山东省菏泽第一中学2024-2025学年高一上学期10月月考数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省菏泽第一中学2024-2025学年高一上学期10月月考数学
试卷
一、单选题
1.已知集合{}01
2M =,,,{}230N x x x =-<,则M N =I ( ) A .{}0,1,2 B .{}1,2 C .{}03x x ≤< D .{}03x x << 2.命题1x ∀>,21x m ->的否定是( )
A .1x ∃>,21x m -≤
B .1x ∃≤,21x m -≤
C .1x ∀>,21x m -≤
D .1x ∀≤,21x m -≤
3.已知集合U =R ,集合{}31A x x =-<<,{}02B x x =≤≤,则图中阴影部分表示的集合为( )
A .()3,0-
B .()1,0-
C . 0,1
D . 2,3 4.不等式302
x x ->+成立的一个充分不必要条件是( ) A .1x >
B .0x ≤
C .4x ≥
D .1x <-
5.若集合{}
2210x mx x +-=有且仅有2个子集,则满足条件的实数m 组成的集合是( ) A .{}1- B .{}1,0- C .{|1m m ≤-或0}m = D .{}1m m ≤- 6.已知关于x 的一元二次不等式20ax bx c ++>的解集为{|15}x x -<<,其中a ,b ,c 为常数,则不等式20cx bx a ++≤的解集是( )
A .1{|1}5
x x -≤≤ B .1{|1}5x x -≤≤ C .}1{|15x x x ≤-≥或 D .1{|1}5
x x x ≤-≥或 7.关于x 的不等式()21220x a x a -++<的解集中恰有2个整数,则实数a 的取值范围是( )
A .{}2134a a a -≤<-<≤或
B .{}2134a a a -≤≤-≤≤或
C .131222a a a ⎧⎫-≤<-<≤⎨⎬⎩⎭或
D .131222a a a ⎧⎫-≤≤-≤≤⎨⎬⎩⎭
或 8.已知0,0,31x y x y >>+=,若
23124m m x y +>++恒成立,则实数m 的取值范围是( ) A .{}24m m -<<
B .{}42m m -<<
C .{4m m <-或}2m >
D .{2m m <-或}4m >
二、多选题
9.对于实数,,a b c ,下列命题是真命题的为( )
A .若0a b >>,则11a b <
B .若a b >,则22ac bc ≥
C .若0a b >>,则2a ab <-
D .若0c a b >>>,则a b c a c b >-- 10.下列命题正确的是( )
A .“1a >”是“11a
<”的充分不必要条件 B .“1,1a b >>”是“1ab >”成立的充要条件
C .“对()20,2x x m x
∀∈+∞+≥,恒成立”是“1m <”的必要不充分条件 D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件
11.已知正数,x y 满足2x y +=,则下列选项正确的是( )
A .11x y +的最小值是2
B .xy 的最大值是1
C .22x y +的最小值是4
D .(1)x y +的最大值是94
三、填空题
12.已知实数x ,y 满足41,145x y x y -≤-≤--≤-≤,则3x y +的取值范围是.
13.已知命题2:,10p x mx ∃∈+≤R ;命题2:,10q x x mx ∀∈++>R .若,p q 都是假命题,则实数m 的取值范围是.
14.在22{|1}1
x A x x -=<+,22{|0}B x x x a a =++-<,设全集U =R ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是
四、解答题
15.记全集U =R ,已知集合{}15,R A x a x a a =-≤≤+∈,{}14B x x =-<<.
(1)若2a =,求()()U U A B ⋂痧;
(2)若()U A B ⋃=R ð,求a 的取值范围.
16.解答下列各题.
(1)若3x >,求43
x x +-的最小值. (2)若正数,x y 满足9x y xy +=,
①求xy 的最小值.
②求23x y +的最小值.
17.华为为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本
()R x 万元,且()210100,040100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩
,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完
(1)求出2023年的利润()W x (万元)关于年产量x (千部)的函数解析式(利润=销售额-成本)
(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
18.已知函数²
y ax bx =+. (1)已知函数图象过点()1,2,若01a <<,求14a b
+的最小值; (2)当1x =时,1y =-,求关于x 的不等式²10ax bx ++>的解集.
19.已知关于x 的方程23340mx px q ++=(其中,,m p q 均为实数)有两个不等实根()1212,x x x x <.
(1)若1p q ==,求m 的取值范围;
(2)若12,x x 为两个整数根,p 为整数,且1,34
p p m q -=-=,求12,x x ; (3)若12,x x 满足2212
121x x x x +=+,且1m =,求p 的取值范围.。

相关文档
最新文档