高中物理带电粒子在磁场中的运动模拟试题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在磁场中的运动模拟试题及解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).
(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;
(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);
(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .
【答案】(1)01
5
2mv B ql = (2)2
058mv l Q kq = (3)0253mv B ql π= 2
20(23)9mv E ql
ππ-=
【解析】 【分析】 【详解】
(1)粒子从P 到A 的轨迹如图所示:
粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25
r l l α=
= 由洛伦兹力提供向心力可得2
011
v qv B m r =
解得:
0 1
5
2
mv B
ql
=
(2)粒子从P到A的轨迹如图所示:
粒子绕负点电荷Q做匀速圆周运动,设半径为r2
由几何关系得
2
5
2cos8
l
r l
α
==
由库仑力提供向心力得
2
2
22
v
Qq
k m
r r
=
解得:
2
5
8
mv l
Q
kq
=
(3)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,在电场中做类平抛运动
粒子在电场中的运动时间
00
sin3
5
l l
t
v v
α
==
根据题意得,粒子在磁场中运动时间也为t,则
2
T
t=

2
2m
T
qB
π
=
解得0
2
5
3
mv
B
ql
π
=
设粒子在磁场中做圆周运动的半径为r,则0v t r
π
=
解得:35l r π
=
粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t m
α-=
⋅ 解得:2
20(23)9mv E ql
ππ-=
2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.
(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;
(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)
(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)2
2e eU v v
m
=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】
(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=
ne
I t
求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
2211
22
e e U mv mv =
- 解得:22e eU
v v m
=
+
(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =
ne I t
224d dN
n N a a
ππ=
=⨯
解得4alt
N ed
π=
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为
B .设此轨迹圆的半径为 r ,则
222
(2)a r r a -=+
2
v Bev m r
=
解得:43mv
B ae
=
3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、
Q 两点之间的距离为
2
L
,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【答案】(1)2U E L =
,M eU
v m
=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3
348M R L m t v eU
ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】
(1)在加速电场中,从P 点到Q 点由动能定理得:2
012
eU mv = 可得02eU
v m
=
电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU
==y 轴方向做匀加速直线运动,2122L eE t m
=⨯ 由以上各式可得:2U E L
=
电子运动至M 点时:22
0(
)M Ee v v t m
=+即:M eU
v m
=设v M 的方向与x 轴的夹角为θ,
02cos 2
M v v θ=
= 解得:θ=45°。

(2)如图甲所示,电子从M 点到A 点,做匀速圆周运动,因O 2M =O 2A ,O 1M =O 1A ,且O 2A ∥MO 1,所以四边形MO 1AO 2为菱形,即R =L
由洛伦兹力提供向心力可得:
2
M M
v ev B m
R
=

2
M
mv mv
B
eR L e
==
3
3
4
8
M
R L m
t
v eU
ππ
==。

(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径2R',即222
R L
'=
因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:22)2
n R L
'=(n=1,2,3,…)
电子在磁场中做圆周运动的轨道半径
M
mv
R
eB
'=
解得:
22
n emU
B=n=1,2,3,…)
电子在磁场变化的半个周期内恰好转过
1
4
圆周,同时在MN间的运动时间是磁场变化周期
的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是
1
42
T
T=
又0
2m
T
eB
π
=
则T 的表达式为22T n emU
=
(n =1,
2,3,…)。

4.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔
1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。

在0t =时刻将一个质量为m 、电量为q -(0q >)的粒子由1S 静止释放,粒子在电场力的作用下向右运动,在0
2
T t =时刻通过2S 垂直于边界进入右侧磁场区。

(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达2S 时的速度大小v 和极板距离d
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。

(3)若已保证了粒子未与极板相撞,为使粒子在03t T =时刻再次到达2S ,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小
【答案】(1)00
24T qU d m =
(2)0
24mU B L q
<
(3)2m T qB π=
087m
B qT π=
【解析】(1)粒子由1S 至2S 的过程中,根据动能定理得
2
012qU mv =

由①式得
2qU v m
=

设粒子的加速度大小为a ,由牛顿第二定律得
U q
ma d =

由运动学公式得

联立③④式得

(2)设磁感应强度大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,

要使粒子在磁场中运动时不与极板相撞,须满足

联立②⑥⑦式得

(3)设粒子在两边界之间无场区向左匀速运动的过程用时为1t ,有
1
d vt =


若粒子再次达到2S 时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时
间为2t ,根据运动学公式得

联立○9○10○
11式得

设粒子在磁场中运动的时间为t
⒀ 联立⑩⑿⒀式得

设粒子在匀强磁场中做匀速圆周运动的周期为T ,由○6式结合运动学公式得
2m
T qB π=

由题意得
T t
= ⒃
联立⒁⒂⒃式得
87m B qT π=

5.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B
(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L
【答案】(1)0mv ed ; (2)02y d ≤≤;(3)9
4
d ; 【解析】
(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d
电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:2
0v ev B m r
=
解得:0
mv B ed
=
(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.
设此时的圆心位置为O ',有:sin 30r
O a '=

