苏科七年级苏科初一下学期数学期末试卷及答案全百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科七年级苏科初一下学期数学期末试卷及答案全百度文库
一、选择题
1.如图,∠1=∠2,则下列结论一定成立的是( )
A .A
B ∥CD B .AD ∥B
C C .∠B =∠
D D .∠1=∠2
2.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2
323(2)a a a a a
--=-- C .245(4)5a a a a --=--
D .22()()a b a b a b -=+-
3.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为2
1x y =⎧⎨=-⎩,则a ,b 的值是( )
A .1
2a b =⎧⎨=⎩
B .2
1a b =⎧⎨=⎩
C .1
2a b =-⎧⎨=-⎩
D .2
1a b =⎧⎨=-⎩
4.若(x+2)(2x-n)=2x 2+mx-2,则( )
A .m=3,n=1;
B .m=5,n=1;
C .m=3,n=-1;
D .m=5,n=-1; 5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种
B .5种
C .6种
D .7种
6.已知()2
2316x m x --+是一个完全平方式,则m 的值可能是( ) A .7-
B .1
C .7-或1
D .7或1-
7.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )
A .4
49x y y x y x -=+⎧⎨-=+⎩
B .4
49x y y x y x -=+⎧⎨-=-⎩
C .449x y y x y x -=-⎧⎨-=+⎩
D .449x y y x y x -=-⎧⎨-=-⎩
8.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502
115900.9
x y x y +=+⎧⎨
+=⨯⎩
B .53502
115900.9x y x y +=+⎧⎨
+=÷⎩
C .53502
115900.9x y x y +=-⎧⎨+=⨯⎩
D .53502
115900.9x y x y +=+⎧⎨+=⨯⎩
9.计算a 2•a 3,结果正确的是( )
A .a 5
B .a 6
C .a 8
D .a 9 10.计算a •a 2的结果是( )
A .a
B .a 2
C .a 3
D .a 4
11.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( ) A .
B .
C .
D .
12.计算28+(-2)8所得的结果是( ) A .0
B .216
C .48
D .29
二、填空题
13.已知2x +3y -5=0,则9x •27y 的值为______. 14.()a b -+(__________) =22a b -.
15.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 16.计算:32
(2)xy -=___________. 17.不等式
1x 2x 1
23
>+-的非负整数解是______. 18.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算
式()()3
3
33232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭
中用到以上哪些运算法则_________(填
序号).
19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
20.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为
16cm ,则AC 的长为__________cm .
21.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中
()1,0→()2,0→()2,1→()1,1→
1,2→()2,2…根据这个规律,则第2020个点的坐标为
_________.
22.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____. 23.内角和等于外角和2倍的多边形是__________边形. 24.若29x kx -+是完全平方式,则k =_____.
三、解答题
25.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;… (1)请你根据上面式子的规律直接写出第4个式子: ; (2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.
26.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.
27.(知识回顾):
如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°. 如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .
(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案) (2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)
(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)
(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P
之间的数量关系,并说明理由.
(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.28.如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.
29.解下列方程组:
(1)
3
2316
x y
x y
-=


+=

(2)234
229
x y z
x y z

==


⎪-+=-

30.启秀中学初一年级组计划将m本书奖励给本次期中考试中取得优异成绩的n名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n名同学每人发6本书,那么将剩余多少本书?
31.如图①所示,在三角形纸片ABC中,70
C
∠=︒,65
B
∠=︒,将纸片的一角折叠,使点A落在ABC内的点A'处.
(1)若140
∠=︒,2
∠=________.
(2)如图①,若各个角度不确定,试猜想1
∠,2
∠,A
∠之间的数量关系,直接写出结论.
②当点A落在四边形BCDE外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A
∠,1
∠,2
∠之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456
∠+∠+∠+∠+∠+∠和是________.
32.阅读理解并解答:
为了求1+2+22+23+24+…+22009的值.
可令S=1+2+22+23+24+…+22009
则2S=2+22+23+24+…+22009+22010
因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1
所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1
请依照此法,求:1+5+52+53+54+…+52020的值.
33.(1)填一填
21-20=2( )
22-21=2( )
23-22=2( )

(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;
(3)计算20+21+22+⋯+22019.
34.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′;
(2)再在图中画出△ABC的高CD;
(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)
35.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

