地质技术Microsoft Word 文档教材

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质矿产勘查作业方法
二十多年的地质矿产勘查工作,干得有点累了,也积累了一些经验,现突然想总结发布,希望对大家有所帮助,因为是给单位年轻学员上课用的,故暂定名为“地质勘查工作作业指导讲义”,侧重地质勘查工作实际操作,以满足勘查工作生产需要为目的,不当之处请广大同仁批评指正。

§1 地质工作中常用的坐标系
坐标是表达地面位置的重要参数,从事地质勘查工作的人时时刻刻都在与坐标打交道,一切地质工作都建立在坐标定位之上,是地质工作的基础。

地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系统”或“地理坐标系统”。

在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到纸上,就必须展平,这种将球面转化为平面的过程,称为“投影”。

经由投影的过程,把球面坐标换算为平面直角坐标。

§ 1.1地理坐标系统
地质工作常用的地理坐标系统有北京54坐标系、西安80坐标系、美国WGS84坐标,目前在全国第二次土地调查中使用的2000国家大地坐标系,在地勘行业中不常用。

一个完整的坐标系统是由坐标系和基准2个方面要素所构成的。

下面主要介绍WGS-84大地坐标系、1954年北京坐标系和1980年国家大地坐标系、2000国家大地坐标系4种坐标系统及其参考椭球的基本常数(基准) 及手持GPS接收机WGS-84、1954年北京坐标系和1980年国家大地坐标系转换参数计算。

一、WGS-84大地坐标系
WGS-84(World Geodetic System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向BIHl984.0定义的协议地球极(CTP)方向,x轴指向BIHl984.0的零子午面和CTP赤道的交点,Y轴与x轴和z轴构成右手坐标系。

该椭球的参数为:
长半轴:a=6378137m;
第一偏心率:e2=0.00669437999013;
第二偏心率:e”=0.006739496742227;
扁率:F=1/298.25223563。

二、1954年北京坐标系(BJ一54)
建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的1954年北京坐标系。

该坐标系以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球,该椭球的参数为:
长半轴:a=6378245 m;
第一偏心率:e2=0.00669342162297:
第二偏心率:e”=0.00673852541468:
扁率:F=1/298.2。

高程采用1956黄海高程,系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。

原点设在青岛市观象山。

该原点以“1956年黄海高程系”计算的高程为72.289米。

该坐标系统的大地点坐标是经过局部分区平差得到的,因此存在着一定的缺陷。

三、1980年国家大地坐标系(C一80)
1978年,我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统,其大地原点在我国中部,具体地点是陕西省径阳县永乐镇。

该坐标系是参心坐标系,椭球的短轴z轴平行于地球的自转轴(由地球质心指向1968.0JYD地极原点方向),起始子午面平行于格林尼治平均天文子午面,x轴在大地起始子午面内与z轴垂直指向经度零方向;Y轴与z、x轴成右手坐标系。

该坐标系统所采用的地球椭球参数的4个几何和物理参数采用了IAGl975年的推荐值,其椭球的参数为:
长半轴:a=6378140 m;
第一偏心率:e2=0.006694384999588:
第二偏心率:e”=0.006739501819473:
扁率:F=1/298.257223563。

高程采用1985国家高程基准。

由于1956黄海高程系计算基面所依据的青岛验潮站的资料系列观测时间较短等原因(1950年~1956年),中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:
1985年国家高程基准高程=1956年黄海高程-0.029m。

1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。

四、2000国家大地坐标系
国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:
长半轴:a=6378137m
第一偏心率:e2=0.00669438002290
第二偏心率:e”=0.00673949677548
扁率:f=1/298.257222101
高程仍采用无潮汐系统。

该坐标系目前尚未在地质勘查工作中使用。

§ 1.2 平面直角坐标系统
平面直角坐标系是由地理坐标系统投影而得的,目前国际间普遍采用的一种投影,是横轴墨卡托投影(Transverse Mecator Projection),又称为高斯-克吕格投影(Gauss-Kruger Projection),是地球通过外切“中央经线”橫躺的圆柱体进行投影,在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往東西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重(图1-1)。

