措勤县二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

措勤县二中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()
A.y=±x B.y=±3x C.y=±x D.y=±x
2.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()
A.(﹣∞,﹣2)B. D.上是减函数,那么b+c()
A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣
3f x[14]f(x)的导函数y=f′(x)的图象如图所示.

A.2 B.3 C.4 D.5
4.已知表示数列的前项和,若对任意的满足,且,则()A.B.
C.D.
5.“x2﹣4x<0”的一个充分不必要条件为()
A.0<x<4 B.0<x<2 C.x>0 D.x<4
6. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA B .2bcosA
C .2bsinB
D .2bcosB
7. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
8. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为
( )
A .20
B .25
C .22.5
D .22.75
9. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22
ABC AA BC BAC π
=∠=,,,此三棱
柱各个顶点都在一个球面上,则球的体积为( ) A .
323π B .16π C.253π D .312
π
10.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312
11.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖
的人数不能少于2人,那么下列说法中错误的是( )
A .最多可以购买4份一等奖奖品
B .最多可以购买16份二等奖奖品
C .购买奖品至少要花费100元
D .共有20种不同的购买奖品方案 12.如图所示,阴影部分表示的集合是( )
A .(∁U
B )∩A B .(∁U A )∩B
C .∁U (A ∩B )
D .∁U (A ∪B )
二、填空题
13.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
14
.在数列
中,则实数a= ,b= .
15.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
16.i
是虚数单位,化简: = .
17.设平面向量()1,2,3,i a i =,满足1i
a =且120a a ⋅=,则12a a += ,123a a a ++的最大
值为 .
【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力. 18
.S
n =
+
+…+
= .
三、解答题
19
.已知向量=

,1
),=
(cos ,
),记f (
x )=

(1)求函数f (x )的最小正周期和单调递增区间;
(2)将函数
y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x
)﹣k 在
的零点个数.
20.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,
14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为3
4
. (1)求a 与b 的值;
(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,
,x2,x3的值,并写出函数f(x)的解析式;
1
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上
的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
22.在△ABC中,D为BC边上的动点,且AD=3,B=.
(1)若cos∠ADC=,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?
23.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
24.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.
(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;
(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.
措勤县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:设内切圆与AP切于点M,与AF1切于点N,
|PF1|=m,|QF1|=n,
由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①
由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,
|MF2|=|NF1|=n,
即有m﹣1=n,②
由①②解得a=1,
由|F1F2|=4,则c=2,
b==,
由双曲线﹣=1的渐近线方程为y=±x,
即有渐近线方程为y=x.
故选D.
【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.
2.【答案】B
【解析】解:由f(x)在上是减函数,知
f′(x)=3x2+2bx+c≤0,x∈,

⇒15+2b+2c≤0⇒b+c≤﹣.
故选B.
3.【答案】C
【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f(x)的图象如图所示:
因为f(0)=f(3)=2,1<a<2,
所以函数y=f(x)﹣a的零点的个数为4个.
故选:C.
【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.
4.【答案】C
【解析】
令得,所以,即,所以是以1为公差的等差数列,首项为,
所以,故选C
答案:C
5.【答案】B
【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0
∴不等式的解集为A={x|0<x<4},
因此,不等式x2﹣4x<0成立的一个充分不必要条件,
对应的x范围应该是集合A的真子集.
写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,
故选:B.
6.【答案】D
【解析】解:∵A=2B,
∴sinA=sin2B,又sin2B=2sinBcosB,
∴sinA=2sinBcosB,
根据正弦定理==2R得:
sinA=,sinB=,
代入sinA=2sinBcosB得:a=2bcosB.
故选D
7.【答案】D
【解析】解:由题意,S k+2﹣S k=,
即3×2k=48,2k=16,
∴k=4.
故选:D.
【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.
8.【答案】C
【解析】解:根据频率分布直方图,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位数应在20~25内,
设中位数为x,则
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴这批产品的中位数是22.5.
故选:C.
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
9.【答案】A
【解析】
考点:组合体的结构特征;球的体积公式.
【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.
10.【答案】A
【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为=0.648.
故选:A.
11.【答案】D
【解析】【知识点】线性规划
【试题解析】设购买一、二等奖奖品份数分别为x,y,
则根据题意有:,作可行域为:
A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

