九年级上学期第二次月考数学试卷 (解析版)(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期第二次月考数学试卷 (解析版)(2)
一、选择题
1.若点()10,A y ,()21,B y 在抛物线()2
13y x =-++上,则下列结论正确的是( )
A .213y y <<
B .123y y <<
C .213y y <<
D .213y y <<
2.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(
1
4
,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )
A .1
4
-
≤b ≤1 B .5
4
-
≤b ≤1 C .9
4-
≤b ≤12
D .9
4
-
≤b ≤1 3.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1 B .k≥-1 C .k <-1 D .k≤-1 4.下列方程有两个相等的实数根是( )
A .x 2﹣x +3=0
B .x 2﹣3x +2=0
C .x 2﹣2x +1=0
D .x 2﹣4=0
5.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若
26ADC ∠=︒,则B 的度数为( )
A .30
B .42︒
C .46︒
D .52︒ 6.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2 B .2 C .−4 D .4 7.一个扇形的半径为4,弧长为2π,其圆心角度数是( )
A .45
B .60
C .90
D .180
8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月
B .1月,2月,3月
C .3月,12月
D .1月,2月,3
月,12月
9.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )
A .73
B .234+
C .
14
33
D .
22
33
10.一元二次方程x 2﹣3x =0的两个根是( )
A .x 1=0,x 2=﹣3
B .x 1=0,x 2=3
C .x 1=1,x 2=3
D .x 1=1,x 2=﹣3
11.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析
式为( ) A .y =32x −2
B .y =32x +2
C .y =3()2
2x -
D .y =3()2
2x +
12.如图,如果从半径为6cm 的圆形纸片剪去
1
3
圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )
A .2cm
B .4cm
C .6cm
D .8cm
13.在△ABC 中,∠C =90°,tan A =1
3
,那么sin A 的值是( ) A .
12
B .
13
C 10
D 310
14.下列方程中,有两个不相等的实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+x +1=0 C .x 2+1=0 D .x 2+2x +1=0 15.一组数据10,9,10,12,9的平均数是( )
A .11
B .12
C .9
D .10
二、填空题
16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.
17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.
18.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.
19.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 20.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____. 21.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.
22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).
23.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.
24.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线
OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为
__________.
25.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径
2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .
26.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则
2
MN
PM =_____.
27.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.
28.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.
29.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.
30.若二次函数2
4y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________
三、解答题
31.在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .
(1)求这个二次函数的关系解析式 ,x 满足什么值时 y ﹤0 ?
(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P ,使△ACP 面积最大?若存在,求出点 P 的坐标;若不存在,说明理由
(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q ,使以 A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
32.如图1,在平面直角坐标系中,已知抛物线2
5y ax bx =++与x 轴交于()10
A -,,()
B 5,0两点,与y 轴交于点
C .
(1)求抛物线的函数表达式;
(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐
标;
(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标.
33.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙
10
8
7
9
8
10
10
9
10
9
(1)计算乙队的平均成绩和方差;
(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 34.如图,BD 、CE 是ABC 的高.
(1)求证:ACE ABD ∽;
(2)若BD =8,AD =6,DE =5,求BC 的长.
35.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数
y kx b =+,且65x =时,55y =;75x =时,45y =.
()1求一次函数y kx b =+的表达式;
()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为
多少元时,商场可获得最大利润,最大利润是多少元?
四、压轴题
36.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .
①若△AOF 为等腰三角形,求⊙O 的面积;
②若BC =3,则30CG+9=______.(直接写出答案).
37.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;
(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;
(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.
38.如图,抛物线2
)1
2
(0y ax x c a =-
+≠交x 轴于,A B 两点,交y 轴于点C .直线1
22
y x =
-经过点,B C .
(1)求抛物线的解析式;
(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是
t .
①当PCM ∆是直角三角形时,求点P 的坐标;
②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).
39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.
(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;
(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;
(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.
40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.
(1)直接写出点A、B、C的坐标及抛物线的对称轴;
(2)求⊙P的半径;
(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;
(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
将x=0和x=1代入表达式分别求y1,y2,根据计算结果作比较.
【详解】
当x=0时,y1= -1+3=2,
当x=1时,y2= -4+3= -1,
∴213y y <<. 故选:A. 【点睛】
本题考查二次函数图象性质,对图象的理解是解答此题的关键.
2.B
解析:B 【解析】 【分析】
延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出
PB PA
NA NC
=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣
32
)2
+
94,根据二次函数的性质以及1
4
≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】
解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN . 在△PAB 与△NCA 中,
9090APB CNA PAB NCA CAN ∠∠︒
⎧⎨
∠∠︒-∠⎩
==== , ∴△PAB ∽△NCA , ∴
PB PA
NA NC
=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴
31
y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94
, ∵﹣1<0,1
4
≤x≤3, ∴x =
32时,y 有最大值94,此时b =1﹣94=﹣54
, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣5
4
≤b≤1. 故选:B .
【点睛】
本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.
3.C
解析:C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当
时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
4.C
解析:C
【解析】
【分析】
先根据方程求出△的值,再根据根的判别式的意义判断即可.
【详解】
A、x2﹣x+3=0,
△=(﹣1)2﹣4×1×3=﹣11<0,
所以方程没有实数根,故本选项不符合题意;
B、x2﹣3x+2=0,
△=(﹣3)2﹣4×1×2=1>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
C、x2﹣2x+1=0,
△=(﹣2)2﹣4×1×1=0,
所以方程有两个相等的实数根,故本选项符合题意;
D、x2﹣4=0,
△=02﹣4×1×(﹣4)=16>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
【点睛】
本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.
5.D
解析:D
【解析】
【分析】
连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解.
【详解】
连接CO ,
∵26ADC ∠=︒
∴∠AOC=252ADC ∠=︒
∵//OA BC
∴∠OCB=∠AOC=52︒
∵OC=BO ,
∴B =∠OCB=52︒
故选D.
【点睛】
此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.
6.B
解析:B
【解析】
分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.
详解:把x=1代入方程得1+k-3=0,
解得k=2.
故选B .
点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
7.C
解析:C
【解析】
根据弧长公式即可求出圆心角的度数.【详解】
解:∵扇形的半径为4,弧长为2π,

