八年级数学矩形1
八年级数学《矩形》重点知识总结及经典例题
八年级数学《矩形》重点知识总结及经典例题学习目标1.了解矩形的概念及与平行四边形的关系.2.掌握矩形的性质及识别方法.3.能灵活地运用矩形的有关知识的计算和证明.学法指导矩形是特殊的平行四边形,平行四边形具有的性质矩形也具有,并且它还具有自己的特殊性.基础知识讲解1.矩形的概念有一个角为直角的平行四边形叫矩形.由概念可知,矩形首先是平行四边形,只是增加一个角是直角这个特殊条件.2.矩形的性质(1)具有平行四边形的一切性质.(2)矩形的四个内角是直角.(3)矩形的对角线相等且互相平分.(4)矩形即是中心对称图形又是轴对称图形.3.矩形的识别方法(1)有一个内角是直角的平行四边形是矩形.(2)对角线相等且互相平分的平行四边形为矩形.4.矩形的识别方法运用时应注意以下几点(1)用有一个内角是直角的平行四边形来判定一个四边形是否是矩形时须同时满足两个条件;一是有一个角是直角,二是平行四边形,也就是说有一个角是直角的四边形不一定是矩形,必须加上平行四边形这个条件才是矩形.(2)用“对角线相等的平行四边形是矩形”来判定一个四边形是否是矩形时也必须满足两个条件:一是对角线相等,二是平行四边形.重点难点重点:矩形的定义,性质及识别方法.难点:矩形的性质及识别方法的灵活运用.易错误区分析运用矩形的识别方法来判断四边形是否是矩形时易忽略满足的条件例1.对角线相等的四边形是矩形,这个结论正确吗?错解:这个结论正确正解:这个结论不正确分析:对角线相等的平行四边形才是矩形.典型例题例1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB=4cm,求矩形对角线长.分析:注意到矩形的对角线相等且平分这个特性,不难求解.解∵ABCD 为矩形∴AC =BD ,且OA=21AC ,OB=21BD ,∴OA=OB , ∵∠AOD=120°,∴∠AOB=60° ∴△AOB 为等边三角形∴OB =OA =AB =4,∴BD =2OB =2×4=8cm .例2.如图12-2-2所示:□ABCD 中AC ,BD 直交于O ,EF ⊥BD 垂足为O ,EF 分别交AD ,BC 于点E ,F ,且AE=EO=21DE.求证:□ABCD 为矩形分析:观察给出的已知图象的特征,要证□ABCD 为矩形,显然只要证AC =BD 即可,若Rt △DOE 的斜边上的中线OM ,易证△AOE ≌△DOM ,∴OA =OD 问题得证.证明:取DE 的中点M ,连结OM ,∴在Rt △DOE 中,OM=21DE=DM , ∴OE=AE=21DE ,∠OME=∠OEA ∴OM =OE ,DM =AE ,∠OMD =∠OEM ,∴△OMD ≌△OEA ,∴OA=OD ,在□ABCD 中,∵OA=21AC ,OD=21BD , ∴AC =BC ∴□ABCD 为矩形.例3.已知:如图所示,E 是已知矩形ABCD 的边CB 延长线上的一点,CE =CA ,F 是AE 的中点.求证:BF ⊥FD分析:由于CE =CA ,F 是AE 的中点,若连结CF ,则CF ⊥AE .所示∠AFC =90°.所以要证BF ⊥FD ,只须再证∠CFB =∠AFD .易知,只要证△AFD ≌△BCF .证法一:连结CF .因为CE =CA ,F 是AE 中点,所以CF ⊥AE .所以∠AFD+∠DFC =90°,因为四边形ABCD 为矩形,所以AD =BC ,∠ABC =∠BAD =90°. 又∵F 是Rt △ABE 斜边BE 的中点,所以BF =AF ,所以∠FAB =∠FBA ,所以∠FAD=∠FBC .所以△FAD ≌△FBC .所以∠CFB=∠AFD ,所以∠CFB+∠DFC =90°,即BF ⊥FD .证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.例4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.例5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE解:OA=CO过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO∴∠EAO=∠E ∴CE=CA创新思维例1.如图所示△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在这一边的对边上,那么符合要求的矩形可以画两个:矩形ACBD和矩形AEFB.解答问题(1)设图(2)中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1 S2.(填“>”“<”“=”)(2)如图(3)中△ABC为钝角三角形,按短文中的要求把它补成矩形,则符合要求的矩形可以画个,利用图(3)把它画出来.(3)过图(4)△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画 个,利用图(4)把它画出来. (4)在(3)中所画的矩形中,哪一个的周长最小?为什么?分析:本题主要考查矩形的性质和计算.解:(1)如图甲过点C 作CG ⊥AB 于G ,则CG=AE .∵S 1=2S △ABC =2×21×AB ·CG=AB ·CG ,S 2=AE ·AB=CG ·AB ∴S 1=S 2 (2)有2个如图乙(3)有3个如图丙(4)设矩形BCED ,ACHQ ,ABGF 的周长分别为L 1,L 2,L 3,BC =a ,AC =b ,AB =c .易知,这些矩形的面积相等,令其面积为S ,则有L 1=a a s 22+,L 2=b s 2+2b ,L 3cs 2+2c , ∵L 1-L 2=s a 2+2a-(b b s 22+)=2(a-b )ab s ab -,而ab ﹥s ,a ﹥b ∴L 1-L 2﹥0,即L 1﹥L 2.同理L 2>L 3.∴以AB 为边的矩形周长最小.例2.如图△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角线于点F.(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.分析:先证∠OCE =∠OEC 就有EO =CO ,同理有FO =CO ,即有EO =FO .当0运动到AC 的中点时,四边形AECF 对角钱互相平分.∠EcF =90°.则四边形AECF 为矩形.证明:(l )∵MN ∥BC ,∴∠1=∠3 又∵CE 为∠ACB 的角平分线,∴∠1=∠2,∴∠2=∠3,∴OE =OC ,同理可证OF =OC ,∴OE=OF(2)当O 运动到AC 的中点时,四边形AECF 为矩形,因为AO =OC ,OE =OF.解:由矩形的特征,AC =EF ,由AE ∥CF ,CE ∥AF 知BECD 是平行四边形,故AE =CF ,从而AC =FE .中考练兵1.如图所示,在矩形ABCD 中,点E ,F 分别在AB ,CD 上BF ∥DF ,若AD =12cm ,AB =7cm ,且AE :EB=5:2,则阴影部分的面积为 .分析:由已知可判断四边形EBFD 是平行四边形.由平行线之间的距离处处相等,可知BE 边上的高与AD 的长相等.因此求BE 的长是关键.本题还可运用平移的方法,将△AED沿AB方向平移,使DE与BF重合,得空白部分所组成的图形是长12cm,宽5cm的矩形,可求其面积,然后将矩形ABCD的面积,减去空白部分的面积,即可得阴影部分的面积.也可通过矩形的面积减去二个全等三角形的面积,而得出阴影部分面积。
数学人教版八年级上册18.2.1矩形的性质.2.1 矩形(1)—矩形的性质
D
C
【学习过程】
二、探究学习:
矩形的性质:
矩形性质2:
矩形的对角线相等
D C
数学符号语言:
∵四边形ABCD是矩形 ∴AC=BD
A
O
B
【学习过程】
二、探究学习: 思考:矩形ABCD是轴对称图形吗? 它的对称轴有几条? 矩形是中心对称图形吗?对称中心是?
