巴东县高中2019-2020学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴东县高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知△ABC 中,a=1,
b=,B=45°,则角A 等于( )
A .150°
B .90°
C .60°
D .30° 2. 下列函数中,为偶函数的是( )
A .y=x+1
B .
y=
C .y=x 4
D .y=x 5
3. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .250
5. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( ) A .(0,10)
B
.(
,10)
C
.(
,+∞)
D .(0
,
)∪(10,+∞)
6. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )
A .{x|x ≥1}
B .{x|1≤x <2}
C .{x|0<x ≤1}
D .{x|x ≤1}
7. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z
z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z << 8.
与向量=(1,﹣3,2)平行的一个向量的坐标是( ) A
.(,1,1) B .(﹣1,﹣3,2) C
.(﹣
,,﹣1) D
.(,﹣3,﹣
2
)
9. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在
10.已知函数211,[0,)22
()13,[,1]2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4
B .1[,
86 C .31[,)162 D .3
[,3)8
11.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题
12.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
二、填空题
13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.
14.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=
,
则f ()= .
15.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
16.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .
17.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
18.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
三、解答题
19.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),
(1)求{a n }的通项公式;
(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .
20.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.
21.已知函数f(x)=ax2﹣2lnx.
(Ⅰ)若f(x)在x=e处取得极值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的单调区间;
(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.22.求曲线y=x3的过(1,1)的切线方程.
23.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.
24.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)
巴东县高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:∵,B=45°
根据正弦定理可知
∴sinA==
∴A=30°
故选D.
【点评】本题主要考查正弦定理的应用.属基础题.
2.【答案】C
【解析】解:对于A,既不是奇函数,也不是偶函数,
对于B,满足f(﹣x)=﹣f(x),是奇函数,
对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,
对于D,满足f(﹣x)=﹣f(x),是奇函数,
故选:C.
【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.
3.【答案】A
【解析】解:由奇函数的定义可知:若f(x)为奇函数,
则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;
而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,
显然满足f(0)=0,但f(x)为偶函数.
由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.
故选:A.
4.【答案】A
【解析】解:分层抽样的抽取比例为=,
总体个数为3500+1500=5000,
∴样本容量n=5000×=100.
5.【答案】D
【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),
因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,
由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.
故选:D.
【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.
6.【答案】B
【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},
则∁U B={x|x≥1},
则A∩(∁U B)={x|1≤x<2}.
故选:B.
【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.
7.【答案】A
【解析】
考点:对数函数,指数函数性质.
8.【答案】C
【解析】解:对于C中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,
因此与向量=(1,﹣3,2)平行的一个向量的坐标是.
【点评】本题考查了向量共线定理的应用,属于基础题.
9. 【答案】C
【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论. 【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角. 故选:C . 10.【答案】C 【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,
由1324x +=,可得1
4
x =,
由213x =,可得x =(负舍),即有12111,422x x ≤<≤≤2
21143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
11.【答案】A
【解析】解:时,sinx 0=1;
∴∃x 0∈R ,sinx 0=1; ∴命题p 是真命题;
由x 2+1<0得x 2
<﹣1,显然不成立;
∴命题q 是假命题;
∴¬p 为假命题,¬q 为真命题,p ∨q 为真命题,p ∧q 为假命题; ∴A 正确. 故选A .
【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R 满足x 2
≥0,命题¬p ,p ∨q ,p ∧q 的真假和
命题p ,q 真假的关系.
12.【答案】A
【解析】解:∵f (0)=﹣2<0,f (1)=1>0,
∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
二、填空题
13.【答案】26 【解析】
试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和
11313713()
13262
a a S a +=
==.
考点:等差数列的性质和等差数列的和.
14.【答案】 1 .
【解析】解:∵f (x )是定义在R 上的周期为2的函数,
∴
=1.
故答案为:1.
【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.
15.【答案】 (3,1) .
【解析】解:由(2m+1)x+(m+1)y ﹣7m ﹣4=0,得 即(2x+y ﹣7)m+(x+y ﹣4)=0, ∴2x+y ﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
16.【答案】(,+∞).
【解析】解:由题意,a>1.
故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.
构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,
由f′(x)=0,得x=log a(log a e),
x>log a(log a e)时,f′(x)>0,f(x)递增;
0<x<log a(log a e),f′(x)<0,f(x)递减.
则x=log a(log a e)时,函数f(x)取到最小值,
故有﹣log a(log a e)>0,解得a>.
故答案为:(,+∞).
【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.
17.
【解析】
18.【答案】2.
【解析】解:∵f(0)=2,
∴f(f(0))=f(2)=4+2a=4a,
所以a=2
故答案为:2.
三、解答题
19.【答案】
【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)
因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)
(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12
分)
【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.
20.【答案】
【解析】解:(1)∵,将其代入C1得:,
∴圆C1的直角坐标方程为:.
由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).
∴直线l1的极坐标方程为:(ρ∈R).
(2),可得⇒,
∴.
【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
21.【答案】
【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.
经检验,a=符合题意.
(Ⅱ)
1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.
2)当a>0时,
①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;
②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.
综上所述,当a≤时,f(x)的减区间是(0,e],
当a>时,f(x)的减区间是,增区间是.
(Ⅲ)当时,由(Ⅱ)知f(x)的最小值是f()=1+lna;
易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna;
注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0,
故由题设知,
解得<a<e2.
故a的取值范围是(,e2)
22.【答案】
【解析】解:y=x3的导数y′=3x2,
①若(1,1)为切点,k=3•12=3,
∴切线l:y﹣1=3(x﹣1)即3x﹣y﹣2=0;
②若(1,1)不是切点,
设切点P(m,m3),k=3m2=,
即2m2﹣m﹣1=0,则m=1(舍)或﹣
∴切线l:y﹣1=(x﹣1)即3x﹣4y+1=0.
故切线方程为:3x﹣y﹣2=0或3x﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.
23.【答案】
【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,
∴BD⊥AC,可知A(),
故,m=2;
(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,
设E(x1,y1),由于A,E均在椭圆T上,则
,
由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,
显然x1≠x0,从而=,
∵AE⊥AC,∴k AE•k AC=﹣1,
∴,
解得,
代入椭圆方程,知.
【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.
24.【答案】
【解析】解:(Ⅰ).
当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;
当0<a<1时,由f'(x)=0得,,
故f(x)在上单调递增,在上单调递减,在上单调递增;
当a<0时,由f'(x)=0得,,
f(x)在上单调递减,在上单调递增.
证明:(Ⅱ)由(I)知,0<a<1,且,
所以α+β=0,αβ=a﹣1.
.
由0<a<1得,0<β<1.
构造函数.
,
设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),
则,
因为0<x<1,
所以,h'(x)>0,
故h(x)在(0,1)上单调递增,
所以h(x)>h(0)=0,即g'(x)>0,
所以g(x)在(0,1)上单调递增,
所以,
故.。