4 2
180

π

=
解得:90
n=,即其圆心角度数是90︒
故选C.
【点睛】
此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.8.D
解析:D
【解析】
【分析】
【详解】
当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.
故选D
9.C
解析:C
【解析】
【分析】
由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,
PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.
【详解】
解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,
∴易证AE⊥BC,
∵A、C关于BD对称,
∴PA=PC,
∴PC+PE=PA+PE,
∴当A、P、E共线时,PE+PC的值最小,即AE的长.
观察图象可知,当点P与B重合时,PE+PC=6,
∴BE=CE=2,AB=BC=4,
∴在Rt△AEB中,BE=
∴PC+PE的最小值为
∴点H的纵坐标a=
∵BC ∥AD , ∴AD PD BE PB
= =2,
∵BD =
∴PD =233
⨯=
∴点H 的横坐标b =
3,
∴a +b ==; 故选C .
【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
10.B
解析:B
【解析】
【分析】
利用因式分解法解一元二次方程即可.
【详解】
x 2﹣3x =0,
x (x ﹣3)=0,
x =0或x ﹣3=0,
x 1=0,x 2=3.
故选:B .
【点睛】
本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
11.D
解析:D
【解析】
【分析】
先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.
【详解】
解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的
坐标为(-2,0),
∴平移后的抛物线解析式为:y=3(x+2)2.
故选:D .
【点睛】
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
12.B
解析:B
【解析】
【分析】
因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.
【详解】
解:∵从半径为6cm 的圆形纸片剪去
13圆周的一个扇形, ∴剩下的扇形的角度=360°×
23=240°, ∴留下的扇形的弧长=
24061880ππ⨯=, ∴圆锥的底面半径248r ππ
=
=cm ; 故选:B.
【点睛】
此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 13.C
解析:C
【解析】
【分析】
根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.
【详解】
tan A =BC AC =13
,BC =x ,AC =3x , 由勾股定理,得
AB x ,
sin A =BC AB
故选:C.
【点睛】
本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.14.A
解析:A
【解析】
【分析】
逐项计算方程的判别式,根据根的判别式进行判断即可.
【详解】
解:
在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;
在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;
在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.
【点睛】
本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.
15.D
解析:D
【解析】
【分析】
利用平均数的求法求解即可.
【详解】
这组数据10,9,10,12,9的平均数是1
(10910129)10 5
++++=
故选:D.
【点睛】
本题主要考查平均数,掌握平均数的求法是解题的关键.
二、填空题
16.3
【解析】
【分析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴
解析:3
【解析】
【分析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×80
360