A B
【学习过程】
三、随堂检测: 3、如图,在Rt△ABC中,∠ACB=90°,AB=10, CD是AB边上的中线,则CD的长是( C ) A、20 C、 5 B、10 5 D、2
A D C 10
B
【学习过程】
三、随堂检测: 4、矩形ABCD的对角线AC、BD相交于O, ∠AOD=120°,AC=8,则△ABO的周长为 ( ) A、16 B、12 C、24 D、20
C
Hale Waihona Puke 直角三角形性质定理: 直角三角形斜边上的中线等于斜边的一半. 数学符号语言:
在Rt△ABC中,∵O是AC的中点
1 ∴OB= AC 2
【学习过程】
三、随堂检测: 1、矩形具有而平行四边形不具有的性质是 ( C) A、对边相等 B、对角相等 C、对角互补 D、对角线平分 2、矩形的两条对角线的夹角为60°,对角线长 为15cm,较短边的长为( C ) D C A、12cm B、10cm O C、7.5cm D、5cm 60°
两组对边分别平行 边 两组对边分别相等
角 两组对角分别相等,邻角互补 对角线 对角线互相平分
【学习过程】
一、导学指导:
平 行 四 边 形 的 判 定 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形
八年级数学下册(人教版)18.2.1矩形的性质(第一课时)教学设计
3.设计梯度性的练习题,由浅入深地巩固学生对矩形性质的理解,同时关注学生的个体差异,提供不同难度的题目,使每个学生都能得到有效的提升。
-设想练习:基础题如直接应用矩形性质计算周长和面积,提高题如解决矩形相关问题中的综合应用题。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.给出矩形的定义,强调矩形是一种特殊的平行四边形,具有特殊的性质。
2.通过动态演示和板书,讲解矩形对边平行且相等、对角线互相平分且相等这两个关键性质。
3.结合实例,讲解矩形四个角都是直角这一性质,并引导学生通过观察和推理来理解这一性质。
4.介绍矩形的判定方法,让学生能够快速判断一个四边形是否为矩形。
4.在小组合作、交流讨论中,培养学生合作学习、共同探究的能力,激发学生的学习兴趣。
(三)情感态度与价值观
1.培养学生对几何图形的观察和欣赏能力,激发学生对数学美的追求,增强学生的审美观念。
2.培养学生勇于探索、积极思考的精神,鼓励学生在面对困难时保持积极乐观的态度,增强学生的自信心。
3.通过数学知识的学习,引导学生认识到几何图形在实际生活中的重要作用,培养学生的应用意识。
-例题:一个矩形的对角线相等,长为10cm,宽为6cm,求矩形的面积。
2.实践应用题:结合生活实际,设计一些需要运用矩形性质解决的问题,让学生在实践中感受数学的价值。
-例题:小明想要设计一个矩形花园,已知花园的周长为40m,面积为120平方米,请帮助小明设计花园的长和宽。
3.探究提高题:布置一些需要学生运用矩形性质进行推理和证明的题目,培养学生的逻辑思维和几何证明能力。
3.探讨矩形与平行四边形之间的联系和区别,总结出矩形的独特性质。
数学八年级下册第19章19.1矩形1矩形的性质作业课件 华东师大版
第19章ꢀ矩形、菱形与正方形19.1ꢀ矩形19.1.1ꢀ矩形的性质•知识点❶:矩形的性质定理1——矩形的四个角都是直角•1.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为(ꢀꢀ)C•A.30°B.45°C.60°D.75°2.如图,在矩形ABCD中,E为BC边的中点,∠AEC的平分线交AD边于点F,若AB =3,AD=8,则FD的长为(ꢀꢀ)C•A.1B.2C.3D.43.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为___5_____.4.如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.易证△BEF≌△CFD(ASA),∴BF=CD知识点❷:矩形的性质定理2——矩形的对角线相等•5.(练习2变式)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(ꢀꢀB )•A.30°B.60°C.90°D.120°6.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是____4____个.7.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=__1_5___度.8.如图,在矩形ABCD中,AC与BD交于点O,若点E是AO的中点,点F是OD的中点.求证:BE=CF.易证△OBE≌△OCF(SAS),∴BE=CF9.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB =65°,则∠AED′等于(ꢀꢀ)C •A.70°•B.65°•C.50°•D.25°10.(教材P101T3变式)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(ꢀꢀ)A •A.4.8ꢀꢀꢀB.5ꢀꢀꢀC.6ꢀꢀꢀD.7.211.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(ꢀBꢀ)•A.△AFD≌△DCE B.AF=AD•C.AB=AF D.BE=AD-DF12.如图,四边形ABCD是矩形,△PBC 和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.•(1)求∠PCQ的度数;•(2)求证:∠APB=∠QPC.•(1)∵△PBC是等边三角形,∴∠PCB=60°,又∵四边形ABCD是矩形,∴∠DCB=90°,∴∠DCP=30°,同理∠QCB =30°,∠ABP=30°,∴∠PCQ=30°ꢀ•(2)易证△PBA≌△PCQ(SAS),∴∠APB=∠QPCꢀ13.(2018·连云港)如图,在矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连结AC,DF.•(1)求证:四边形ACDF是平行四边形;•(2)当CF平分∠BCD时,写出BC与CD的数量明理由.(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形ꢀ(2)BC=2CD.证明:∵CE平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CDꢀ14.如图,在矩形ABCD中,BC=10,CD =5,若点M,N分别是线段BD,BC上的两个动点,则CM+MN的最小值为_____8___.15.如图,AC为矩形ABCD的对角线,将边AB沿AE 折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.•(1)求证:四边形AECF是平行四边形;•(2)若AB=6,AC=10,求四边形AECF的面积.(1)∵由折叠的性质知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠FAN=∠ECM,AM=CN,∴AM-MN=CN-MN,即AN=CM,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形•(2)∵AB=6,AC=10,∴BC=8,设CE=x,则EM=BE =8-x,CM=10-6=4,在Rt△CEM中,(8-x)2+42=x2,解得x=5,∴四边形AECF的面积为EC·AB=5×6=30•方法技能:•1.矩形是特殊的平行四边形,具有平行四边形的所有性质,它的特殊性就是四个角都是直角和对角线相等.•2.矩形的两条对角线将矩形分为两对全等的等腰三角形,在解题的时候常用到等腰三角形的性质.•3.矩形既是中心对称图形又是轴对称图形,有两条对称轴.易错提示:•对矩形的性质理解不透,导致出错.。
