晋中市初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晋中市初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
2.(2分)下列各组数中互为相反数的是()
A. 5和
B. -|-5|和-(-5)
C. -5和
D. -5和
【答案】B
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,算术平方根,立方根及开立方
【解析】【解答】A、,它们相等,因此A不符合题意;
B、-|-5|=-5,-(-5)=5,-|-5|和-(-5)是相反数,因此B符合题意;
C、=-5,它们相等,因此C不符合题意;
D、-5和是互为负倒数,因此D不符合题意;
故答案为:B
【分析】根据算术平方根、立方根、绝对值、相反数的定义,对各选项逐一判断即可得出答案。

3.(2分)下列说法中,正确的是()
①②一定是正数③无理数一定是无限小数
④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.
A. ①②③
B. ④⑤
C. ②④
D. ③⑤
【答案】D
【考点】有理数大小比较,算术平方根,近似数及有效数字,无理数的认识
【解析】【解答】解:①∵|-|=,|-|=
∴>
∴-<-,故①错误;
②当m=0时,则=0,因此≥0(m≥0),故②错误;
③无理数一定是无限小数,故③正确;
④16.8万精确到千位,故④错误;
⑤(﹣4)2的算术平方根是4,故⑤正确;
正确的序号为:③⑤
故答案为:D
【分析】利用两个负数,绝对值大的反而小,可对①作出判断;根据算术平方根的性质及求法,可对②⑤作出判断;根据无理数的定义,可对③作出判断;利用近似数的知识可对④作出判断;即可得出答案。

4.(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对82
进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()
A. 1
B. 2
C. 3
D. 4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:
∴对121只需进行3次操作后变为1,
故答案为:C
【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。

5.(2分)下列说法:①5是25的算术平方根, ②是的一个平方根;③(-4)2的平方根是±2;④立方根和算术平方根都等于自身的数只有1.其中正确的是()
A. ①②
B. ①③
C. ①②④
D. ③④
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:①5是25的算术平方根,正确;
②是的一个平方根,正确;
③(-4)2=16的平方根是±4,故③错误;
④立方根和算术平方根都等于自身的数有1和0,错误;
正确的有:①②
故答案为:A
【分析】根据算术平方根的定义,可对①作出判断;根据平方根的性质:正数的平方根有两个。

它们互为相反数,可对②③作出判断;立方根和算术平方根都等于自身的数有1和0,,可对④作出判断。

即可得出正确说法的序号。

6.(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:
①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有
这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.
其中正确的个数是()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】实数在数轴上的表示,无理数的认识
【解析】【解答】①任何无理数都是无限不循环小数,故①正确;
②实数与数轴上的点一一对应,故②错误;
③在1和3之间的无理数有无数个,故③错误;
④是无理数,故④错误;
⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;
故答案为:B.
【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。

7.(2分)不等式3x+2<2x+3的解集在数轴上表示正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】解:3x-2x<3-2
解之:x<1
故答案为:D
【分析】先求出不等式的解集,再根据不等式的解集作出判断即可。

注意:小于向左边画,用空心圆圈。

8.(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()
A. 259人
B. 441人
C. 350人
D. 490人
【答案】B
【考点】扇形统计图
【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),
故答案为:B.
【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.
9.(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。

10.(2分)在下列不等式中,是一元一次不等式的为()
A. 8>6
B. x²>9
C. 2x+y≤5
D. (x-3)<0
【答案】D
【考点】一元一次不等式的定义
【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;
B、未知数的指数不是1,不是一元一次不等式,不符合题意;
C、含有两个未知数,不是一元一次不等式,不符合题意;
D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.
故答案为:D.
【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。

二、填空题
11.(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

12.(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:

解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。

13.(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。

14.(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
15.(1分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个
【答案】110
【考点】二元一次方程的解
【解析】【解答】解:设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④
3x+16=2y+51,即,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.
【分析】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,又k是整数,且0<k<3 ,则k=1或者2,然后分别算出k=1与k=2时,甲和乙分别摸出的球的个数,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,②2x+32=2y+51,③3x+16=y+68,④3x+16=2y+51四个二元一次方程,再分别求出它们的正整数解再根据乙至少摸了两次5个球进行检验即可得出x,y的值,进而根据箱子中的球的个数至少等于两个人摸出的个数之和算出箱子中球的个数的所有情况,再比较即可算出答案。

16.(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。

三、解答题
17.(5分)把下列各数填在相应的大括号里:
,,-0.101001,,―,0.202002…, ,0,
负整数集合:( …);
负分数集合:( …);
无理数集合:( …);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,
,…);负分数集合:(-0.101001,―,,…);无理数集合:(0.202002…,
,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

18.(5分)把下列各数表示在数轴上,并比较它们的大小(用“<”连接).
,0,,,
【答案】解:
【考点】实数在数轴上的表示,实数大小的比较
【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可一一将各个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,最后根据数轴上所表示的数,右边的总比左边的大即可得出得出答案。

19.(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
20.(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
21.(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
22.(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
23.(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

24.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
25.(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对
顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。

相关文档
最新文档