已知3辆大货车与2辆小货车可以一次运货21吨,5辆大货车与4辆小货车可以一次运货37吨.
(1)每辆大货车和每辆小货车一次各可以运货多少吨?
(2)某公司现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)
36.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.
…… ……
(1)请直接写出(a+b)4=__________;
(2)利用上面的规律计算:
①24+4×23+6×22+4×2+1=__________;
②36-6×35+15×34-20×33+15×32-6×3+1=________.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】 【分析】
根据内错角相等,两直线平行即可得出结论. 【详解】 ∵∠1=∠2,
∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】
考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.
2.D
解析:D 【分析】
根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断. 【详解】
A 、C 不是几个式子相乘的形式,错误;
B 中,3
2a a
--不是整式,错误; D 是正确的 故选:D . 【点睛】
本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.
3.A
解析:A 【分析】 把21x y =⎧⎨
=-⎩代入方程组0
3210ax by ax by +=⎧⎨-=⎩
得到关于a ,b 的二元一次方程组,解之即可. 【详解】
解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩
得:
2=0
6210a b a b -⎧⎨
+=⎩

解得:
=1 =2 a
b




故选A.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.
4.A
解析:A
【解析】
先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n)=2x2+4x-nx-2n,
又∵(x+2)(2x-n)=2x2+mx-2,
∴2x2+(4-n)x-2n=2x2+mx-2,
∴m=3,n=1.
“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.
5.B
解析:B
【分析】
设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.
【详解】
解:设1元和5元的纸币分别有x、y张,
则x+5y=20,
∴x=20-5y,
而x≥0,y≥0,且x、y是整数,
∴y=0,x=20;
y=1,x=15;
y=2,x=10;
y=3,x=5;
y=4,x=0,
共有5种换法.
故选:B.
【点睛】
此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.6.D
解析:D
【分析】
利用完全平方公式的特征判断即可得到结果. 【详解】 解:
()22316x m x --+是一个完全平方式,
∴()2
2316x m x --+=2816x x -+或者()2
2316x m x --+=2+816x x + ∴-2(m-3)=8或-2(m-3)=-8 解得:m =-1或7 故选:D 【点睛】
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
7.D
解析:D 【分析】
根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】
解:老师今年x 岁,小红今年y 岁,可得:449
x y y x
y
x

故选:D . 【点睛】
此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.
8.B
解析:B 【解析】 【分析】
设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】
设馒头每个x 元,包子每个y 元,根据题意可得:
53502
115900.9x y x y +=+⎧⎨
+=÷⎩
, 故选B . 【点睛】
本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.
9.A
解析:A 【分析】
此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可
.
【详解】
同底数幂相乘,底数不变,指数相加.
m n m n a a a +⋅=
所以23235.a a a a +⋅== 故选A. 【点睛】
此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.
10.C
解析:C 【分析】
根据同底数幂的乘法法则计算即可. 【详解】
解:a •a 2=a 1+2=a 3. 故选:C . 【点睛】
本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.
11.C
解析:C 【解析】 【分析】
根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案. 【详解】
解:A 、图案自身的一部分围绕中心经旋转而得到,故错误; B 、图案自身的一部分沿对称轴折叠而得到,故错误; C 、图案自身的一部分沿着直线运动而得到,是平移,故正确; D 、图案自身的一部分经旋转而得到,故错误. 故选C . 【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.
12.D
解析:D 【分析】
利用同底数幂的乘法与合并同类项的知识求解即可求得答案. 【详解】 解:28+(-2)8
=2×28
=29.
故选:D.
【点睛】
此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.
二、填空题
13.243
【解析】
【分析】
先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.
【详解】
∵2x+3y−5=0,
∴2x+3y=5,
∴9x27y=32x
解析:243
【解析】
【分析】
先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】
∵2x+3y−5=0,