人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)
A
D
O
B
C
基础训练 1. 下面性质中,矩形不一定具有的是( D)
A.对角线相等
B.四个角都相等
C.是轴对称图形 D.对角线垂直
2. 过四边形的各个顶点分别作对角线的平行线,若这四条平行 线围成一个矩形,则原四边形一定是( D )
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°.点D是 AB的中点,点E为边AC上一点,连接CD,DE,以DE为边在 DE的左侧作等边△DEF,连接BF. 判断△BCD的形状;
温馨提示:矩形的定义有两个要素:
A
D
①四边形是平行四边形
②有一个角是直角,二者缺一不可。
B
C
矩形是特殊的平行四边形,因此它具有平行四边形的所有性质, 但它也有自己独特的性质。
2.矩形的性质(从边、角、对角线三个方面总结)
(1).边:①两组对边分别平行 ② 两组对边分别相等
A
D
几何语言:∵四边形ABCD是矩形
3. 已知矩形的一条对角线与一边的夹角是40°,则两条对 角线所夹锐角的度数为( )D
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于
()
A
A.30° B.45° C.60° D.120°
例2. 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小 三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?
B
C
∴AB//CD,AD//BC
AB=CD,AD=BC
浙教版八年级数学下册《5.1矩形(1)》同步练习(含答案)
第5章特殊平行四边形5.1 矩形(1)A练就好基础基础达标1.矩形具有而一般平行四边形不具有的性质是( A)A.对角线相等B.对角相等C.对边相等 D.对角线互相平分224 cm,则这个矩形的一条较短边为( C)A.12 cm B.8 cm C.6 cm D.5 cm3.若矩形的对角线长为4 cm,一条边长为2 cm,则此矩形的面积为( B)A.8 3 cm2 B.4 3 cm2C.2 3 cm2 D.8 cm24.如图所示,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( C) A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC4题图5题图5.如图所示,EF过矩形ABCD对角线的交点O,且分别交AD,BC于点E,F.已知AB=3,BC =4,则图中阴影部分的面积是( A)A.3 B.4 C.6 D.126.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF的长是__2.5__ cm.7.如图所示,在矩形ABCD中,CE⊥BD,点E为垂足,连结AE.若∠DCE∶∠ECB=3∶1,则∠ACE=__45°__.8题图8.如图所示,将四根木条钉成的长方形木框变形为平行四边形ABC′D′的形状,并使其面积为长方形面积的22(木条宽度忽略不计),则这个平行四边形的最小内角为__45__度.解:过点C′作AB的垂线,垂足是点,如图所示:∵将四根木条钉成的矩形木框变形为平行四边形木框ABC′D′的形状,并使其面积为矩形木框的22,∴C′E=22BC=22BC′,∴BC′=2C′E,∴∠C′BE=∠D′AB=45°.9.如图所示,已知矩形ABCD的对角线AC与BD交于点O.(1)求证:∠ACD=∠ABD.(2)若矩形ABCD的面积为120 cm2,周长为46 cm,求AC的长.解:(1)证明:在矩形ABCD中,易得∠DCB=∠ABC=90°,OC=OB,∴∠OBC=∠OCB.∴∠DCB-∠OCB=∠ABC-∠OBC,∴∠ACD=∠ABD.(2)在Rt△ABC中,AC=AB2+BC2=17.10.如图所示,BD为矩形ABCD的一条对角线,延长BC至点E,使CE=BD,连结AE,若AB =1,∠AEB=15°,求AD的长度.解:如图,连结AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD,∴∠E=∠DAE.又∵BD=CE,∴CE=CA,∴∠E=∠CAE.∵∠CAD=∠CAE+∠DAE=30°,∴∠ADB=30°,∴BD=2AB=2,∴AD=BD2-AB2= 3.B更上一层楼能力提升11.如图所示,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是( A)A.S1=S2B.S1>S2C.S1<S2 D.3S1=2S212.如图所示,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于点E,PF⊥BC于点F,则线段EF长度的最小值是__2.4__.12题图13题图13.如图所示,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E .若∠CAE =15°,则∠BOE 的度数是__75°__.14.2018·威海矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连结AF ,取AF 的中点H ,连结GH .若BC =EF =2,CD =CE =1,求GH 的长.第14题图 第14题答图解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC =∠ADG =∠CGF =90°,AD =BC =2,GF =CE =1,∴AD ∥GF ,∴∠GFH =∠PAH .又∵H 是AF 的中点,∴AH =FH .在△APH 和△FGH 中,⎩⎪⎨⎪⎧∵∠PAH =∠GFH ,AH =FH ,∠AHP =∠FHG ,∴△APH ≌△FGH (ASA ),∴AP =GF =1,GH =PH =12PG , ∴PD =AD -AP =1.∵CG =2,CD =1,∴DG =1,∴GH =12PG =12×PD 2+DG 2=22. 15.如图所示,在矩形ABCD 中,E ,F 分别是边BC ,AB 上的点,且EF =ED ,EF ⊥ED . 求证:AE 平分∠BAD .证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED .又∵EF =ED ,∴△EBF ≌△DCE (AAS ).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA =45°.∴∠EAD =45°.∴∠BAE =∠EAD .∴AE 平分∠BAD .C 开拓新思路 拓展创新16.如图所示,四边形ABCD 是矩形,P 是矩形外一点,且PA =PB .(1)求证:PD =PC .(2)若△PAB 的面积为S 1,△PCD 的面积为2,则矩形的面积为________.解:(1)证明:∵四边形ABCD 是矩形,∴AD =BC ,∠DAB =∠ABC =90°.∵PA =PB ,∴∠PAB =∠PBA ,∴∠PAD =∠PBC .⎩⎪⎨⎪⎧在△APD 和△BPC 中,∵PA =PB ,∠PAD =∠PBC ,AD =BC ,∴△APD ≌△BPC (SAS ),∴PD =PC .(2)2(S 1-S 2)。
八年级数学矩形的性质
A
D
O
P
B
C
4.已知:如图,在矩形ABCD中, 对角线相交 于点O,∠AOB=60°,AE平分∠BAD,AE 交BC于E,求∠BOE的度数. 75°
A
D
O
B
E
C
根据矩形性质2:
A
D
矩形的对角线相等. O
∵四边形ABCD是矩形. B
C
∴AC=BD 又∵0A=0C=
1
AC,OB=OD=
1
BD.