3OO d O a ='-' 解得OO d '=
即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==
电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤
设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:
根据运动学公式有:0x v t =
212eE y t m
=
⋅ y eE v t m
=
tan y v v θ=
tan 3L
d x
θ=
- 解得:(32)2L d y y =即9
8
y d =
时,L 有最大值
解得:94
L d =
当322d y y -=
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.
6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.
(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B
②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2
010U e y y t dm
∆=∆= 【解析】 【详解】
(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:
2222
000max 00000311222y U e U e U e y at v t t t t dm dm dm
=
+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:
220min 001122U e y at t dm
=
= 最远位置和最近位置之间的距离:1max min y y y ∆=-,
2
010U e y t dm
∆=
(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:
sin L R θ
=
设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1
sin y v v θ=,
式中00y U e
v t dm = 又:1
mv R Be =
解得:00
U t B dL
=
②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.
由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2
010U e y y t dm
∆=∆=
7.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:
(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;
(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);
(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.
【答案】(1)
242222
22
2
a
k
L B d
q m U
E
mB d
= (2)
1
()
2
x
y d
L
=+ (3)
1
1
2
2
4
==
5
Uq
y
W d
Uq
W y
d
【解析】
【详解】
据题意分析可作出abc三个粒子运动的示意图,如图所示.
(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.
U
q Bqv d
=, Bd
U v =
, L LBd t v U
=
=, 222122a Uq L B qd
y t dm mU ==
, 21()2a a k U U qy E m d Bd
=- 242222
22
2a k L B d q m U E mB d =
(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.
设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得
12=122
d
y L L x +, 1()2
x y d L =+
(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2
如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 2
2111·2Uq y t md =,11y Uq v t md =
122
221·2y Uq t m y t d v +=,
2
2158qU y t md
=
, 124=5
y y , 1
1224==5
Uq
y W d Uq W y d
8.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第
一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:
(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)
3E
B
(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603
d d d
r sin sin α=
==︒ 根据2
00mv qv B r =得0233qBd
v m
=
粒子在第一象限中做类平抛运动,则有2
1602qE r cos t m -︒=(); 00
y v qEt tan v mv α==
联立解得03E
v B
=
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.
则有:x=v 0t , 2
y v y t =
得0322y v y tan x v α
=== 由几何知识可得 y=r-rcosα= 13
2r d = 则得2
3
x d =
所以粒子在第三、四象限圆周运动的半径为1253
23d d R d sin α⎛⎫+ ⎪⎝⎭==
粒子进入第三、四象限运动的速度00432v qBd
v v cos α=
==
根据2
'v qvB m R
=
得:B′=2.4B
考点:带电粒子在电场及磁场中的运动
9.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。

一群质量为m ,带电量为q 的带正电的粒子从磁场的左侧以与极板平行的相同速度射入磁场。

不计重力,则
(1)离极板AB 距离为
2
R
的粒子能从极板上的小孔P 射入电场,求粒子的速度? (2)极板CD 上多长的区域上可能会有带电粒子击中?
(3)如果改变极板的极性而不改变板间电压,发现有粒子会再次进入磁场,并离开磁场区域。