为了保持投影精度在可接受范围内,每次只能取中央经线两侧附近地区来投影,因此必须切割为许多投影带,将地球沿南北子午线方向,如切西瓜一般,以6度或3度分带切割为若干带状,再展成平面,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(5003560,14519660)其中14即为带号,同样所定义的东伪偏移值也需要加上带号,如14带的东伪偏移值为14500000米。

图1-1 坐标系统横轴投影示意图
在地质勘查工作中,六度带多用于中小比例尺(1:25000—1:10000)测图,带号计算公式为n=L/6(取整)+1(n-带号,L-经度坐标),中央子午线为6n-3;三度带多用于大比例尺(1:10000以下)测图,带号计算公式为n=L/3(取整)+1,中央子午线为3n。

目前世界各国军用地图所采用的 UTM 坐标系统 (Universal Transverse Mecator Projection System),也是横轴投影 6 度带的一种,将全球共分为 60 个投影带。

§ 1.3 手持GPS接收机、罗盘的调校
在地质勘查工作中通常用到手持GPS接收机及罗盘等定位工具,工作区域不同,其参数也不同,使用之前是要进行调校的。

一、手持GPS接收机坐标系统校正
由于现在我国民用卫星定位系统尚未健全,地勘工作中使用的手持GPS接收机均使用的是美国卫星信号,用的美国WS-84坐标系,其与我国应用的坐标系统之间存在着约80~100米的误差,因而使用前必须用参数将坐标转换为BJ-54或C-80坐标系,转换后的绝对定位精度可提高到5~10米,可以满足中小比例尺(小于1:10000)地质测图用。

1、位置格式设定
选择“User UTM Grid”格式,调整六度带中央子午线,投影比例选1,东西偏差为500000,南北偏差为0。

2、地图基准设定
选择“User”模式输入DX、DY、DZ、DA、DF参数。

其中DA=-108,DF=0.0000005,DX、DY、DZ的确定:
1 )在手持式GPS 接收机应用的区域内( 该区域不宜过大,一般应小于50 平方千米) ,从当地测绘部门收集该区较均匀分布 3 ~5 个GPS “B ”级网以上已知点的北京BJ-54 或西安c-80 坐标系统的坐标值(B 北纬、L 东经、h 高程、x 高程异常),然后在对应的点位上读取WGS 一84 坐标系的坐标值( B 北纬、L 东经、H 高程)。

2 )将收集到的坐标值根据不同的坐标系转换为空间坐标系的坐标值,计算公式如下:
X =(N+H)cosBcosL
Y=(N+H)cosBsinL
Z=[N(1-e2) +H] sinB
* 注:X 、Y 、Z 为大地坐标系中的三维直角坐标;N 为该点的卯酉圈曲率半径,N =a/(1-e2 sin2B)1/2,H=h+x 。

3 )利用WGS8
4 坐标系的X 、Y 、Z 值及a 、F 值减去我国坐标系对应值,得出DX 、DY 、DZ 、da 、DF 五个参数,平均后做GPS 调整参数。

4 )参数计算之后必须对其进行验证。

验证的方法是:将计算出的dX 、dY 、dZ 、da 、DF 值输入GPS 接收机。

首先在应用区域内设定3 —
5 个点的大地坐标值( 即经、纬度) ,
将其以“ddd .ddddd ”的格式分别标记在GPS 手持机中,再将GPS 接收机的网格转换为“UserGrid ”格式,分别读取已标记点的公里网纵、横坐标值,并与相对应的公里网纵、横坐标理论值( 该理论值可以通过高斯投影转换将大地坐标值转换为公里网纵、横坐标值) 进行比较,二者相差超过5 m 时要重新计算或查找出现问题的原因。

内业验证符合要求后在应用区域内选择3 ~5 个已知点进行实测,实测值与已知值相差大于10 m 时,要重新计算或查找出现问题的原因。

在精度要求不高的异常查证或预~普查阶段,可以采用从工区1:5 万或1:10 万地形图上寻找3 ~5 个三角点量取BJ-54 或C-80 坐标(根据地形图上标注),再用手持GPS 接收机到实地测量三角点的WGS-84 坐标,运用上述方法进行校正,以应急操作。

