巨野县二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巨野县二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 某几何体的三视图如图所示,则它的表面积为( )
A
. B
. C
. D
.
2. 设x ,y ∈R
,且满足,则x+y=( )
A .1
B .2
C .3
D .4
3. 设n S 为数列{}n a 的前n 项的和,且*3
(1)()2
n n S a n =
-∈N ,则n a =( ) A .3(32)n n
- B .32n + C .3n D .132n -⋅
4. 函数f (x )的图象向右平移1
=( ) A .e x+1
B .e x ﹣1
C .e ﹣x+1
D .e ﹣x ﹣1
5. 若某程序框图如图所示,则输出的n 的值是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .3
B .4
C .5
D .6
6. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .0a <<
C .02a <<
D .以上都不对
7. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )
A .725
B .725- C. 725± D .2425
8. 设0<a <b 且a+b=1,则下列四数中最大的是( )
A .a 2+b 2
B .2ab
C .a
D .
9. 下面各组函数中为相同函数的是( )
A .f (x )=
,g (x )=x ﹣1
B .f (x )=
,g (x )=
C .f (x )=ln e x 与g (x )=e lnx
D .f (x )=(x ﹣1)0与g (x )=
10.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆
1)1()3(22=-++y x 上,使得2
π
=
∠APB ,则31≤≤n ;命题:函数x x
x f 3log 4
)(-=
在区间 )4,3(内没有零点.下列命题为真命题的是( )
A .)(q p ⌝∧
B .q p ∧
C .q p ∧⌝)(
D .q p ∨⌝)(
11.已知α是三角形的一个内角,且,则这个三角形是( )
A .钝角三角形
B .锐角三角形
C .不等腰的直角三角形
D .等腰直角三角形
12.三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a
二、填空题
13.已知角α终边上一点为P (﹣1,2),则值等于 .
14.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .
15.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2
=1上,当△ABC 的面积最小时,点C 的坐标为 .
16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .
17.已知向量,满足42
=,2||=,4)3()(=-⋅+,则与的夹角为 .
【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
三、解答题
19.函数f (x )=sin (ωx+φ)(ω>0,|φ|<)的部分图象如图所示
(Ⅰ)求函数f (x )的解析式
(Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,其中a <c ,f (A )=,且a=,b=
,求△ABC
的面积.
20.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;
(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;
(3)当m=0时,求证:f (x )≥x 2+x 3
.
21.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).
(I)若∠AOB=α,求cosα+sinα的值;
(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.
22.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.
(1)求实数a的值;
(2)若函数g(x)存在单调递减区间,求实数b的取值范围;
(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.
23.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)求A∪B;
(2)求(∁U A)∩B;
(3)求∁U(A∩B).
24.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
巨野县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1. 【答案】 A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2, ∴
母线长为
,
圆锥的表面积S=S 底面+S 侧面
=×π×12
+×2×
2+
×π×
=2+
.
故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
2. 【答案】D
【解析】解:∵(x ﹣2)3
+2x+sin (x ﹣2)=2, ∴(x ﹣2)3
+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,
∵(y ﹣2)3
+2y+sin (y ﹣2)=6,
∴(y ﹣2)3
+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,
设f (t )=t 3
+2t+sint ,
则f (t )为奇函数,且f'(t )=3t 2
+2+cost >0,
即函数f (t )单调递增.
由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,
即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),
∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性
质.
3. 【答案】C
【解析】1111223(1)2
3(1)2
a S a a a a ⎧
==-⎪⎪⎨⎪+=-⎪⎩,1239
a a =⎧⎨=⎩,
经代入选项检验,只有C 符合. 4. 【答案】D
【解析】解:函数y=e x
的图象关于y 轴对称的图象的函数解析式为y=e ﹣x
,
而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x
的图象关于y 轴对称,
所以函数f (x )的解析式为y=e ﹣(
x+1)
=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.
故选D .
5. 【答案】C
【解析】解:由程序框图知:算法的功能是求满足P=1+3+…+(2n ﹣1)>20的最小n 值,
∵P=1+3+…+(2n ﹣1)=×n=n 2>20,∴n ≥5,
故输出的n=5. 故选:C .
【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.
6. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0
(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 7. 【答案】A 【解析】
考
点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222
sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定
理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 8. 【答案】A
【解析】解:∵0<a <b 且a+b=1
∴
∴2b >1
∴2ab ﹣a=a (2b ﹣1)>0,即2ab >a
又a 2+b 2﹣2ab=(a ﹣b )2
>0 ∴a 2+b 2
>2ab
∴最大的一个数为a 2+b 2
故选A
9. 【答案】D
【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;
对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;
对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;
故选:D .
【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 10.【答案】A 【解析】
试题分析:命题p :2
π
=
∠APB ,则以AB 为直径的圆必与圆()
()1132
2
=-++y x 有公共点,所以
121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()x
x
x f 3log 4-=
,()0log 144
3<-=f ,()0log 3
4
333>-=
f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .
考点:复合命题的真假.
【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2
π
=
∠APB ,因此在以AB 为直径的圆上,又点P 在圆
1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数
x x
x f 3log 4
)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.
11.【答案】A
【解析】解:∵(sin α+cos α)2
=,∴2sin αcos α=﹣,
∵α是三角形的一个内角,则sin α>0, ∴cos α<0, ∴α为钝角,∴这个三角形为钝角三角形.