∴2x+3y=5,
∴9x⋅27y=32x⋅33y=32x+3y=35=243.
故答案为:243.
【点睛】
本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 14.【分析】
根据平方差公式即可求出答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.
解析:a b --
【分析】
根据平方差公式即可求出答案.
【详解】
解:()2222()()a b a b a b a b -+--==---,
故答案为:a b --.
【点睛】
本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 15.20
【分析】
分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.
【详解】
当腰长是4cm 时,三角形的三边是4、4、8,
∵4+4=8,
∴不满足三角形的三边关系,
当腰长是8
解析:20
【分析】
分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.
【详解】
当腰长是4cm 时,三角形的三边是4、4、8,
∵4+4=8,
∴不满足三角形的三边关系,
当腰长是8cm 时,三角形的三边是8、8、4,
∴三角形的周长是8+8+4=20.
故答案为:20
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
16.【分析】
根据积的乘方进行计算即可.
【详解】
解:,
故答案为:.
【点睛】
此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.
解析:264x y
【分析】
根据积的乘方进行计算即可.
【详解】
解:3226(2)4xy x y -=,
故答案为:264x y .
【点睛】
此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 17.0,1,2,3,4
【解析】
【分析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.
【详解】
解:去分母得3(1+x )>2(2x-1)
去括号得3+3x >4x
解析:0,1,2,3,4
【解析】
【分析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.
【详解】
解:去分母得3(1+x )>2(2x-1)
去括号得3+3x >4x-2
移项合并同类项得x <5
非负整数解是0,1,2,3,4.
【点睛】
本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.
18.②③
【分析】
在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断
即可.
【详解】
在的运算过程中,运用了上述幂的运算中的②③.
故答案为:②③.
【点睛】
此题主要考查了幂的乘方
解析:②③
【分析】 在()()33
33232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.
【详解】 在()()33
33232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.
故答案为:②③.
【点睛】
此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).
19.5
【详解】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
解析:5
【详解】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
20.7
【解析】
先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.
解:∵AB=6cm,AD
解析:7
【解析】
先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.
解:∵AB=6cm,AD=5cm,△ABD周长为15cm,
∴BD=15-6-5=4cm,
∵AD是BC边上的中线,
∴BC=8cm,
∵△ABC的周长为21cm,
∴AC=21-6-8=7cm.
故AC长为7cm.
“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC的长,题目难度中等.
21.【分析】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角
45,5
解析:()
【分析】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;
【详解】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,
∵2
45=2025,
∴第2025个点在x轴上的坐标为()
45,0,
45,5.
则第2020个点在()
45,5.
故答案为()
【点睛】
本题主要考查了规律题型点的坐标,准确判断是解题的关键.
22.2
【分析】
利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.
【详解】
解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,
∴m=2,
故答案为2
解析:2
【分析】
利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.
【详解】
解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,
∴m=2,
故答案为2.
【点睛】
本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.
23.六
【解析】
【分析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
1
解析:六
【解析】
【分析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.
【点睛】
本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
24.【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .
【详解】
解:∵是完全平方式,即