二、罗盘的校正
罗盘是地质工作中使用最广泛的定位工具,其在未调校前读数是以磁子午线为参照的,要通过地图定位,则必须调校成以真子午线为参照定位。

具体方法是:
1 、收集工作区1:5 万或1:10 万地形图,其下方有真子午线、座标纵线及磁子午线示意图(图1-
2 ),查找其真子午线与磁子午线夹角。

图1-2 磁偏角示意图图1-3 罗盘调校示意图
2 、根据真子午线与磁子午线夹角对罗盘进行调校。

地质队员常说是“东偏顺拨,西偏逆拨”,如图1-2 是东偏 4 °04 ′,用罗盘钥匙从其后调整旋纽将罗盘0 刻度线向顺时针方向拨4 °04 ′(图1-
3 )。

3 、调校后应对其进行验证。

方法是在工作区内用手持GPS 接收机定位并存两点(应尽量选择卫星接收信号较好的点)坐标查看其方位,再以罗盘实测这两点方位进行比较,二者应相符。

在精度要求不高的异常查证或预~普查阶段,可以采用从工区1:5 万或1:10 万地形图上寻找3 ~5 个三角点量取BJ-54 或C-80 坐标(根据地形图上标注),再用手持GPS 接收机到实地测量三角点的WGS-84 坐标,运用上述方法进行校正,以应急操作。

§2 地质矿产勘查野外作业
地质矿产勘查野外作业主要包括踏勘、地质剖面测量、地质填图、工程编录、样品采集等项工作。

§ 2.1 踏勘
一、地质踏勘
原则上开展地质矿产勘查野外工作之前必须进行踏勘,其主要目的和任务是:
1 、大致了解工区范围,查看工区交通、吃住及物资供给条件,选择项目组大营区及小搬家住地;
2 、通过踏勘路线大致了解工区地质条件,选择工区主干地质剖面位置等;
3 、采集必要的分析样品,为勘查工作提供必要依据。

二、矿点踏勘性检查
由于目前地质勘查市场的火爆,对有经验有地质工作者还有一种踏勘性检查工作,也就是俗称的“看矿”,是指在充分研究已有矿业权地质资料的基础上,通过现场踏勘,作出初步判断,为业主处置矿业权提供参考、建议及依据,主要的工作内容应包括:
1 、查明权证所有权归属,价款处置情况及勘查出资方;了解矿权人转让的主要原因;
2 、了解矿点位置、交通、物资供给条件;
3 、根据实地测量(多为GPS 定位),核对矿(化)体的具体位置,是否在权证范围内;
4 、了解区域成矿条件、开发现状及老窿分布,周边邻区矿山开发情况;
5 、了解物化探异常、规模、强度及与矿化体套合情况;
6 、成矿较好的地段,应初步了解矿种、矿体大致分布范围、形状、产状、规模、埋深、产出部位、含矿性,目测勾绘简单的地质矿产草图;
7 、了解矿石品位、质量、主要组份及有益有害组份含量;有用矿物含量及粒级;
8 、掌握已有资料提供的资源量情况,控制网度、332 类以上资源量的比例;
9 、了解水文、工程条件、选冶性能及开发环境等主要的开发条件;
10 、目前矿产品价格因素。

综合以上因素,根据经验作出结论,编写矿点踏勘简报,提出矿业权的处置意见及下步工作建议。

§ 2.2 地质剖面测量
一、地质剖面测制
地质剖面测量是地质填图工作的基础,在填图工作之前,必须要测制 1 - 2 条完整的地质剖面,用以划分填图单元,研究地层及构造,统一技术人员认识,为地质填图服务。