2
A2
┏C
性质2:
矩形的对角线相等.
符号语言:
∵四边形ABCD是矩形. ∴AC=BD
根据矩形性质2:
A
D
矩形的对角线相等.
O
∵四边形ABCD是矩形. B
C
∴AC=BD
又∵0A=0C= 1 AC,OB=OD= 1 BD.
2
2
∴OA=OB=OC=OD.
注: 矩形被两条对角线分成的四个小三角形
都是等腰三角形,并且面积相等.
∴OA=OB=OC=OD.
O
结论:
B
C
直角三角形斜边上的中线等于斜边的一半.
归纳: 直角三角形的性质: (1)直角三角形的两个锐角互余. (2)直角三角形两条直角边的平方和等于斜边的 平方. (3)直角三角形斜边上的中线等于斜边的一半.
例3 如图矩形ABCD的对角线AC、BD相交
于点O,E为矩形ABCD外一点,AE⊥CE,
那么BE⊥DE吗?
为什么?
解题思路:
E
由OE=OA=OC
A
D
得到OE=OB=OD 再得到∠BED=90°
O
B
C
八年级数学《矩形1》教案
19.2.1 矩形(一)用边启发、边分析、边推理,层层设疑,讲练结合的方法。
通过演示平行四边形模型,激发学生的学习兴趣。
教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。
学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”,使能力得到锻炼。
教学资源三角板,平行四边形模型,多媒体教学设备。
教学评价学生互评与教师点评相结合,教学目标评价与过程评价相结合教学流程活动流程活动内容及目的活动一:创设情境,导入新课由平行四边形到矩形活动二:诱导尝试,探究新知矩形的性质活动三:变式训练,巩固新知矩形的性质的运用活动四:全课小结,内化新知课堂小结活动五:推荐作业,延展新知巩固提高教学程序问题与情境师生互动媒体使用与教学评价创设情境,导入新课复习:平行四边形有哪些性质?导入:1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:一个活动的平行四边形框架,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出矩形定义.【教师活动】1.师生交流,教师板书课题2.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象。
3.操作课件出示问题情境4.演示矩形是特殊的平行四边形,引导学生总结矩形定义【学生活动】1.倾听教师讲解,思考教师提出的问题2.观察教师演示3.总结矩形定义:有一个角是直角的平行四边形叫做矩形(通【设计意图】激发学生的学习兴趣,其思维活跃,在教师的启发下,学生独立总结、归纳出矩形的定义。
利用的对比的方法使学生理解矩形与平行四边形的关系,突破难点。
自学初中数学资料-矩形及其性质矩形(1)
自学资料一、矩形及其性质【知识探索】1.有一个角是直角的平行四边形叫做矩形,也是长方形.2.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.【说明】(1)矩形具有平行四边形的所有性质;(2)矩形既是中心对称图形,又是轴对称图形.对称中心是其对角线的交点,对称轴是每组对边的垂直平分线.【错题精练】例1.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.第1页共7页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 20;B. ;C. ;D. 25.例2.已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.例3.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积例4.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为__________ .第2页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC2.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.3.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.4.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为__________ .第3页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训5.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________ 度二、矩形的判定【知识探索】1.矩形的判定:(1)对角线相等的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.【错题精练】例1.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线与点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50∘,则当∠BOD=°时,四边形BECD是矩形.例2.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.第4页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.2.已知:如图,AB=AC,AE=AF,且∠EAB=∠FAC,EF=BC.求证:四边形EBCF是矩形.1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()第5页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD﹣DF3.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)4.如图,在直线MN上和直线MN外分别取点A、B,过线段AB的中点作CD平行于MN,分别与∠MAB与∠NAB的平分线相交于点C、D.求证:四边形ACBD是矩形.5.如图,在▱ABCD中,E是DC边的中点,且EA=EB.求证:▱ABCD是矩形.6.下列说法中,错误的是()第6页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边形C. 菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形第7页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。
人教版八年级数学下册《矩形(第1课时)》课件
A
D
O
B
C
①边
对边平行且相等
②角
对角相等,邻角互补
③对角线 对角线互相平分
新 知 探 究
矩形是一个特殊的平行四边形,除了具有平行四边形
的所有性质外,还有哪些特殊性质呢?
A
D
B
C
新 知 探 究
做一做
准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
(1)请同学们以小组为单位,测量身边的矩形(如书本,
设BE=DE=x,则AE=8-x.
∵在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x) =x2,解得x=5,即DE=5.
1
1
∴ S△BED= DE·AB= ×5×4=10.
2
2
新 知 探 究
知识点3 矩形的对称性及相关性质
矩形ABCD是轴对称图形吗?它的对称轴有几条?
