桦甸市第二中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桦甸市第二中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0
C .﹣1
D .0或﹣1
2. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )
A .5
B .3
C .2
D .
3. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 4. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理
D.合情推理可以作为证明的步骤
5.与函数y=x有相同的图象的函数是()
A.B.C.D.
6.将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)
的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是()
A.B.πC.D.
7.已知偶函数f(x)满足当x>0时,3f(x)﹣2f()=,则f(﹣2)等于()
A.B.C.D.
8.十进制数25对应的二进制数是()
A.11001 B.10011 C.10101 D.10001
9.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
10.函数是()
A.最小正周期为2π的奇函数B.最小正周期为π的奇函数
C.最小正周期为2π的偶函数D.最小正周期为π的偶函数
11.若f(x)=﹣x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是()
A.(﹣∞,1] B.[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
12.“1<x <2”是“x <2”成立的( ) A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
13.已知一个动圆与圆C :(x+4)2+y 2
=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .
14.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .
15.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .
16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则
圆的方程为 .
17.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.
18.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
三、解答题
19.已知等差数列
满足:=2,且,成等比数列。

(1) 求数列的通项公式。

(2)记为数列
的前n 项和,是否存在正整数n ,使得
若存在,求n 的最小
值;若不存在,说明理由.
20.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;
(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2
x ∈.
21.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B
(2)若A ∪C=C ,求实数m 的取值范围.
22.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两
点.已知A ,B 的横坐标分别为,

(1)求tan (α+β)的值; (2)求2α+β的值.
23.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨
迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,
线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
24.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.
桦甸市第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵(a﹣i)•2i=2ai+2为正实数,
∴2a=0,
解得a=0.
故选:B.
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
2.【答案】D
【解析】解:不等式组表示的平面区域如图,
结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,
即|AM|min=.
故选:D.
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.3.【答案】B
4.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C.
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
5.【答案】D
【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误
B:与y=x的对应法则不一样,故B错误
C:=x,(x≠0)与y=x的定义域R不同,故C错误
D:,与y=x是同一个函数,则函数的图象相同,故D正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题6.【答案】C
【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),
因为两个函数都经过P(0,),
所以sinθ=,
又因为﹣<θ<,
所以θ=,
所以g(x)=sin(2x+﹣2φ),
sin(﹣2φ)=,
所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,
或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,
故选:C.
【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档
7.【答案】D
【解析】解:∵当x>0时,3f(x)﹣2f()=…①,
∴3f ()﹣2f (x )==…②,
①×3+③×2得:
5f (x )=,
故f (x )=

又∵函数f (x )为偶函数,
故f (﹣2)=f (2)=,
故选:D .
【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x >0时,函数f (x )的解析式,是解答的关键.
8. 【答案】A
【解析】解:25÷2=12...1 12÷2=6...0 6÷2=3...0 3÷2=1...1 1÷2=0 (1)
故25(10)=11001(2)故选A .
【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k 取余法”的方法步骤是解答本题的关键.
9. 【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C. 10.【答案】B
【解析】解:因为
=
=cos (2x+
)=﹣sin2x .
所以函数的周期为:
=π.
因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
11.【答案】D
【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,
∴单调间区间为[a,+∞)
又∵f(x)在区间[1,2]上是减函数,
∴a≤1
∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,
∵g(x)=在区间[1,2]上是减函数,
∴﹣a>2,或﹣a<1,
即a<﹣2,或a>﹣1,
综上得a∈(﹣∞,﹣2)∪(﹣1,1],
故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.12.【答案】A
【解析】解:设A={x|1<x<2},B={x|x<2},
∵A⊊B,
故“1<x<2”是“x<2”成立的充分不必要条件.
故选A.
【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.
二、填空题
13.【答案】+=1.
【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,
∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,
∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,
∵圆B经过点A(4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,
∴点B的轨迹是以A、C为焦点的椭圆,
设方程为(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2﹣c2=9
,得该椭圆的方程为
+=1.
故答案为:
+=1.
14.【答案】30°.
【解析】解:取AD的中点G,连接EG,GF则
EG DC=2,
GF AB=1,
故∠GEF即为EF与CD所成的角.
又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
15.【答案】
6,1
2
,2,
n
n
a n
n n
n
*
=


=+

≥∈
⎪⎩N
【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅
11:6n a ==;
()()()
123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
故2
2:n n n a n
+≥=
16.【答案】 (x ﹣1)2+(y+1)2=5 .
【解析】解:设所求圆的圆心为(a ,b ),半径为r , ∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x+y=0上, ∴a+b=0,①
且(2﹣a )2+(1﹣b )2=r 2
;②
又直线x ﹣y+1=0
截圆所得的弦长为,
且圆心(a ,b )到直线x ﹣y+1=0的距离为
d=
=

根据垂径定理得:r 2﹣d 2
=

即r 2﹣(
)2
=③;
由方程①②③
组成方程组,解得;
∴所求圆的方程为(x ﹣1)2+(y+1)2
=5. 故答案为:(x ﹣1)2+(y+1)2
=5.
17.【答案】2300
【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.
18.1 【



三、解答题
19.【答案】见解析。

【解析】(1)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成比数列,故有(2+d )2=2(2+4d ), 化简得d 2﹣4d=0,解得d=0或4,
当d=0时,a n =2,
当d=4时,a n =2+(n ﹣1)•4=4n ﹣2。

(2)当a n =2时,S n =2n ,显然2n <60n+800, 此时不存在正整数n ,使得S n >60n+800成立, 当a n =4n ﹣2时,S n =
=2n 2,
令2n 2>60n+800,即n 2﹣30n ﹣400>0,
解得n >40,或n <﹣10(舍去),
此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41, 综上,当a n =2时,不存在满足题意的正整数n , 当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41 20.【答案】(本小题满分13分)
解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)
①当0a >时,解()0f x '>得2x a >
或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a
+∞,()f x 的递减区间为2
(0,)a . (4分)
②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)
③当0a <时,解()0f x '>得20x a
<<,解()0f x '<得0x >或2
x a <
∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2
(,)a
-∞和(0,)+∞. (7分)
(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2
(,0)a
上递增,在(0,)+∞上递减.
∵2
2
240a f a a -⎛⎫=> ⎪⎝⎭
,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11
(2)028
f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,
∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01
(0,)2x ∈ (12分)
综上所述,当2a <-时,()f x 有唯一的零点0x ,且01
(0,)2
x ∈. (13分)
21.【答案】
【解析】解:由合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2
﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0}.
∴A={x|﹣1<x <6},
,C={x|m <x <m+9}.
(1)

(2)由A ∪C=C ,可得A ⊆C .

,解得﹣3≤m ≤﹣1.
22.【答案】
【解析】解:(1)由已知得:
.∵α,β为锐角,∴

∴.∴.
(2)∵
,∴.
∵α,β为锐角,∴,


23.【答案】(1) 2
4y x =;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222
(24)0k x k x k -++=,
2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系.
【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件
),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('
x f 不恒等于的参数的范围.
24.【答案】
【解析】解:由题意得 命题P 真时0<a <1,
命题q 真时由(2a ﹣3)2
﹣4>0解得a >或a <,
由p ∨q 真,p ∧q 假,得,p ,q 一真一假
即:


解得≤a <1或a >.
【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.。

相关文档
最新文档