剖面比例尺的选择主要依据填图比例尺或根据任务书要求确定,一般1:5 万填图要求测1:5000 地质剖面,1:1 万测1:1000 地质剖面,以此类推。

1 、在充分收集、认真研究以往的地质资料的基础上,对工区进行了踏勘,了解工区地层分布、层序、矿体分布及矿化范围、主要岩石类型、地质构造等特征,优选基岩出露较好、地层层序较齐全、相带明显、矿化特征清晰、构造简单、接触关系和标志层清楚、具有代表性的地段进行剖面测制。

为确保剖面的实测精度,对剖面上重要的地层、矿层界线、构造线被覆盖部位应予揭露。

2 、剖面总方向与地层主要走向应大致垂直,其间夹角应大于60 °,可采用不定向剖面,允许平移或多条剖面拼接,长度视工作范围而定,应以全面控制工区内所出露地层、矿化体为原则。

3 、剖面以罗盘定位、测定地形坡度、皮尺或测绳测距的半仪器法测制,绘制出地形线,以岩性分层划分界线。

4 、剖面端点用木桩留作标记,应标注剖面起点号及导线号。

实地分层界线用小红旗、红布条作标记。

分层位置从皮尺上直接读取并标于手图和剖面上,并记录于记录表中。

5 、在测制剖面过程中,必须按比例尺要求详细分层,分层距离用皮尺丈量,地质体出露宽度在0.5 米以上者在图上应有表示,小于0.5 米,具有特殊地质意义的地质体(如矿化层、标志层)应放大表示。

6 、实测剖面应逐层对岩石和地质矿产特征进行细致的观察描述,系统地采集标本,按不同岩石类型分层采集一定数量的样品。

7 、地质记录内容应全面、准确,地质体产状及所采各种样品及照片、素描等应按有关规范的统一格式标绘于剖面图相应位置上,并予以详细访谈录。

在作文字记录时,首先注明时间、
地点、剖面编号、剖面测制目的任务、参加人员及分工,然后逐项填写表格内容:导线号、方位、导线长、坡角、产状等,逐层对岩石或地质体特征进行观察描述。

格式如下:导线号:×- ×导方位:××°导线长:××米坡角:±××°
分层位置:××米层号:×
岩性名称:×色(新鲜色)×状(构造)×化(蚀变)×粒(粒度)×(矿物)×岩
如:灰绿色厚层状硅化中细粒长石岩屑砂岩、浅肉红色块状弱褐铁矿化中粗粒二长花岗岩。

岩性描述:风化面颜色、新鲜面颜色、结构、构造、矿物含量、粒度、成份、沉积岩碎屑磨园分选情况、蚀变、矿化特征,岩层宏观特征:产状、接触界线特征,岩性、产状或蚀变等在走向倾向变化特征。

各类样品采集情况,素描、照片内容、位置等要素进行记录(剖面记录表格式见表2-1 )。

表2-1 剖面记录表格式。

8 、地质剖面图多采用展开法绘制,剖面样式见图2-1 。

图2-1 地质剖面图
9 、根据实测地质剖面和其它地质工作所取得的各项地质资料建立较合理的地层层序,查明岩层厚度、岩性、岩石组合特征及物质成份、岩相组合等。

研究地层、岩石的含矿性,尽可能确定其时代,选定标志层,划分填图单元。

10 随着剖面测制工作的进展,应加强室内整理工作,特别是当日整理、文字记录整饰、图件绘制及着墨。

11 、及时编写剖面地质小结。

内容为:
(1 )前言
a .剖面测制的目的;
b .剖面线起点座标位置、方向、长度、测制方法;
c .工作起始、完成日期、工作单位及主要工作人员分工等;
d .完成主要工作量:剖面长度、标本、样品件数。

(2 )地质成果
a .简述剖面测制区的区域构造部位及地层、构造特征;
b .地层描述;
c .岩浆岩及脉岩描述;
d .构造;
e .划分填图单元;
f .矿产(应详述);
g .新进展、新发现和新见解。

( 3 )存在问题。

二、勘查线剖面测量
勘查工作达到普查及以上阶段,为了对矿(化)体进行有效控制,针对矿(化)体必须测制勘探线剖面,其重点是针对矿(化)体进行测量,与地质剖面的区别是有深度概念,深部地质内容以工程控制为依据进行绘制。