矩形是中心对称图形吗?对称中心是什么?
1
E,F,那么阴影部分的面积是矩形ABCD面积的_______.
4
题 型 归 类
题型2 利用矩形的性质解答折叠问题
例2 将矩形纸片ABCD沿对角线BD对折,再折叠使AD与对
角线BD重合,得折痕DG,若AB=8,BC=6,求AG的长.
D
6
A
8
C
A′
? G 8
6
B
题 型 归 类
例2 将矩形纸片ABCD沿对角线BD对折,再折叠使AD与对
18.2.1 矩形 (第1课时)
八年级下册
新 课 导 入
我们都知道三角形具有稳定性,平行四边形是否也
具有稳定性?
在推动平行四边形的变化过程中,你有没有发现一
种熟悉的、更特殊的图形?
八年级数学下册 第19章 矩形、菱形与正方形19.1 矩形 1矩形的性质课件 华东师大版
【总结提升】矩形的性质 (1)矩形的性质为我们以后证明线段平行或相等、角的相等提 供了新的方法. (2)由边、角之间的相等关系,特别是有直角,可以将矩形中 的问题转化为直角三角形中有关边角的计算问题. (3)对角线将矩形分成了四个面积相等的等腰三角形,可以解 决有关等腰三角形的问题. (4)矩形既是中心对称图形,同时还是轴对称图形,为解决图 形的旋转和对折提供了依据.
D.6
【解析】选A.∵∠ABC=90°, ∴AB= A C 2 - B C 21 0 2 - 8 2 6 , ∴CD=AB=6, ∵点E,F分别是OD,OC的中点, ∴EF=3.
3.(2013·资阳中考)在矩形ABCD中,对角线AC,BD相交于
点O,若∠AOB=60°,AC=10,则AB=
.
【解析】∵四边形ABCD是矩形,∴OA=OB.
5.如图,把一张矩形纸片ABCD沿BD折叠,使C点落在E处,且BE 与AD相交于点O.判定△OBD的形状,并理由: 根据对称性,∠CBD=∠EBD, ∵AD∥BC, ∴∠CBD=∠ADB, ∴∠EBD=∠ADB, ∴OB=OD, ∴△OBD为等腰三角形.
(打“√”或“×”) (1)矩形的对角线相等且互相平分. ( √ ) (2)矩形的四个角都是直角. ( √ ) (3)矩形是轴对称图形,它有两条对称轴. ( √ )
知识点 1 矩形的性质 【例1】(2013·宁夏中考)在矩形ABCD中,点E是BC上一点, AE=AD,DF⊥AE,垂足为F. 求证:DF=DC.
【变式备选】在上面的题目中,保持条件不变,试判断 △AOB和△EDO面积的大小,说明理由. 【解析】△AOB和△EDO面积相等.理由: 根据矩形的中心对称性,△ABD和△CDB面积相等. 即S△ABD=S△CDB,即S△ABD=S△EDB, ∴S△ABD-S△OBD=S△EDB-S△OBD, ∴△AOB和△EDO面积相等.
八年级(下)数学《8.4矩形(1)》
8.4矩形(1)学案学习目标1、掌握矩形的定义和性质.2、经历矩形性质的探究过程.3、能利用矩形的性质解决问题.学习重点1、经历矩形性质的探究过程.2、能利用矩形的性质解决问题.学习过程一、回顾与更新:1. 平行四边形有哪些性质?2. 我们都知道三角形具有稳定性,平行四边形也具有稳定性吗?3. 在推动平行四边形的过程中,什么发生变化了?什么没变?4. 在上述变化过程中,你有没有发现一种熟悉的、更特殊的图形?5. 定义:有一个角是直角的平行四边形叫做矩形.6. 生活中有很多具有矩形形象的物品,你能举出一些例子吗?二、.探究活动探究1:矩形具有哪些性质?1. 矩形具有平行四边形的所有性质吗?2. 矩形有特有的性质吗?3. 矩形是中心对称图形,也是轴对称图形吗?4. 如果矩形是轴对称图形,那么它的对称轴是什么?探究2:我们还要知道矩形什么?1. 在矩形ABCD中,有哪些相等的线段与相等的角。
2. 在矩形中有哪些我们熟悉的简单的图形?他们有什么关系?3. 观察图中的Rt△ABC,在Rt△ABC中,BO是斜边AC上的中线,BO与AC有什么关系?正好验证了我们以前学过的一个什么结论?三、例题分析例如图,矩形ABCD的两条对角线AC,BD相交于O,∠AOB=60°,AB=4. 求矩形对角线的长.四、练习巩固1、矩形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线相等D.对角线互相平分2、已知:四边形ABCD是矩形(1).若已知AB=8㎝,AD=6㎝,则AC=_______ ㎝OB=_______ ㎝(2).若已知∠DOC=120°,AC=8㎝,则AD= _____cmAB= _____cm3.已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线(1)若BD=3㎝则AC=_________ ㎝(2) 若∠C=30°,AB=5㎝,则AC=_________ ㎝,BD=_________ ㎝.4.已知:如图,过矩形ABCD的顶点作CE//BD,交AB的延长线于E。
人教版初二数学《矩形》精品课件
人教版初二数学《矩形》精品课件一、教学内容本节课,我们将深入探讨人教版初二数学第四章第二节《矩形》内容。
具体包括:矩形定义、性质、判定方法以及矩形在实际中应用。
重点讲解矩形基本性质,如对边平行且相等、对角线相等、四个角都是直角等,并通过实际例题,让学生掌握这些性质应用。
二、教学目标1. 让学生理解矩形定义,掌握矩形性质和判定方法。
2. 培养学生运用矩形知识解决实际问题能力。
3. 提高学生空间想象能力和逻辑推理能力。
三、教学难点与重点教学难点:矩形判定方法,特别是矩形对角线性质。
教学重点:矩形性质及其应用。
四、教具与学具准备1. 教具:矩形模型、直尺、圆规、三角板。
2. 学具:直尺、圆规、三角板、练习本。
五、教学过程1. 实践情景引入:展示矩形物体,如书本、桌面等,引导学生观察矩形特征,引出矩形概念。
2. 矩形性质讲解:a. 通过矩形模型,引导学生观察矩形对边平行且相等、对角线相等、四个角都是直角等性质。
b. 举例说明矩形在实际中应用,如建筑设计、家具制作等。
3. 矩形判定方法:a. 讲解矩形判定定理,如“对角线互相平分且相等四边形是矩形”。
b. 通过例题讲解,让学生掌握矩形判定方法。
