麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体
积为1V ,多面体BCE ADF -的体积为2V ,则
=2
1
V V ( )1111] A .4
1 B .31 C .21
D .不是定值,随点M 的变化而变化
2. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )
A .p ⌝是真命题
B .q ⌝是真命题
C .p q ∨是真命题
D .()()p q ⌝∨⌝是真命题 3. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )
A .
B .
C .
D .
4. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题
( B ) “0a >,0b >”是“
2b a
a b
+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”
(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥
5. 若抛物线y 2=2px 的焦点与双曲线﹣
=1的右焦点重合,则p 的值为( )
A .﹣2
B .2
C .﹣4
D .4
6. 已知,则f{f[f (﹣2)]}的值为( ) A .0
B .2
C .4
D .8
7. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )
A .
B .
C .
D .
8. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )
A .
725
B .725- C. 725± D .2425
9. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的1
2
,则圆锥的体积( )
A.缩小到原来的一半
B.扩大到原来的倍
C.不变
D.缩小到原来的
16
10.设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β
11.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()
A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0
12.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()
A.i≤21 B.i≤11 C.i≥21 D.i≥11
二、填空题
13.若实数x,y满足x2+y2﹣2x+4y=0,则x﹣2y的最大值为.
14.已知函数f(x)=,若f(f(0))=4a,则实数a=.
15.
17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.
16.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.
17.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.
18.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.
三、解答题
19.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).
(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;
(2)求函数y=f (x )在区间[1,+∞)上是增函数的概率.
20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;
(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.
21.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;
(2)求数列{
}的前n 项和.
22.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).
(Ⅰ)求矩阵M 的逆矩阵M ﹣1
;
(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.
23.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.
(1)证明://MN 平面PAB ;
(2)求直线AN 与平面PMN 所成角的正弦值;
24.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;
(Ⅱ)求证:;
(Ⅲ)若,判断直线与平面是否垂直?并说明理由.
麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B 【
解
析
】
考
点:棱柱、棱锥、棱台的体积. 2. 【答案】C 【解析】]
试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;
()()p q ⌝∨⌝是假命题.故选C.
考点:命题真假判断.
3. 【答案】 C
【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,
∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|
=|cosx||sinx|=|sin2x|,
其周期为T=,最大值为,最小值为0,
故选C .
【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用. 4. 【答案】D
【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,
故选项A 错误;对于选项B ,2b a
a
b
+≥的充分必要条件是,a b 同号,
故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .
5. 【答案】D
【解析】解:双曲线
﹣
=1的右焦点为(2,0),
即抛物线y 2=2px 的焦点为(2,0), ∴=2, ∴p=4. 故选D .
【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.
6. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0
∴f (f (﹣2))=f (0) ∵0=0
∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0
∴f (2)=22
=4
即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .
7. 【答案】 B
【解析】解:∵函数的周期为T==
,
∴ω=
又∵函数的最大值是2,相应的x 值为
∴
=
,其中k ∈Z
取k=1,得φ=
因此,f (x )的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
8. 【答案】A 【解析】
考
点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 9. 【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2
113
V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为2
22111(2)326V r h r h ππ=⨯=,所以12
2V V =,故选A.
考点:圆锥的体积公式.1 10.【答案】D
【解析】解:对于A ,设正方体的上底面为α,下底面为β,直线c 是平面β内一条直线 因为α∥β,c ⊂β,可得c ∥α,而正方体上底面为α内的任意直线b 不一定与直线c 平行 故b ⊂α,c ∥α,不能推出b ∥c .得A 项不正确;
对于B ,因为α⊥β,设α∩β=b ,若直线c ∥b ,则满足c ∥α,α⊥β, 但此时直线c ⊂β或c ∥β,推不出c ⊥β,故B 项不正确; 对于C ,当b ⊂α,c ⊄α且b ∥c 时,可推出c ∥α.
但是条件中缺少“c⊄α”这一条,故C项不正确;
对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b
结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题
故选:D
【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.
11.【答案】A
【解析】解:由题意可设所求的直线方程为x﹣2y+c=0
∵过点(﹣1,3)
代入可得﹣1﹣6+c=0 则c=7
∴x﹣2y+7=0
故选A.
【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣
2y+c=0.
12.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
二、填空题
13.【答案】10
【解析】
【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.
【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,
即圆心为(1,﹣2),半径为的圆,(如图)
设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,
经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.
故答案为:10.
14.【答案】2.
【解析】解:∵f(0)=2,
∴f(f(0))=f(2)=4+2a=4a,
所以a=2
故答案为:2.
15.【答案】
【解析】解:∵f(x)=a x g(x)(a>0且a≠1),
∴=a x,
又∵f′(x)g(x)>f(x)g′(x),
∴()′=>0,
∴=a x是增函数,
∴a>1,
∵+=.
∴a1+a﹣1=,解得a=或a=2.
综上得a=2.
∴数列{}为{2n}.
∵数列{}的前n项和大于62,
∴2+22+23+…+2n==2n+1﹣2>62,
即2n+1>64=26,
∴n+1>6,解得n>5.
∴n的最小值为6.
故答案为:6.
【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.16.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
17.【答案】18.2
【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,
∵x=20,
∴y=0.9×20+0.2=18.2(亿元).
故答案为:18.2.
【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.
18.【答案】.
【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,
由几何概型的计算方法,
可以得出所求事件的概率为P=,
故答案为:.
【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况
函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件
所以函数y=f(x)有零点的概率为
(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件
所以函数y=f(x)在区间[1,+∞)上是增函数的概率为
【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.
20.【答案】(1)证明见解析;(2)1 8 .
【解析】
试题解析:(1)证明:取PD中点R,连结MR,RC,
∵//MR AD ,//NC AD ,1
2
MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,
∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .
(2)由已知条件得1AC AD CD ===,所以4
ACD S ∆=, 所以111328
A QCD Q ACD ACD V V S PA --∆==
⨯⨯=.
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 21.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.
∴
,解得
,
∴a n ﹣1+(n ﹣1)=n ﹣2.
(2)=
.
∴数列{
}的前n 项和S n =﹣1+0++
+…+
,
=
+0+
+…+
+
,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n =.
22.【答案】
【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则即=,
∴M=.
又det(M)=﹣3,
∴M﹣1=;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则=M﹣1=,
即,
∴代入4x+y﹣1=0,得,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.
23.【答案】(1)证明见解析;(2.
【解析】
试
题解析:
(2)在三角形AMC 中,由2
2,3,cos 3
AM AC MAC ==∠=
,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,
∴平面ABCD ⊥平面PAD ,且平面ABCD
平面PAD AD =,
∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,
在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
在Rt PAM ∆中,由PA AM PM AF =,得AF =sin ANF ∠=
所以直线AN 与平面PMN .1
考点:立体几何证明垂直与平行.
24.【答案】
【解析】【知识点】垂直平行
【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.
因为,平面,平面,
所以平面.
又因为,
所以平面平面.
又因为平面,
所以平面.
(Ⅱ)证明:因为底面,底面,
所以.
又因为,,
所以平面.
又因为底面,
所以.
(Ⅲ)结论:直线与平面不垂直.
证明:假设平面,
由平面,得.
由棱柱中,底面,
可得,,
又因为,
所以平面,
所以.
又因为,
所以平面,
所以.
这与四边形为矩形,且矛盾,故直线与平面不垂直.。