计算这种粒子在磁场和电场中运动的总时间。

【答案】(1)入射粒子的速度qBR
v m
=
;(2)带电粒子击中的长度为222222B R d q x mU
=;(3)总时间12
2m dBR t t t qB U π=+=+
【解析】 【详解】
(1)洛伦兹力提供向心力,2
mv qvB r
=,解得mv r qB = 根据作图可解得,能从极板上的小孔P 射入电场,r R = 所以,入射粒子的速度qBR
v m
=
(2)所有进入磁场的粒子都能从P 点射入电场,从最上边和最下边进入磁场的粒子将平行极板进入电场,这些粒子在垂直于电场方向做匀加速直线运动,F qU a m md
=
= 212
d at =
解得t =
沿极板运动的距离x vt ==
有带电粒子击中的长度为2x =
(3)能再次进入磁场的粒子应垂直于极板进入电场,在电场中运动的时间
122
v dBR t a U
== 在磁场中运动的时间为22
T
t =,22R m T v qB ππ==
所以2m
t qB
π=
总时间122m
dBR t t t qB
U
π=+=
+
10.如图所示的xOy 坐标系中,Y 轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B ,方向垂直于xOy 平面向外.Q 1、Q 2两点的坐标分别为(0,L)、(0,-L),坐标为(-
,0)处的C 点固定一平行于y 轴放置的绝缘弹性挡板,C 为挡板中点.带电粒子与弹性绝缘挡板碰撞前后,沿y 轴方向分速度不变,沿x 轴方向分速度反向,大小不变.现有质量为m ,电量为+q 的粒子,在P 点沿PQ 1方向进入磁场,α=30°,不计粒子重力.
(1)若粒子从点Q1直接通过点Q2,求:粒子初速度大小.
(2)若粒子从点Q1直接通过坐标原点O,求粒子第一次经过x轴的交点坐标.
(3)若粒子与挡板碰撞两次并能回到P点,求粒子初速度大小及挡板的最小长度.
【答案】(1)23qBL
(2)(
3
L,)(3)
4
9
L
【解析】
(3)粒子初速度大小为,挡板的最小长度为
试题分析:(1)由题意画出粒子运动轨迹如图甲所示,粒子在磁场中做圆周运动的半径大小为R1,由几何关系得R1cos30°=L (1)
粒子磁场中做匀速圆周运动,有: (2)
解得: (3)
(2)由题意画出粒子运动轨迹如图乙所示,设其与x轴交点为M,横坐标为x M,由几何关系知:2R2cos30°=L (4)
x M=2R2sin30° (5)
则M点坐标为() (6)
(3)由题意画出粒子运动轨迹如图丙所示,
粒子在磁场中做圆周运动的半径大小为R3,
偏转一次后在y负方向偏移量为△y1,由几何关系得:△y1=2R3cos30° (7)
为保证粒子最终能回到P,粒子每次射出磁场时速度方向与PQ2连线平行,与挡板碰撞后,速度方向应与PQ1连线平行,每碰撞一次,粒子出进磁场在y轴上距离△y2(如图中A、E间距)可由题给条件得:
(8)
当粒子只碰二次,其几何条件是:3△y1﹣2△y2=2L (9)
解得: (10)
粒子磁场中做匀速圆周运动,有: (11)
解得: (12)
挡板的最小长度为: (13)
解得: (14)
11.如图所示,平面直角坐标系xoy的第二、三象限内有方向沿y轴正向的匀强电场,第
2
L,磁扬场的方向垂直于坐标平面向里,磁场边界与y轴相切于O点,在x轴上坐标为(-L,0)的P点沿与x轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m,电荷量为q,粒子经电场偏转垂直y轴射出电场,粒子进人磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求
(1)粒子从y轴上射出电场的位置坐标;
(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;
(3)粒子从P点射出到出磁场运动的时间为多少?
【答案】(1)(0,1
2
L)(2)
2
2
mv
E
qL
=0
2
2
mv
B
qL
=(3)
00
2(1)
L L
t
v
π
+
=
【解析】
【分析】
(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.
(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.
(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.
【详解】
(1)粒子在电场中的运动为类平抛运动的逆运动,
水平方向:L=v0cosθ•t1,
竖直方向:y=1
2
v0sinθ•t1,
解得:y=1
2 L,
粒子从y轴上射出电场的位置为:(0,1
2 L);
(2)粒子在电场中的加速度:a=qE
m

竖直分位移:y=1
2
a t12,
解得:
2
2
mv
E
qL =;
粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,
由几何知识得:AC 与竖直方向夹角为45°, 2y=22
L , 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,
粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2
v r
, 其中,粒子的速度:v=v 0cosθ, 解得:02mv B =; (3)粒子在电场中的运动时间:100
2L L t v cos v θ==, 粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =
-, 粒子做运动直线运动的时间:20
(22)2x L t v v ==, 粒子在磁场中做圆周运动的时间:301122442m L t T qB v ππ=
=⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=
)00
212L L v v π++; 【点睛】 本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.
12.(加试题)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。

左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。

离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。

在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束
离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。

已知OP=0.5r 0,OQ=r 0,N 、P 两点间的电势差2NP mv U
q =,4cos θ5
=,不计重力和离子间相互作用。

(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小; (2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两東离子,求ΔB B
的最大值 【答案】(1)2000
mv E qr =,00B mv qr =;(2)01.5r ;(3)12% 【解析】 【详解】
(1)径向电场力提供向心力:2c c c v E q m r = 2c c c mv E qr = c c
mv B qr = (2)由动能定理:22110.50.522
c NP mv mv qU ⨯-⨯= 245NP c c qU v v v m =+
= 或0.5152
c mv r r qB == 2cos 0.5c l r r θ=-
解得 1.5c l r =
(3)恰好能分辨的条件:
000 22cos
2
11
r r r
B B
B B
θ
-=
∆∆
-+
解得00
17412
B
B

=-≈
13.如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O为圆心,GH为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m、电量
为+q的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;
(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为
2mv
qD

4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【答案】(1)
2
mv
qd
(2)
4mv
qD

4
3
mv
qD
(3)5.5πD
【解析】
【分析】
【详解】
(1)粒子在电场中,根据动能定理2
1
22
d
Eq mv
⋅=,解得
2
mv
E
qd
=
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E
R

2
1
1
v
qvB m
r
=,解得
4mv
B
qD
=
则当外切时,半径为
e
R

2
1
2
v
qvB m
r
=,解得
4
3
mv
B
qD
=
(2)若Ⅰ区域的磁感应强度为220
932qB L m U =,则粒子运动的半径为
0010016819
U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2
v qvB m r
=; 设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=;034
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝;1056
U L U L =
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2)
联立上述各式可得:s=5.5πD
14.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为。

相关文档
最新文档