4. 随堂练习:a. 让学生画出一个矩形,并标出其性质。
b. 判断给定图形是否为矩形,并说明理由。
5. 矩形性质应用:a. 讲解矩形在生活中应用,如矩形窗户设计、矩形地砖铺设等。
b. 通过实际例题,让学生学会运用矩形知识解决实际问题。
六、板书设计1. 矩形定义2. 矩形性质a. 对边平行且相等b. 对角线相等c. 四个角都是直角3. 矩形判定方法a. 对角线互相平分且相等四边形是矩形4. 矩形应用七、作业设计1. 作业题目:a. 画出一个矩形,并标出其性质。
b. 判断给定图形是否为矩形,并说明理由。
c. 举例说明矩形在实际中应用。
2. 答案:八、课后反思及拓展延伸1. 课后反思:本节课学生掌握矩形定义、性质和判定方法,但部分学生对矩形对角线性质理解不够深入,需要在课后加强练习。
人教版数学八年级下册《矩形(1)》课件
直角三角形
≌ △ ≌
勾股定理
△ ≌ △
4.如图,在矩形ABCD中,对角线AC,BD交于点O,
若∠COD=50°,那么∠CAD的度数是( B )
A.20°
B.25°
C.30°
D.40°
等腰三角形
△
≌ △
△
≌ △
应用新知
18.2.1矩形
第一课时
第十八章
平
行
四
边
形
作业
1.如图,在四边形ABCD中,对角线AC,BD相交于
点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,
则四边形ABCD的面积为( D )
A.6
B.12
C.20
D.24
2.在▱ABCD中,E、F分别在BC、AD上,若想要使四边
形AFCE为平行四边形,需添加一个条件,这个条件不
可以是( B )
A.AF=CE
B.AE=CF
C.∠BAE=∠FCD
D.∠BEA=∠FCE
平行四边形
5
3
5
3
4
பைடு நூலகம்业
3.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线
交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.
求证:四边形EGHF为平行四边形.
证明:∵ 点、、、分别是、、、的中点
∴ = = = =
∵ =
=
∴ ∥ =
∵ = =
∴ ∥ =
∴ ∥ =
∴ 四边形是平行四边形
知识回顾
八年级数学第十八章18.2.1矩形的判定1
19.2.1矩形的判定
知识回顾:
1、矩形的定义 有一个角是直角的平行四边形叫矩形
2、矩形的性质 对边:对边平行且相等。 对角:四个角相等,都是直角。 对角线:互相平分且相等。
3、矩形的判定?
1、在四边形ABCD中,若 ∠A=∠B=∠C=90º,那么四边形 ABCD是否为矩形?为什么。
A
D
B
C
2、在平行四边形ABCD中,已知
根据它们的对话,你能肯定谁的门一定是 矩形。
4、已知:矩形的对角线ABCD的对角线
AC、BD相交于点O,点E、F、G、H分别
在OA、OB、OC、OD上,且AE=BF=CG=DH
求证:四边形EFGH是矩形
变式:矩形的对 A
角线ABCD的对角线 AC、BD相交于点O,
E O
D H
如E、F、G、H分别
是AO、BO、CO、
DO的中点,四边形B
F
GC
EFGH还是矩形吗?
5、已知:如图,平行四边形ABCD的
四个内角的平分线分别相交于E、F、
G、H,求证:四边形 EFGH为矩形.
A F
G H
D
A
PM
D
B
E
C
E B
FC N
O
变式:已知:AD∥BC,ME、NE、MF、
NF分别为角平分线。求证:四边
形ABCD为矩形
Hale Waihona Puke 思考:平行四边形ABCD中,对角线AC、 BD相交于点O,点P是四边形外一点, 且PA⊥PC,PB⊥PD,垂足为P。
AC=BD,那么四边形ABCD是否为
矩形?为什么。
A
D
O
B
C
矩形的判定
八年级数学矩形的判定1
20.2 矩形的判定(1)教学目标1.掌握矩形的定义,知道矩形与平行四边形的关系.2.掌握矩形的性质定理.教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式.教学重点:矩形的性质及其推论.教学难点:矩形的本质属性及性质定理的综合应用.教具学具准备:教具(一个活动的平行四边形),一.复习提问:什么叫平行四边形?它和四边形有什么区别?二.引入新课:我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形.二.讲解新课制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.矩形性质1:矩形的四个角都是直角.矩形性质2:矩形对角线相等.设问:如何用理论推理的方法来证明矩形的对角线相等呢?(让学生思考并提问回答,再让学生板书)讲矩形判定定理1,对角线相等的平行四边形是矩形。
已知:在平行四边形ABCD中,AC=DB,求证:平行四边形ABCD是矩形。
证明:∵四边形ABCD是平行四边形,∴AB=DC。
务员 A D又∵AC=DB,BC=CB,∴△ABC≌△DCB。
∴∠ABC=∠DCB。
BC又∵AB∥DC,∴∠ABC+∠DCB=180°。
∴∠ABC=90°。
∴四边形ABCD 是矩形。
例题讲解:(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)矩形判定定理1。
除用定义判定矩形外,还有什么方法判定一个四边形或平行四边形是矩形呢?(引导学生从平行四边形性质定理与判定定理的关系考虑)定理2 有三个角是直角的四边形是矩形。
华东师大版八年级下册数学1.1矩形的性质课件(1)
八年级 数学下册 (华师大版)
矩形的定义
有一个角是 直 角的平行四边形 叫做矩形.
A
D
∟
B
C
A
D
矩形的性质
O
B
C
对称性
边
角
对角线
平行四边形 是中心对称 对边平行 对角相等, 对角线互
的一般性质 图形
且相等 邻角互补
A
D
O
B
C
1、从对称性、边、角、对角线四个方面进 行考虑,你能发现矩形有什么特有的性质吗?
