湖北省黄冈市红安县实验小学四年级数学竞赛试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈市红安县实验小学四年级数学竞赛试题及答案
一、拓展提优试题
1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.
3.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.
4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.
5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.
7.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.
8.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.
9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.
10.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?
11.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.
12.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.
13.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.
14.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.
15.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.
【参考答案】
一、拓展提优试题
1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.
解:依题意可知:
a△b=(a+b)×b得1△2=(1+2)×2=6
a□b=a×b+b得6□3=3×6+3=21
故答案为:21
【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.
2.【分析】本题考察图形边长的平移.
解:画出移动后的图,
所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.
【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.
3.解:甲校比乙校多的人数:
32×2+48=112人,
甲校的人数:
(864+112)÷2,
=976÷2,
=488(人).
答:原来甲校有488人.
故答案为:488.
4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.
解:96×4﹣95﹣97﹣94,
=384﹣95﹣97﹣94,
=98(分);
答:第四轮的得分至少是98分.
【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.
5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.
解:57÷7,
=57÷7,
=8(周)…1(天);
余数是1,星期五再过1天是星期六.
故答案为:六.
【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.
6.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.
解:8÷2=4(人),
因为女生比男生多,所以男生的人数一定小于4人,
所以男生可能是1人,2人或3人;
故答案为:1人,2人或3人.
【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.
7.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
通过等量代换,解决问题.
解:设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
由①+②得:2a+2b+2c=29+43=72
即a+b+c=36
即第三个靶的得分为36分.
答:他在第三个箭靶上得了36分
故答案为:36.
8.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.
解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:
5123﹣4876=247
故答案为:247.
9.解:假设24辆全是4个轮子的汽车,则三轮车有:
(24×4﹣86)÷(4﹣3),
=10÷1,
=10(辆),
答:三轮车有10辆.
故答案为:10.
10.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,
所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).
所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,
其中只有495符合要求,954﹣459=495.
答:这个三位数A是495..
11.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.
解:35﹣(72﹣36﹣19)
=35﹣17
=18(人)
答:四(1)班有女生 18人.
故答案为:18.
【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.
12.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.
解:假设全是围棋,则象棋就有:
(24×14﹣300)÷(24﹣18)
=36÷6
=6(副);
答:其中象棋有6副.
故答案为:6.
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.
13.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.
解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:
(31﹣1×2)÷(2×2﹣3)
=29÷1
=29(次)
3×29+31
=87+31
=118(个)
答:袋中原有黑子 118个.
故答案为:118.
【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.
14.解:最大正方形的边长是11厘米,
次大正方形的边长:19﹣11=8(厘米)
最小正方形的边长是:11﹣8=3(厘米)
阴影长方形的长是3厘米,
宽是8﹣3﹣3=2(厘米)
3×2=6(平方厘米)
答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.
故答案为:6.
15.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120
当到第十六天时不够16个需要重新开始.1+2=3
即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)
故答案为:17天。

相关文档
最新文档