2
9
×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
17.y=2(x+2)2-3
【解析】
【分析】
根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:根据“上加下减,左加右减”的原则可知,
二次函数y=2x2的图象向左平移2个单位,再向下平移
解析:y=2(x+2)2-3
【解析】
【分析】
根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:根据“上加下减,左加右减”的原则可知,
二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
18.∠P=∠B(答案不唯一)
【解析】
【分析】
要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.
【详解】
解:这个条件
解析:∠P=∠B(答案不唯一)
【解析】
【分析】
要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可
以是∠B=∠P或∠C=∠Q或AP AQ AB AC
=.
【详解】
解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,
故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC
=.
【点睛】
本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.19.-5.
【解析】
【分析】
根据一元二次方程根与系数的关系即可求解.
【详解】
∵,是关于的一元二次方程的两根,
∴,
∴,
故答案为:.
【点睛】
本题考查了一元二次方程根与系数的关系,如果,是方
解析:-5.
【解析】
【分析】
根据一元二次方程根与系数的关系即可求解.
【详解】
∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,
∴12121
4x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,
故答案为:5-.
【点睛】
本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程2
0x px q ++=的两根,那么12x x p +=﹣,12x x q =. 20.720(1+x )2=845.
【解析】
【分析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.
【解析】
【分析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.
【详解】
解:设该企业全年收入的年平均增长率为x ,
则2018的全年收入为:720×(1+x )
2019的全年收入为:720×(1+x )2.
那么可得方程:720(1+x )2=845.
故答案为:720(1+x )2=845.
【点睛】
本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).
21.(2,﹣3)
【解析】
【分析】
根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).
【详解】
抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题
解析:(2,﹣3)
【解析】
【分析】
根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
【详解】
抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 22.【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C是线段AB的黄金分割点且AC>BC,
∴AC=AB.
故答案为:.
【点睛】
本题考查了黄金分割的定义,点C是线段AB的黄金分
【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C是线段AB的黄金分割点且AC>BC,
∴AC=
1
2
AB.
故答案为.【点睛】
本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则
1
2
AC
BC
=,
正确理解黄金分割的定义是解题的关键.
23.25%
【解析】
【分析】
设每次降价的百分比为x,根据前量80,后量45,列出方程,解方程即可得到
答案.
【详解】
设每次降价的百分比为x ,

解得:x1=0.25=25%,x2=1.75(不合
解析:25%
【解析】
【分析】
设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)
45x ,解方程即可
得到答案.
【详解】
设每次降价的百分比为x , 280(1)45x ,
解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)
故答案为:25%.
【点睛】
此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.
24.【解析】
【分析】
圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再
解析:【解析】
【分析】
圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .
【详解】
解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D
∵2OP =,6OQ =,
∴PQ=OQ -OP=4 根据垂径定理,PN=
122PQ = ∴ON=PN +OP=4
在Rt △OND 中,∠O=45°
∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r
∵圆C 与OB 相切于点M ,
∴∠CMD=90°
∴△CMD 为等腰直角三角形
∴CM=DM=r ,22CM r =
∴NC=ND -CD=42r
根据勾股定理可得:NC 2+PN 2=CP 2 即()222422r r -+= 解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去) 故答案为:23.
【点睛】
此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.
25.【解析】
【分析】
易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.
【详解】
圆锥的底面周长cm ,
设圆锥的母线长为,则: ,
解得,
故答案为.
【点睛】