比例尺根据任务书要求或矿体大小、延深情况确定,勘查线间距依据矿区勘查矿种的勘探类型对应规范要求而确定。

剖面方位与矿(化)体走向应大致垂直,其间夹角大于75 °,采用定向剖面,长度应以控制矿体倾向方向较全面为主,以满足深部勘探工程布设需要为原则;剖面测以RTK 或全站仪全仪器法测绘,并与矿区坐标系统联测。

勘查线剖面样式见图2-2 。

图2-2 勘探线剖面图
三、质量要求
1 、文字记录质量
( 1 )记录格式、描写内容和顺序、记量单位等符合有关规范、标准的要求。

( 2 )层次分明、重点突出、语言精炼、概念清楚、字迹清晰、重要数据及素描图及时着墨。

( 3 )分层合理,各层之间接触关系叙述清楚。

( 4 )岩石定名基本准确,岩性描述详细且与定名相符。

( 5 )蚀变与矿化、岩(矿)脉、构造和化石等特征描述详尽,素描要素齐全。

( 6 )各种产状数据齐全、准确、有代表性。

2 、剖面图质量
( 1 )比例尺和图式、图例等符合有关规范、标准要求,内容齐全、图面整洁、字迹清晰、花纹美观。

( 2 )剖面起点、终点和工程位置、地质界线及各种数据准确,按比例尺要求地质体和重要地质现象无遗漏,产状要素齐全,各种构造要素表示合理。

剖面图与平面图吻合,与文字记录相符。

(3 )柱状图内容齐全,层序合理,厚度准确,文字综述合理简练,样品、化石等位置书写正确。

3 、控制程度
露头(天然和人工)观察点密度符合有关标准(相应比例尺)的要求。

4 、采样质量
(1 )岩、矿石和化石标本及其鉴定样品采集系统有代表性,专门样品采取的种类、数量符合设计要求。

(2 )采样方法和样品重量、标本规格符合有关标准要求。

(3 )矿化部位样品采集的完整性。

(4 )按有关标准要求完成采样编录,标本样品位置和编号在文字记录和有关图、表中注记清晰,无误无漏。

5 、室内整理
( 1 )逐日整理野外现场编录资料(含标本和样品)。

( 2 )收到各类实验结果后,及时完成样品登记,并注记、补正文字记录。

( 3 )文、图按有关规定要求及时整饰着墨,每一剖面野外工作结束后及时提交有关原始资料。

( 4 )划分的填图单元的合理性。

地质报告存在的问题及其纠正的办法探讨
二、勘查工作区自然地理、经济状况内容不全
概述矿区地形地貌的主要特征、类型、绝对高度和相对高度,主要河流的最低侵蚀基准面,河流在丰(枯)水期流量及最高洪水位等。

根据有代表性的气象资料,说明矿区的气候特征、气温变化、降雨量、暴雨强度、蒸发量、相对湿度、风力、风向、雷电情况、雨季和冰冻期、冻土层深度等。

简述区内经济概况,包括燃料、电力、供水水源、建筑材料、工业农业、牧业、人口等。

应说明供水水源地,电网名称,矿区距水源地、电网距离及供水、供电满足程度。

这些内容都是未来矿山建设的外部条件,涉及到矿山建设的投资、效益甚至安全,非常重要。

但是,有的报
告内容不全,资料收集不够,主要是思想重视不够。

D见矿工程与未见矿工程之间如果具有一次线性函数关系变化规律时,可以采用“内插法”。

陕西省国土资源厅发布的《陕西省沉积钒矿地质勘查暂行规定》7.2.2.2.2“已达工业指标采样工程与未达工业指标采样工程之间的界线,依两工程中矿石品位乘矿体厚度值用内插法,依块段要求最低品位与矿体厚度乘积值圈定矿体。