其中,x最大为4,y最大为16.
最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。

所以A、B、C正确,D错误。

故答案为:D
12.【答案】A
【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,
∴对应的集合表示为A∩∁U B.
故选:A.
二、填空题
13.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能
取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
14.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
15.【答案】(1,2).
【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),
∴0<a<1,x>0,
若f(2x﹣1)<f(2﹣x),
则,
解得:1<x<2,
故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
16.【答案】﹣1+2i.
【解析】解: =
故答案为:﹣1+2i .
17.【答案】2,21+. 【解析】∵22
2
12112221012a a a a a a +=+⋅+=++=,∴122a a +=,
而2
2
2
123
121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,
∴12321a a a ++≤,当且仅当12a a +与3a 1.
18.【答案】
【解析】解:∵ ==(

),
∴S n =
+
+…+
= [(1﹣)+(﹣)+(﹣)+…+(﹣
)=(1﹣

=

故答案为:

【点评】本题主要考查利用裂项法进行数列求和,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)∵向量=(,1),=(cos ,),记f (x )=.
∴f (x )=cos +=
sin +cos +=sin (+
)+,
∴最小正周期T==4π,
2k π﹣≤+
≤2k π+

则4k π﹣
≤x ≤4k π+
,k ∈Z .
故函数f (x )的单调递增区间是[4k π﹣,4k π+
],k ∈Z ;
(2))∵将函数y=f (x )=sin (+
)+的图象向右平移个单位得到函数解析式为
:y=g (x )
=sin[(x

+)
]+ =sin

﹣)
+,
∴则y=g (x )﹣k=sin (x
﹣)
+﹣k ,
∵x ∈[0

]
,可得:﹣
≤x
﹣≤π,
∴﹣≤sin
(x ﹣)≤1, ∴0≤sin
(x ﹣

+
≤,
∴若函数y=g (x )﹣k 在[0
,]上有零点,则函数y=g (x )的图象与直线y=k 在[0

]上有交点,
∴实数k 的取值范围是[0
,].
∴当k <0或k
>时,函数y=g (x )﹣k
在的零点个数是0;
当0≤k <1时,函数y=g (x )﹣k
在的零点个数是2;
当k=0或
k=时,函数y=g (x )﹣k
在的零点个数是1.
【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零
点的判断方法,考查计算能力.
20.【答案】
【解析】(1)由题意,得1
1424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=
⎪⎩
.…………………4分
(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分
而4
1
433221)0(=⨯⨯=
=X P ;1231(2)2344P X ==⨯⨯=;
1131(4)2348P X ==⨯⨯=; 1211135
(6)23423424P X ==⨯⨯+⨯⨯=;
1211(8)23412P X ==⨯⨯=; 1111
(10)23424P X ==⨯⨯=;
1111
(12)23424
P X ==⨯⨯=.…………………9分
所以X 的分布列为:
于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12
=.……………12分
21.【答案】
【解析】解:(Ⅰ)由条件知,,

∴,




(Ⅱ)∵函数f (x )的图象向右平移个单位得到函数g (x )的图象,


∵函数g (x )在区间[0,m](m ∈(3,4))上的图象的最高点和最低点分别为M ,N ,
∴最高点为,最低点为
,∴,


,又0≤θ≤π,∴

【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,函数y=Asin (ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
22.【答案】
【解析】(本小题满分12分) 解:(1)∵,
∴,
∴…2分(注:先算∴sin ∠ADC 给1分) ∵
,…3分

,…5分
(2)∵∠BAD=θ, ∴
, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
23.【答案】
【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2
x
=-2(x+a
2
)(x-a)
x.
①当a<0时,由f′(x)<0得x>-a
2

由f′(x)>0得0<x<-a
2.
此时f(x)在(0,-a
2
)上单调递增,
在(-a
2
,+∞)上单调递减;
②当a>0时,由f′(x)<0得x>a,
由f′(x)>0得0<x<a,
此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)假设存在满足条件的实数a,
∵x∈[1,e]时,f(x)∈[e-1,e2],
∴f(1)=-1+a≥e-1,即a≥e,①
由(1)知f(x)在(0,a)上单调递增,
∴f(x)在[1,e]上单调递增,
∴f(e)=-e2+a e+e2≤e2,即a≤e,②
由①②可得a=e,
故存在a=e,满足条件.
24.【答案】
【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.。

相关文档
最新文档