造函数()()x f x g x e =,
()()
()0x
f x f x
g x e '-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2
()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;
由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递
减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;
由()()x e xf x f x x '+=得2
()()x e xf x f x x
-'=,设()()x
g x e xf x =-,则()()()x
g x e f x xf x ''=--(1)x x x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当
0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
三、解答题
19.【答案】(1)详见解析;(2)详见解析.
20.【答案】
【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为
,
∴
∴b=
∴椭圆C的方程为;
(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0
设M(x1,y1),N(x2,y2),则x1+x2=,
∴|MN|==
∵A(2,0)到直线y=k(x﹣1)的距离为
∴△AMN的面积S=
∵△AMN的面积为,
∴
∴k=±1.
【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.
21.【答案】
【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.
(2)a30=a20+10d2=10(1+d+d2)(d≠0),
a30=10,
当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)
(3)所给数列可推广为无穷数列{a n],
其中a1,a2,…,a10是首项为1,公差为1的等差数列,
当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.
研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.
研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),
依此类推可得a10(n+1)=10(1+d+…+d n)=.
当d>0时,a10(n+1)的取值范围为(10,+∞)等.
【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.
22.【答案】
【解析】【知识点】样本的数据特征古典概型
【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,
所以该校高一年级学生中,“体育良好”的学生人数大约有
人.
(Ⅱ)设“至少有1人体育成绩在”为事件
,
记体育成绩在的数据为,,体育成绩在的数据为,,,
则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,
,,,,,,,.
而事件的结果有7种,它们是:,,,,,,,
因此事件的概率.
(Ⅲ)a,b,c的值分别是为,,.
23.【答案】
【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);
h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);
∴f(x)﹣g(x)为奇函数;
(2)由f(x)﹣g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016﹣x);
∴;
解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.
24.【答案】
【解析】(1)由题意,得1
1424
131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分
而4
1
433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=;
1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=;
1111
(12)23424
P X ==⨯⨯=.…………………9分
所以X 的分布列为:
于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12
=.……………12分。