高考物理万有引力定律的应用解题技巧和训练方法及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理万有引力定律的应用解题技巧和训练方法及练习题(含答案)
一、高中物理精讲专题测试万有引力定律的应用
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;
(3)该星球的“第一宇宙速度”.
【答案】(1)02v g t = (2) 0
32πv RGt ρ=
(3)v = 【解析】
(1) 根据竖直上抛运动规律可知,小球上抛运动时间0
2v t g
= 可得星球表面重力加速度:0
2v g t
=
. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2
GMm
mg R =
得:2
202v R gR M G Gt ==
因为3
43
R V π=
则有:032πv M V RGt
ρ=
= (3)重力提供向心力,故2
v mg m R
=
该星球的第一宇宙速度v =
=
【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.
2.已知某半径与地球相等的星球的第一宇宙速度是地球的
1
2
倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:
(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?
【答案】(1)01=4g g 星 (2)0
024
g s
v H L
=
-201[1]42()s T mg H L L =+
- 【解析】 【分析】 【详解】
(1)由万有引力等于向心力可知2
2Mm v G m R R =
2Mm
G
mg R
= 可得2
v g R
=
则014
g g 星=
(2)由平抛运动的规律:21
2
H L g t -=
星 0s v t =
解得0
024g s v H L
=
- (3)由牛顿定律,在最低点时:2
v T mg m L
-星=
解得:2
01142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦
【点睛】
本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.
3.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,
登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
【答案】;
【解析】 【详解】
在星球表面时用弹簧测力计称量一个质量为m 的砝码,读数为F ,则知
登陆舱在该行星表面做圆周运动的周期T,则知
结合以上两个公式可以求解出星球的半径为
根据万有引力提供向心力可求得
解得:
综上所述本题答案是:;
【点睛】
登陆舱在该行星表面做圆周运动,根据牛顿第二定律列式;在星球表面,用弹簧称称量一个质量为m 的砝码读数为F,根据重力等于万有引力列式;联立求解出质量和半径;
4.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;
(2)地球同步卫星的线速度大小.
【答案】(1) G
gR M 2
= (2)7
gR
v = 【解析】 【详解】
(1)两极的物体受到的重力等于万有引力,则
2
GMm
mg R
= 解得
G
gR M 2
=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则
()
2
2
77GMm
v m R
R =
而2
GM gR =,解得
v =
.
5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .
【答案】l =
【解析】 【分析】 【详解】
设卫星周期为1T ,那么:
222
14()()Mm m R h G R h T π+=+, ① 又
2
Mm
G
mg R =, ② 由①②得
1T =
设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则
1
2T
l R T π⋅=. 所以
12RT l T π==
【点睛】
摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间
内,地球转过的圆心角,再根据弧长与圆心角的关系求解.
6.我国预计于2022年建成自己的空间站。
假设未来我国空间站绕地球做匀速圆周运动时
离地面的高度为同步卫星离地面高度的,已知同步卫星到地面的距离为地球半径的6倍,地球的半径为R,地球表面的重力加速度为g。
求:
(1)空间站做匀速圆周运动的线速度大小;
(2)同步卫星做圆周运动和空间站做圆周运动的周期之比。
【答案】(1) (2)
【解析】
【详解】
(1)卫星在地球表面时,可知:
空间站做匀速圆周运动时:
其中
联立解得线速度为:
(2)设同步卫星做圆周运动和空间站做圆周运动的周期分别为T1和T2,
则由开普勒第三定律有:
其中:,
解得:
【点睛】
本题考查了万有引力的典型应用包括开普勒行星运动的三定律、黄金代换、环绕天体运动的参量。
7.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A是地球的同步卫星,已知地球半径为R,地球自转的周期为T,地球表面的重力加速度为g,求:
(1)同步卫星离地面高度h
(2)地球的密度ρ(已知引力常量为G)
【答案】(1
R (2)34g GR π 【解析】 【分析】 【详解】
(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为
()222
4()R h mM
G m R h T
π+=+ 在地球表面上引力等于重力为
2
Mm
G
mg R = 故地球同步卫星离地面的高度为
h R =
(2)根据在地球表面上引力等于重力
2Mm
G
mg R
= 结合密度公式为
2
33443
gR M g G V GR R ρππ===
8.已知地球质量为M ,万有引力常量为G 。
将地球视为半径为R 、质量均匀分布的球体。
忽略地球自转影响。
(1)求地面附近的重力加速度g ; (2)求地球的第一宇宙速度v ;
(3)若要利用地球绕太阳的运动估算太阳的质量,需要知道哪些相关数据?请分析说明。
【答案】(1)2GM g R =
(2
)v =3)若要利用地球绕太阳的运动估算太阳的质量,需要知道地球绕太阳运动的轨道半径、周期和万有引力常量。
【解析】 【详解】
(1)设地球表面的物体质量为m , 有
2
Mm
G
mg R = 解得
2
GM
g R =
(2)设地球的近地卫星质量为m ',有
22Mm G m R R
''=v 解得
v =
(3)若要利用地球绕太阳的运动估算太阳的质量,需要知道地球绕太阳运动的轨道半径、周期和万有引力常量。
设太阳质量为M ',地球绕太阳运动的轨道半径为r 、周期为T ,根
据2
224M M G M r r T
π'=可知若知道地球绕太阳运动的轨道半径、周期和万有引力常量可求
得太阳的质量。
9.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.
【答案】23
2
4r GT π
【解析】 【详解】
对双星系统,角速度相同,则:22
122Mm G
M r m r r
ωω== 解得:221Gm r r ω=; 22
2GM r r ω=;
其中2T
π
ω=
,r =r 1+r 2; 三式联立解得:23
2
4r M m GT
π+=
10.高空遥感探测卫星在距离地球表面h 的轨道上绕地球转动,已知地球质量为M ,地球半径为R ,万有引力常量为G ,求: (1)人造卫星的角速度; (2)人造卫星绕地球转动的周期; (3)人造卫星的向心加速度.
【答案】(1)R h ω+(2)2T R h π=+(3)()2 GM a R h =+ 【解析】
【分析】
根据万有引力提供向心力2
2222()Mm v G m r m m r ma r T r
πω====求解角速度、周期、向
心加速度等。
【详解】
(1)设卫星的角速度为ω,根据万有引力定律和牛顿第二定律有: G
()
2
mM
R h +=m ω2(R +h ),
解得卫星角速度R h ω+
故人造卫星的角速度R h ω+
(2)由()
2
2
24Mm
G
m R h T R h π=++()
得周期2T R h π=+(
故人造卫星绕地球运行的周期为2T R h π=+( (3)由于G
()
2 mM
R h +=m a 可解得,向心加速度a=
()
2
GM
R h +
故人造卫星的向心加速度为()
2
GM
R h +.
【点睛】
解决本题的关键知道人造卫星绕地球运行靠万有引力提供向心力,即
2
2222()Mm v G m r m m r ma r T r πω====.。