故答案为:.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式
解析:6±
【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .
【详解】
解:∵29x kx -+是完全平方式,即()2
293x kx x -+=± 236k ∴=±⨯=±.
故答案为:6±.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键
三、解答题
25.(1)8×10+1=81;(2)2n (2n +1)+1=(2n +1)2,理由见解析.
【分析】
(1)根据上面式子的规律即可写出第4个式子;
(2)探索以上式子的规律,结合(1)即可写出第n 个等式.
【详解】
解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…
(1)发现规律:第4个式子:8×10+1=81=92;
故答案为:8×10+1=81;
(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,
理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.
【点睛】
本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.
26.(1)3,0,﹣2;(2)a +b =c ,理由见解析.
【分析】
(1)直接根据新定义求解即可;
(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.
【详解】
(1)∵33=27,
∴(3,27)=3,
∵40=1,
∴(4,1)=0,
∵2﹣2=1

4
∴(2,0.25)=﹣2.
故答案为:3,0,﹣2;
(2)a+b=c.
理由:∵(3,5)=a,(3,6)=b,(3,30)=c,
∴3a=5,3b=6,3c=30,
∴3a×3b=5×6=3c=30,
∴3a×3b=3c,
∴a+b=c.
【点睛】
本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.
27.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.
【分析】
知识回顾:根据三角形内角和即可求解.
初步运用:
(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;
(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.
拓展延伸:
(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,
得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得
∠DBP+∠ECP度数;
(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,
由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=
2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.
【详解】
知识回顾:
∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,
∴∠ACD=∠A+∠B;
故答案为:∠A+∠B;
初步运用:
(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,
∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;
故答案为:80;
(2)∵∠A=70°,
∴∠ABC+∠ACB=110°,
∴∠DBC+∠ECB=360°﹣110°=250°,
故答案为:250;
拓展延伸:
(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,
∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,
∵∠BAC=70°,∠BPC=150°,
∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,
故答案为:220;
(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,
理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,
2∠A+2∠O=∠A+∠P,
∵∠O=40°,
∴∠P=∠A+80°;
(3)证明:如图,延长BP交CN于点Q,
∵BM平分∠DBP,CN平分∠ECP,
∴∠DBP=2∠MBP,∠ECP=2∠NCP,
∵∠DBP+∠ECP=∠A+∠BPC,
∠A=∠BPC,
∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,
∴∠BPC=∠MBP+∠NCP,
∵∠BPC=∠PQC+∠NCP,
∴∠MBP=∠PQC,
∴BM ∥CN .
【点睛】
本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.
28.见解析
【分析】
由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.
【详解】
解:∠B=∠CDE,理由如下:
∵ DF ∥AC ,
∴∠BFD=∠A.
∵∠BFD=∠CED ,
∴∠A=∠CED.
∴DE ∥AB ,
∴∠B=∠CDE.
【点睛】
本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
29.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩
【分析】
(1)用加减消元法求解即可;
(2)令234
x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.
【详解】
解:(1)32316x y x y -=⎧⎨+=⎩①②
, ①×3+②得:525x =,
解得:x=5,代入①中,
解得:y=2,
∴方程组的解为:52x y =⎧⎨=⎩
; (2)∵设234
x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,
4389k k k -+=-,
解得:k=-1,
∴x=-2,y=-3,z=-4,
∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩
. 【点睛】
本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.
30.38本
【分析】
先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.
【详解】
解:由题意得:4788(1)84788(1)4n n n n +--⎧⎨
+--≥⎩< ①② 由①得:12
n >19 由②得:1202
n ≤ ∴ 不等式组的解集是:1
11922
≤<n 20 n 为正整数,
20,n ∴=
478158,m n ∴=+=
15820638.∴-⨯=
答:剩下38本书.
【点睛】
本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.
31.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵70C ∠=︒,65B ∠=︒,
∴∠A ′=∠A=180°-(65°+70°)=45°,
∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;
(2)①122A ∠+∠=∠,理由如下
由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,
∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;
②221A ∠=∠+∠,理由如下:
∵2∠是ADF 的一个外角
∴2A AFD ∠=∠+∠.
∵AFD ∠是A EF '△的一个外角
∴1AFD A '∠=∠+∠
又∵A A '∠=∠
∴221A ∠=∠+∠
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-
(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
32.2021514
- 【分析】
根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.
【详解】
解:设S =1+5+52+53+ (52020)
则5S =5+52+53+54 (52021)
两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4
S -= ∴1+5+52+53+54+…+5
2020的值为2021514-. 【点睛】
本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.
33.(1)0,1,2(2)11222n n n ---=(3)22020-1
【分析】
(1)根据乘方的运算法则计算即可;
(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;
(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.
【详解】
(1)10022212-=-=,21122422-=-=,32222842-=-=,
故答案为:0,1,2;
(2)第n 个等式为:11222n n n ---=,
∵左边=()111222212n n n n ----=-=,右边=12n -,
∴左边=右边,
∴11222n n n ---=;
(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1
∴01220192020222221++++=-….
【点睛】
此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.
34.(1)见解析;(2)见解析;(3)4.
【分析】
整体分析:(1)根据平移的要求画出△A´B´C´;
(2)延长AB,过点C作AB延长线的垂线段;
(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.
【详解】
(1)如图所示
(2)如图所示.
(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使
S△ABC=S△PBC的格点P的个数有4个,故答案为4.
35.(1)每辆大货车一次可以运货5吨,每辆小货车一次可以运货3吨;(2)大货车至少需要3辆.
【分析】
(1)设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,根据“3辆大货车运货量+2辆小货车运货量=21吨,5辆大货车运货量+4辆小货车运货量=37吨”即可列出方程组,解方程组即可求出x、y的值,进而可得结果;
(2)设大货车需要m辆,根据题意可得关于m的不等式,解不等式即可求出m的范围,进一步即可求出m的最小整数值.
【详解】
解:(1)设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,根据题意,

3221
5437
x y
x y
+=


+=

,解得:
5
3
x
y
=


=


答:每辆大货车一次可以运货5吨,每辆小货车一次可以运货3吨.(2)设大货车需要m辆,则小货车需要(10-m)辆,依题意,
得()531035m m +-≥,解得:52
m ≥
, 因为m 为整数,所以m 最少是3,
即大货车至少需要3辆.
【点睛】 本题考查了二元一次方程组和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系与不等关系是解题的关键.
36.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64
【分析】
(1)根据杨辉三角的数表规律解答即可;
(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.
【详解】
解:(1)()4432234464a b a a b a b ab b +=++++;
故答案为:++++432234a 4a b 6a b 4ab b ;
(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;
故答案为:81;
②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;
故答案为:64.
【点睛】
本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。

相关文档
最新文档