A
D
符号语言:
∵ 四边形ABCD是矩形
∴__A_C_=_B__D__
B
C
注:矩形的两条对角线把矩形分成了四个 等腰三角形和四个直角三角形.
A
D
矩形的性质
O
B
C
对称性
边
角
对角线
平行四边形 中心对称图 对边平行 对角相等, 对角线互
的一般性质 形
且相等
邻角互补 相平分
矩形的特殊 轴对称图形 邻边垂直 性质
分,则这个矩形的面积为
.
A
ED
∟
B
C
5、如图,矩形ABCD被两条对角线分成四个小
三角形,如果四个小三角形周长的和是86cm,
矩形的对角线长是13cm , 那么该矩形的周长
是
.
A
D
O
B
C
课堂小结
你有什么收获 或感想?你还 有什么疑问?
2、请以小组的情势讨论总结,并填写完整 前面的表格(课本99页).
矩形是轴对称图形,一共有两条对称轴.
A
D
∟
八年级下册数学-矩形
第10讲矩形知识导航1.矩形是特殊的平行四边形,具有平行四边形的所有性质;2.矩形的四个角都是直角,矩形的对角线相等,矩形是轴对称图形,又是中心对称图形;3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形;对角线相等且互相平分的四边形是矩形.【板块一】矩形的折叠问题方法技巧矩形的折叠图中,有较多的直角三角形,常运用相等的边、勾股定理计算边的长.题型一矩形折叠——勾股定理求边长【例1】已知矩形ABCD中,AB=4,BC=3,按下列要求折叠:(1)如图1,把矩形ABCD沿对角线BD折叠得△EBD,BE交CD于点F,求DF的长;(2)如图2,折叠矩形ABCD,使AD落在对角线BD上,求折痕DE的长;(3)如图3,折叠矩形ABCD,使点B与点D重合,求折痕EF的长.【例2】如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD 内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.题型二矩形折叠——求边的比值【例3】如图1,在□ABCD中,E是AD上一点,连接CE,F为CE的中点,DF=EF.(1)求证:四边形ABCD为矩形;(2)如图2,若AE=AB,过点B作BG丄CE,垂足为点G,连接AG.求∠AGB的度数。
针对练习11.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,求EF的长.2.如图,在正方形ABCD中,E为AB边上一点,过点D作DF丄DE,与BC的延长线交于点,连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD= 2求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.3. (1)【操作发现】如图,在矩形ABCD中,点E是AD的中点,将△ABE沿BE折叠后到△GBE,且点G 在矩形ABCD内部,将BG延长交DC于点F,小明认为GF=DF,你同意吗?请说明理由.⑵【问题解决】保持⑴中的条件不变,若DC=2DF,求ADAB的值.(3)【类比探究】保持⑴中的条件不变,若DC=nDF,直接写出ADAB的值:.【板块二】矩形与等腰三角形方法技巧1.利用矩形的性质可证明线段相等或平分,角相等,两直线平行或垂直,还可以求角的度数;2.矩形的对角线将矩形分成两对全等的等腰三角形,因此矩形有关问题常常会用到等腰三角形的性质. 题型三矩形中的等腰三角形【例1】如图,在矩形ABCD中,AC,BD交于点0,P为AD上一点,PE丄BD于点E,PF丄AC于点F,AG ⊥BD于点G.(1)求证:PE+PF=AG;(2)若AB=4,AD=6,利用(1)的结论,求PE+PF的值.【例2】已知四边形ABCD是矩形,连接AC,点E是边CB的延长线上一点,CA=CE,连接AE,F是线段AE的中点。
沪科版数学八年级下册第1课时矩形的性质
O
等的线段?(2)图中有哪些特殊形
状的三角形?
B
C
在矩形ABCD中 11
AO=CO=BO=DO=A2C=BD 2
在Rt△ABD中,AO是斜边BD的中线
则有:AO=B12D 直角三角形的性质:
直角三角形斜边上的中线等于斜边的一半.
例1已知△ABC是Rt△,∠ABC=900,BD是斜边AC上 的中线.
(1)若BD=3㎝,则AC=___6___㎝; (2)若∠C=30°,AB=5㎝,则AC=__1_0__㎝, BD=____5_㎝.
A D
┓
B
C
例2已知铝合金窗框ABCD两条对角线的夹角 ∠AOB为60°,△AOB的周长为3m.
(1)求窗框对角线AC长; A
B
(2)求窗框ABCD的面积.
60
o
D
C
(1)求窗框对角线AC长;
解 : 四边形ABCD是矩形
\ AO = 1 AC , BO = 1 BD , 且AC = BD
2
2ABຫໍສະໝຸດ \ AO = BO 又 ? AOB 60?
\ D AOB是等边三角形. 即AO = BO = AB
60
D AOB的周长为3 m
\ AO = BO = AB = 1 m
金戈铁骑整理制作
19.3矩形、菱形、正方形
1.矩形 第1课时矩形的性质
情景引入
这个平行四边形有何特殊之处? 它的内角是直角
合作探究
活动:探究矩形及直角三角形斜边上中线的性质 有一个角是有直一角个的角平是行直四角边形平行四边形 叫做矩形 .
作为特殊的平行四边形,矩形具有平行四边形的 所有性质外,猜想还有哪些特殊性质呢?
