东坡初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东坡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)下列说法中,不正确的个数有().
①所有的正数都是整数. ②一定是正数. ③无限小数一定是无理数.
④没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.
A. 3个
B. 4个
C. 5个
D. 6个
【答案】D
【考点】平方根,实数及其分类,有理数及其分类,无理数的认识
【解析】【解答】解:①如是正数,但不是整数,故①说法错误.
②当a=0时,,不是正数,故②说法错误.
③无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数是无理数,故③说法错误.
④的结果是正数,有平方根,故④说法错误.
⑤0既不是正数,也不是负数,故⑤说法错误.
⑥带根号且开不尽的数一定是无理数,故⑥说法错误.
故不正确的说法有6个.
故答案为:D.
【分析】本题主要考查有理数和无理数的相关定义,熟记以下几点:(1)实数包括有理数和无理数;(2)有理数包括正数(正整数和正分数)、0和负数(负整数、负分数);(3)无理数:无限不循环小数;(4)小数分为:有限小数和无限小数(无限不循环小数,无限循环小数);(5)无限循环小数是有理数,无限不循环小数是无理数.
2.(2分)下列计算正确的是()
A. B. C. ±3 D.
【答案】B
【考点】算术平方根,有理数的乘方
【解析】【解答】解:A.∵-22=-4,故错误,A不符合题意;
B.∵-=-3,故正确,B符合题意;
C.∵=3,故错误,C不符合题意;
D.∵(-2)3=-8,故错误,D不符合题意;
故答案为:B.
【分析】A、D根据乘方的运算法则计算即可判断对错;B、C根据算术平方根或者平方根计算即可判断对错. 3.(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。
4.(2分)是二元一次方程的一个解,则a的值为()
A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。
5.(2分)下列各式中正确的是()
A. B. C. D.
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A、,故A选项符合题意;
B、,故B选项不符合题意;
C、,故C选项不符合题意;
D、,故D选项不符合题意;
故答案为:A.
【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
6.(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵无理数有:,
故答案为:A.
【分析】无理数:无限不循环小数,由此即可得出答案.
7.(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:二元一次方程x-2y=1 ,
当时,,故A. 是方程x-2y=1 的解;
当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;
当x=-1 时,y=-1 ,故 D. 是方程x-2y=1 的解,
故答案为:B
【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
8.(2分)已知是方程组的解,则a+b+c的值是()
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:将代入方程得
,
①+②+③得4(a+b+c)=12,
∴a+b+c=3,
故答案为:A.
【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。
9.(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代
入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。
10.(2分)下列各式中是二元一次方程的是()
A.x+3y=5
B.﹣xy﹣y=1
C.2x﹣y+1
D.
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;
B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;
C. 2x﹣y+1,不是方程,不符合题意;
D. ,不是整式方程,不符合题意,
故答案为:A.
【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。
11.(2分)二元一次方程7x+y=15有几组正整数解()
A.1组
B.2组
C.3组
D.4组
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:方程可变形为y=15﹣7x.
当x=1,2时,则对应的y=8,1.
故二元一次方程7x+y=15的正整数解有,,共2组.
故答案为:B
【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。
12.(2分)在实数, ,,中,属于无理数是()
A. 0
B.
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】在实数, ,,中,属于无理数是,
故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.
二、填空题
13.(1分)是二元一次方程ax+by=11的一组解,则2017﹣2a+b=________.
【答案】2028
【考点】代数式求值,二元一次方程的解
【解析】【解答】解:∵是二元一次方程ax+by=11的一组解,
∴代入得:﹣2a+b=11,
∴2017﹣2a+b=2017+11=2028,
故答案为:2028.
【分析】将二元一次方程的解代入方程,求出﹣2a+b的值,再整体代入求值。
14.(1分)如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.
【答案】105°
【考点】对顶角、邻补角,垂线
【解析】【解答】解:∵∠AOC=90°,∠1=15°,
∴∠BOC=∠AOC-∠1=90°-15°=75°,
又∵∠BOC+∠2=180°,
∴∠2=180°-∠BOC=180°-75°=105°.
故答案为:105°.
【分析】根据角的运算结合已知条件得∠BOC=75°,由补角定义得∠2=180°-∠BOC即可得出答案.
15.(1分)我们知道的整数部分为1,小数部分为,则的小数部分是________.
【答案】
【考点】估算无理数的大小
【解析】【解答】解:∵,
∴的整数部分为2,
∴的小数部分为,
故答案为:.
【分析】由于的被开方数5介于两个相邻的完全平方数4与9之间,根据算数平方根的性质,被开方数越
大,其算数平方根就越大即可得出,从而得出的整数部分是2,用减去其整数部分即可得出其小数部分。
16.(1分)解方程组,小明正确解得,小丽只看错了c解得,则当x=﹣1时,代数式ax2﹣bx+c的值为________.
【答案】6.5
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:把代入方程组得:,
解②得:c=5,
把代入ax+by=6得:﹣2a+b=6③,
由①和③组成方程组,
解得:a=﹣1.5,b=3,
当x=﹣1时,ax2﹣bx+c=﹣1.5×(﹣1)2﹣3×(﹣1)+5=6.5,
故答案为:6.5.
【分析】先将小明求的方程组的解代入方程组,求出c的值,再将小丽求得的解代入方程组中的第一个方程,
然后建立方程组,求出方程组的解,然后将a、b的值代入代数式求值。
17.(1分)若方程组的解也是方程2x-ay=18的解,则a=________.
【答案】4
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:,
∵①×3﹣②得:8x=40,
解得:x=5,
把x=5代入①得:25+6y=13,
解得:y=﹣2,
∴方程组的解为:,
∵方程组的解是方程2x﹣ay=18的解,
∴代入得:10+2a=18,解得:a=4,
故答案为:4.
【分析】利用加减消元法求出方程组的解,再将方程组的解代入方程2x-ay=18,建立关于a的方程,求解即可。
18.(1分)对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.
【答案】3
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:∵x◎y=ax+by,3◎2=7,4◎(﹣1)=13,
∴,①+②×2得,11a=33,解得a=3;把a=3代入①得,9+2b=7,解得b=﹣1,
∴2◎3=3×2﹣1×3=3.
故答案为:3.
【分析】由题意根据3◎2=7,4◎(﹣1)=13知,当x=3、y=2时可得方程3a+2b=7,;当x=4、-1时,可得方程4a-b=13,解这个关于a、b的方程组可求得a、b的值,则当x=2、y=3时,2◎3 的值即可求解。
三、解答题
19.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
20.(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。
【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。
所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。
21.(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的
统计图表
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘
以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
22.(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
23.(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。
24.(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。
25.(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
26.(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
27.(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。