”其它规范没有要求采用内插法圈定矿体边界。

E在过去的老规范、规定和报告中对见厚大矿体工程采用外推工程间距三分之二圈定矿体的原则,应该说具有一定道理。

②无限外推
自见矿工程沿走(倾)向楔形外推相应资源量类别工程间距二分之一为矿体零点尖灭边界,四分之一平推为资源量估算边界。

湖南辰州矿业股份有限公司
鱼儿山坑口
-150中段主脉XXXX 采矿场采矿方法标准设计
湖南辰州矿业股份有限公司鱼儿山坑口
鱼儿山坑口
-150中段主脉XXXX 采矿场采矿方法标准设计
审核会签单
总工程师:
生产技术发展部:
安全环保部:
鱼儿山坑口技术负责人:
鱼儿山坑口安全:
设计:
二○一○年七月二十一日
目录
第一章工程范围与编制目的 (4)
第二章采矿方法 (5)
第一节地质概况 (5)
第二节采矿方法 (7)
第三节采准工程布置 (7)
第四节回采工艺 (8)
第三章凿岩爆破与矿石运搬 (9)
第一节凿岩 (9)
第二节爆破 (13)
第三节矿石运搬 (14)
第四章采场通风与防尘 (17)
第五章安全技术措施 (18)
第一节一般规定 (18)
第二节分条块石胶结充填采矿法 (20)
第三节采场顶板安全管理措施 (22)
第六章劳动组织和主要技术经济指标 (24)
第七章灾害预防与避灾路线 (25)
第八章作业规程的学习和贯彻 (26)
第一章工程范围与编制目的
一、工程范围
本工程为鱼儿山坑口主脉XXXX采场的回采、安全与通风、支护、扒矿、装矿及运输等。

二、编制依据
1、《中华人民共和国矿山安全法》
2、《金属非金属矿山安全规程》GB16423-2006
3、《爆破安全规程》
4、《辰州矿业井下采矿安全技术操作规程》
5、《辰州矿业采掘工程质量管理规定》
6、《鱼儿山矿段地质报告补充资料》
7、设计人员收集的鱼儿山现阶段生产的实际资料
三、编制目的
使作业人员了解采矿方法与回采工艺,掌握并贯彻设计施工工艺与相关安全质量要求,确保井下采矿工作安全顺利进行。

四、采矿方法选择应遵循的基本原则
1、遵循贫富兼采、难易兼采,充分、合理开采矿产资源的原则,在不同赋存条件下的地点,采用不同的采矿方法。

2、所采用的采矿方法应该遵循技术可行、经济合理、安全可靠,应有较先进的技术经济指标,如贫化损失小、采切工作量少、劳动生产率高、成本低等。

3、应考虑原有工程设备设施的利用。

4、采用一种新的采矿方法应按研究地质资料选择采矿方法、采准工程施工。

第二章采矿方法
第一节地质概况
一、矿区地质概况
矿脉赋存于马底驿组紫红色板岩顶部,沃溪大断层下盘破碎带中。

产状与沃溪大断层基本一致,矿脉走向东西,倾向北,倾角20°~30°。

⑴、主脉:石英脉呈较规整的大脉存于蚀变带中上部或紧靠沃溪大断层产出,其形态为扁豆状。

沿走向、倾斜方向尖灭再现,或交替产出,在150中段坑道揭露的东、西矿柱,见有五个石英扁豆体,单个扁体长35~102m,厚度0.07~2.24m,由西而东石英扁豆体尖灭再现和交替出现,而在175m中段见到的石英扁豆体较150中段的要短小,扁豆体长5~50m,厚度0.1~2.53m,两石英脉扁豆体尖灭地段一般为石英细脉带、含矿蚀变或断层泥线连接。

石英细脉带由各种不同形态的石英细脉如网状、羽状、梯状石英脉共同组成的脉带称细脉带。

赋存于主脉下盘和主脉尖灭地段、主脉与支脉相交的锐角部位,石英细脉一般为短小石英细脉,厚度在5cm 以下,但也有较大的石英脉如羽状脉,厚度几公分到30cm都有,个别的厚度较大,延长在20米以上,具有一定规模者称为支脉。

细脉带是矿脉的重要组成部分,由于主脉下盘不同形态石英细脉。

相关文档
最新文档