解题小结:如果矩形两对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[填空题]化工管道的涂色。生产中将各种管道涂以各种不同的颜色,可以使人们很容易的辨别判断各种管道中所盛装的不同介质,即方便操作,又易排除故障或处理事故。氨气管涂()。 [单选,A2型题,A1/A2型题]关于轴位,以下错误的是()A.有髌骨轴位摄影位置B.有跟骨轴位摄影位置C.中心线与被照体边缘相切D.有颞骨岩部轴位E.是指中心线与被照体长轴平行的摄影体位 [单选]Denis三柱理论中,后柱不包括()A.后纵韧带B.棘间韧带C.横突D.椎板E.黄韧带 [问答题,案例分析题]患者男性,20岁,下颌受刀伤,流血不止。现请你现场紧急救护,做开放性伤口的止血包扎。 [单选,A1型题]关于B超检查在诊断尿路结石方面的价值,下列哪项是错误的()A.能发现尿路平片不能显示的小结石和透光结石B.能发现结石所致的肾脏结构改变C.可直接显示双肾功能改变D.可用于无尿、慢性肾衰竭患者E.可用于对碘剂过敏或孕妇合并结石患者 [单选]超声多普勒听到胎心音的时间是().A.孕4周后B.孕5周后C.孕6周后D.孕7周后E.孕12周后 [单选]1953年7月国际护士会议通过的关于护理的国际性伦理法则是()。A.国际护士守则B.护士伦理学国际法C.南丁格尔誓约D.护士职业行为法典E.国际医德守则 [单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [单选]胎儿一胎盘单位功能是指().A.孕妇血或尿雌三醇(E3)测定B.血清HPL测定C.血清PRL判定D.催产素激惹试验(OCT)E.无激惹试验(NST) [问答题,简答题]营销信息系统内抄表段管理包括哪些功能? [单选]交流电动机定子绕组一个线圈两个边所跨的距离称为()。A、节距B、长距C、短距D、极距 [单选]港口与航道工程施工总承包一级资质企业,一级资质项目经理应不少于()人。A.10B.15C.20D.30 [单选,A2型题,A1/A2型题]肱骨外科颈骨折的部位是()A.肱骨大、小结节交界处B.肱骨大、小结节移行为肱骨干的交界处C.肱骨头周围的环形沟D.肱骨头与肱骨干的交界处E.肱骨上端干骺端处 [单选]关于胰岛素代谢作用的叙述,不正确的是()A.高浓度胰岛素刺激糖原分解B.胰岛素加速葡萄糖越过肌细胞膜的运转C.胰岛素增加某些氨基酸越过肌细胞膜的转运D.胰岛素促进蛋白质的合成E.高浓度胰岛素促进脂肪的合成 [单选]关于银行卡账户及交易管理要求的下列表述中,不正确的是()。A.单位人民币卡账户的资金一律从其基本存款账户转账存入B.单位外币卡账户的资金应从其单位的外汇账户转账存入C.单位人民币卡账户不得存取现金D.单位人民币卡账户可以存入销货收入 [单选]光和作用的原料是二氧化碳和()A.水B.空气C.钙元素D.氧气 [判断题]居住在境内的中国公民实名证件为居民身份证或者临时居民身份证。()A.正确B.错误 [单选]梁在墙上的搁置长度:次梁为240mm,主梁为()。A、240mmB、300mmC、360mmD、370mm [单选]外阴癌最主要的扩散途径是()A.蔓延扩散B.淋巴转移C.血行转移D.淋巴转移及血行转移E.局部蔓延及血行转移 [填空题]在一定压力下,蒸汽的温度高于对应压力下的饱和温度,称为()。 [名词解释]人员配备 [单选,A2型题,A1/A2型题]自杀意念是指()A.有寻死的愿望,但没有采取任何实际行动B.有毁灭自我的行为,但并未导致死亡C.采取有意毁灭自我的行为,并导致了死亡D.有意或故意伤害自己生命的行为E.反映死亡愿望并不强烈的一种行为 [单选,A4型题,A3/A4型题]女性,30岁,因月经量增多,经期延长一年就诊。如近一周出现接触性出血,此时最合适的检查是()A.染色体检查B.阴道内取分泌物做镜检C.取后穹隆处白带做细菌培养+药敏试验D.宫颈黏液涂片看其结晶情况E.宫颈刮片细胞学检查 [单选,A1型题]为提高诊断试验的灵敏度,对几个独立实验可()A.串联使用B.并联使用C.先串联后并联使用D.要求每个实验假阳性率低E.要求每个实验特异度低 [问答题,简答题]焦炉气压缩机往复式与合成气压缩机离心式结构相比,各有什么优缺点? [单选,A1型题]参与促进乳腺发育及泌乳功能的激素,错误的是()A.雌激素B.甲状旁腺素C.胎盘催乳素D.皮质醇E.胰岛素 [单选,共用题干题]患者女,19岁,学生。因"亚急起凭空闻人语、疑人害、兴奋夸大、精力旺盛1月余"于2008年7月23日入院。患者诉1月前独自在家时听见同学们议论她很坏;感觉有人在谋害她,并被跟踪、监视;同时表现兴奋、半夜里学习,觉自己思维反应像火箭,能力无限大,可以统治宇宙 [多选]某施工单位在某工程项目的施工中,因自身原因导致施工中出现质量问题,给建设单位造成损失,该施工单位承担责任的方式应包括()。A.停业整顿B.赔偿损失C.返还财产D.修理E.吊销资质证书 [填空题]消费者购买商品的决策活动有一个发生、发展和完成的过程。学者们提出了一个购买过程模式,即需要的认知、()、比较评价、()和购后评价五个阶段。 [单选]《国内航行船舶船体建造检验管理暂行规定》于何时开始实施?()A、2005年9月1日B、2002年9月1日C、2004年9月1日D、2006年9月1日 [单选]预算线向右上方平行移动的原因是()A.商品X的价格下降了B.商品Y的价格下降了C.商品X和Y的价格按同样的比率下降D.商品X和Y的价格按同样的比率上升 [单选]动产质权自()设立。A、通知质权人时B、签订质押合同时C、交付质押财产时D、债务人不履行到期债务时 [多选]瓦斯抽采管理工作应当确保()。A.机构健全B.制度完善C.执行到位D.监督有效 [多选]放疗中皮肤护理的要点为()A.维持放射野内皮肤清洁、干燥B.有脱屑应撕去以防细菌生长C.不用刺激性药物及化妆品D.维持局部清洁可每天用肥皂水清洗E.局部皮肤防止衣物摩擦及抓搔 [问答题,案例分析题]背景材料: [填空题]邮资票品必须按规定的()和售价出售。 [单选]下列在骨关节炎的治疗中对软骨保护有作用的药物是()A.糖皮质激素,如泼尼松B.非甾体类抗炎药C.环孢素AD.硫酸氨基葡萄糖E.间断在关节腔内注射长效激素 [判断题]带检视窗的储液干燥器能发现制冷系统制冷剂量和系统工作是否正常。()A.正确B.错误 [单选]各岗位工作人员对()的业务操作安全负责。A.本单位B.本岗位C.本系统D.其他岗位 [多选]使用IC卡进行劳务实名制管理可实现的管理功能有()。A.人员信息管理B.门禁管理C.