解析:【解析】
【分析】
易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.
【详解】
圆锥的底面周长224ππ=⨯=cm ,
设圆锥的母线长为R ,则:
1204180
R ππ⨯=, 解得6R =,
故答案为6.
【点睛】
本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 26.【解析】
【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.
【详解】
解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,
∴点P 的坐标为(1
解析:【解析】
【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM
即可解答本题. 【详解】
解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,
∴点P 的坐标为(1,2),
设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121
a a a a a a a a -+-+=-+-+=2, 故答案为:2.
【点睛】
本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2
MN PM .
27.或
【解析】
【分析】
分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.
【详解】
解:当点
解析:αβ=或180αβ+︒=
【解析】
【分析】
分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.
【详解】
解:当点C 在优弧AB 上时,如图,
连接OA 、OB 、OC ,
∵PA 是⊙O 的切线,
∴∠PAO=90°,
∴∠OAC=α-90°=∠OCA ,
∵∠AOC=2∠ABC=2β,
∴2(α-90°)+2β=180°,
∴180αβ+︒=

当点C 在劣弧AB 上时,如图,
∵PA 是⊙O 的切线,
∴∠PAO=90°,
∴∠OAC= 90°-α=∠OCA ,
∵∠AOC=2∠ABC=2β,
∴2(90°-α)+2β=180°,
∴αβ=.
综上:α与β的关系是180αβ+︒=
或αβ=. 故答案为:αβ=或180αβ+︒=
. 【点睛】
本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.
28.16
【解析】
【分析】
根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.
【详解】
解:如
解析:16
【解析】
【分析】
根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.
【详解】
解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,
由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,
∵⊙O 半径为2,根据垂径定理得:
∴522
=5, 设小正方形的边长为x ,则AB=
12x , 则在直角△OAB 中,
OA 2+AB 2=OB 2,
即()()
22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,
∴四个小正方形的面积和=242=16⨯.
故答案为:16.
【点睛】
本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.
29.1或1.75或2.25s
【解析】
试题分析:∵AB 是⊙O 的直径,
∴∠C=90°.
∵∠ABC=60°,
∴∠A=30°.
又BC=3cm,
∴AB=6cm.
则当0≤t<3时,即点E 从A 到B 再到
解析:1或1.75或2.25s
【解析】
试题分析:∵AB 是⊙O 的直径,
∴∠C=90°.
∵∠ABC=60°,
∴∠A=30°.
又BC=3cm, ∴AB=6cm .
则当0≤t <3时,即点E 从A 到B 再到O (此时和O 不重合).
若△BEF 是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E 与点O 重合,即t=1; 当∠BEF=90°时,则BE=BF=34,此时点E 走过的路程是214
或274,则运动时间是74s 或94s .
故答案是t=1或
74或94
. 考点:圆周角定理. 30.【解析】
【分析】
当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图
解析:18b -<<
【解析】
【分析】
当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.
【详解】
解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,
当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,
当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,
当直线处于直线m 的位置:
联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,
则△=4+4b=0,解得:b=-1;
当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,
故-1<b <8;
故答案为:-1<b <8.
【点睛】
本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.
三、解答题
31.(1)
24
2
33
y x x
=--+,
1
3
x<-或
2
1
>
x;(2)P
35
,
22
⎛⎫
-

⎝⎭
;(3)1234
(5,0),(1,0),(27,0),(27,0)
--+-
Q Q Q Q
【解析】
【分析】
(1)将点A(﹣3,0),B(1,0)带入y=ax2+bx+2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时y﹤0;
(2)设出P点坐标2
24
2
33
m m m
⎛⎫
--+

⎝⎭
,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO
S S S S
=+-,带入各个三角形面积算法可得出
PAC
S与m之间的函数关系,分析即可得出面积的最大值;
(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.【详解】
解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:
0932
02
a b
a b
=-+


=++

解得:
2
3
4
3
a
b

=-
⎪⎪

⎪=-
⎪⎩
∴二次函数解析式为
24
2
33
y x x
=--+.
由图像可知,当x3
<-或x1
>时y﹤0;
综上:二次函数解析式为
24
2
33
y x x
=--+,当x3
<-或x1
>时y﹤0;
(2)设点P坐标为2
24
2
33
m m m
⎛⎫
--+

⎝⎭
,,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.。

相关文档
最新文档