故选A . 【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的
形状.
12.【答案】A
【解析】解:∵a=0.52=0.25,
b=log20.5<log21=0,
c=20.5>20=1,
∴b<a<c.
故选:A.
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
二、填空题
13.【答案】.
【解析】解:角α终边上一点为P(﹣1,2),
所以tanα=﹣2.
===﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.
14.【答案】6
【解析】解:根据题意,得;
∵f(2x)=2f(x),
∴f(34)=2f(17)
=4f()=8f()
=16f();
又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,
∴f()=1﹣|﹣3|=,
∴f(2x)=16×=2;
当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;
当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,
解得x=6;
故答案为:6.
【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.
15.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
16.【答案】4.
【解析】解:∵sinA,sinB,sinC依次成等比数列,
∴sin2B=sinAsinC,由正弦定理可得:b2=ac,
∵c=2a,可得:b=a,
∴cosB===,可得:sinB==,
∵•=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC=acsinB==4.
故答案为:4.
2
17.【答案】
3
【解析】
18.【答案】{x|﹣1<x<1}.
【解析】解:∵A={x|﹣1<x<3},B={x|x<1},
∴A∩B={x|﹣1<x<1},
故答案为:{x|﹣1<x<1}
【点评】本题主要考查集合的基本运算,比较基础.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,
∴ω==2,
又x=时,2×+φ=+2kπ,得φ=2kπ﹣,(k∈Z)
又∵|φ|<,
∴φ=﹣,
∴f(x)=sin(2x﹣)…6分
(Ⅱ)由f(A)=,可得sin(2A﹣)=,
∵a<c,
∴A为锐角,
∴2A﹣∈(﹣,),
∴2A﹣=,得A=,
由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,
∵c>0,∴解得c=4.
∴△ABC的面积S=bcsinA==…12分
【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.
20.【答案】
【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.
因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.
(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,
令f'(x)=0,得x=﹣2,或x=﹣m,
当m>2时,﹣m<﹣2.列出下表:
x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)
f'(x)+0 ﹣0 +
f(x)↗me﹣m↘(4﹣m)e﹣2↗
当x=﹣m时,f(x)取得极大值me﹣m.
当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,
所以f(x)无极大值.
当m<2时,﹣m>﹣2.列出下表:
x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)
f'(x)+0 ﹣0 +
f(x)↗(4﹣m)e﹣2↘me﹣m↗
当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,
所以
(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,
当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,
所以当x=0时,φ(x)取得最小值0.
所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,
因此x2e x≥x2+x3,即f(x)≥x2+x3.
【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.
21.【答案】
【解析】
解:(Ⅰ)点A是单位圆与x轴正半轴的交点,B(﹣,).
可得sinα=,cosα=,∴cosα+sinα=.
(Ⅱ)因为P(cos2θ,sin2θ),A(1,0)所以==(1+cos2θ,sin2θ),
所以===2|cosθ|,因为,
所以=2|cosθ|∈,
||的最大值.
【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力.22.【答案】
【解析】解:(1)∵f(x)=x+alnx,
∴f′(x)=1+,
∵f(x)在x=1处的切线l与直线x+2y=0垂直,
∴k=f′(x)|x=1=1+a=2,
解得a=1.
(2)∵g(x)=lnx+x2﹣(b﹣1)x,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
即x++1﹣b<0有解,
∵定义域x>0,
∴x+≥2,
x+<b﹣1有解,
只需要x+的最小值小于b﹣1,
∴2<b﹣1,
解得实数b的取值范围是{b|b>3}.
(3)∵g(x)=lnx+x2﹣(b﹣1)x,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
x1+x2=b﹣1,x1x2=1,
∵x>0,设μ(x)=x2﹣(b﹣1)x+1,
则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]
=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)
=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)
=ln﹣(﹣),
∵0<x1<x2,
∴设t=,0<t<1,
令h(t)=lnt﹣(t﹣),0<t<1,
则h′(t)=﹣(1+)=<0,
∴h(t)在(0,1)上单调递减,
又∵b≥,∴(b﹣1)2≥,
由x1+x2=b﹣1,x1x2=1,
可得t+≥,
∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,
∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,
故g(x1)﹣g(x2)的最小值为﹣2ln2.
【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.
23.【答案】
【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)A∪B={1,2,3,4,5,7}
(2)(∁U A)={1,3,6,7}
∴(∁U A)∩B={1,3,7}
(3)∵A∩B={5}
∁U(A∩B)={1,2,3,4,6,7}.
【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.
24.【答案】
【解析】
【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;
(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;
(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.
【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.
因为ABCD是正方形,所以AC⊥BD,
从而AC⊥平面BDE.…(4分)
解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.
因为BE与平面ABCD所成角为600,即∠DBE=60°,
所以.
由AD=3,可知,.
则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.
设平面BEF的法向量为=(x,y,z),则,即.
令,则=.
因为AC⊥平面BDE,所以为平面BDE的法向量,.
所以cos.
因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)
(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).
则.
因为AM∥平面BEF,
所以=0,即4(t﹣3)+2t=0,解得t=2.
此时,点M坐标为(2,2,0),
即当时,AM∥平面BEF.…(12分)。