信丰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信丰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )
A .12
B .16
C .20
D .24
2. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12x x x f x x x ì-#ï=íp <?ïî
,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
3. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )
A .
B .
C .
D .
4. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =
,若在数列{c n }
中c 8>c n (n ∈N *
,n ≠8),则实数p 的取值范围是( )
A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
5. 下列函数中,为偶函数的是( )
A .y=x+1
B .y=
C .y=x 4
D .y=x 5
6. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )
A .只有减区间没有增区间
B .是f (x )的增区间
C .m=±1
D .最小值为﹣3
7. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
8. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )
A .(﹣2,﹣1)∪(1,2)
B .(﹣2,﹣1)∪(0,1)∪(2,+∞)
C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
9. 函数f (x )=x 3﹣3x 2+5的单调减区间是( ) A .(0,2) B .(0,3)
C .(0,1)
D .(0,5)
10.设函数f (x )在x 0处可导,则等于( )
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 0)
11.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
12.集合{}{}
2
|ln 0,|9A x x B x x =≥=<,则A
B =( )
A .()1,3
B .[)1,3
C .[]1,+∞
D .[],3e
二、填空题
13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.
14.8
1()x x
-的展开式中,常数项为___________.(用数字作答)
【命题意图】本题考查用二项式定理求指定项,基础题.
15.
(sinx+1)dx 的值为 .
16.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
17.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 三、解答题
19.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;
(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.
(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.
20.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;
(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.
21.已知函数f (x )的定义域为{x|x ≠k π,k ∈Z},且对定义域内的任意x ,y 都有f (x ﹣y )=成立,且f (1)=1,当0<x <2时,f (x )>0. (1)证明:函数f (x )是奇函数;
(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.
22.(本小题满分12分)
已知圆C :02
2
=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都
相切.
(1)求F E D 、、;
(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .
23.(本小题满分12分)求下列函数的定义域:
(1)()
f x=;
(2)()
f x=.
24.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R} (1)若A∩B=[0,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
信丰县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B 【解析】
试题分析:由等差数列的性质可知,16a 84102=+=+a a a . 考点:等差数列的性质. 2. 【答案】C
3. 【答案】 C
【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,
∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|
=|cosx||sinx|=|sin2x|,
其周期为T=,最大值为,最小值为0,
故选C . 【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的
运用.
4. 【答案】C
【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者, ∵a n =﹣n+p ,∴{a n }是递减数列,
∵b n =2n ﹣5
,∴{b n }是递增数列,
∵c 8>c n (n ≠8),∴c 8是c n 的最大者,
则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减, ∴n=1,2,3,…7时,2n ﹣5
<﹣n+p
总成立,
当n=7时,27﹣5
<﹣7+p ,∴p >11,
n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,
当n=9时,2
9﹣5
>﹣9+p ,成立,∴p <25,
而c 8=a 8或c 8=b 8,
若a 8≤b 8,即23
≥p ﹣8,∴p ≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
5.【答案】C
【解析】解:对于A,既不是奇函数,也不是偶函数,
对于B,满足f(﹣x)=﹣f(x),是奇函数,
对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,
对于D,满足f(﹣x)=﹣f(x),是奇函数,
故选:C.
【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.
6.【答案】B
【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,
则f(0)=|m|﹣1=0,则m=1或m=﹣1,
当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,
当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,
作出函数f(x)的图象如图:
则函数在上为增函数,最小值为﹣2,
故正确的是B,
故选:B
【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.
7. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 8. 【答案】D
【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图
则不等式xf (x )<0的解为:

解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .
9. 【答案】A
【解析】解:∵f (x )=x 3﹣3x 2
+5,
∴f ′(x )=3x 2
﹣6x ,
令f ′(x )<0,解得:0<x <2, 故选:A .
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
10.【答案】C
【解析】解: =﹣=﹣f ′(x 0),
故选C .
11.【答案】B
【解析】解:方程(x 2﹣4)2+(y 2﹣4)2
=0
则x 2
﹣4=0并且y 2
﹣4=0,
即,
解得:




得到4个点. 故选:B .
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
12.【答案】B 【解析】
试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}
{}2|9|33B x x B x x =<==-<<,所以
A B ={}|13x x ≤<,故选B.
考点:1、对数函数的性质及不等式的解法;2、集合交集的应用.
二、填空题
13.【答案】2016-
14.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r r r r r r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
15.【答案】 2 .
【解析】解:所求的值为(x﹣cosx)|﹣11
=(1﹣cos1)﹣(﹣1﹣cos(﹣1))
=2﹣cos1+cos1
=2.
故答案为:2.
16.【答案】2:1.
【解析】解:设圆锥、圆柱的母线为l,底面半径为r,
所以圆锥的侧面积为:=πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
17.【答案】
15 (,)
43
18.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
三、解答题
19.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.

k OA•k OB=====

假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
20.【答案】
【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),
∴f'(x)=e x﹣a,
由f'(x)=e x﹣a=0得x=lna,
由f'(x)>0得,x>lna,此时函数单调递增,
由f'(x)<0得,x<lna,此时函数单调递减,
即f(x)在x=lna处取得极小值且为最小值,
最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.
(2)若f(x)≥0对任意的x∈R恒成立,
等价为f(x)min≥0,
由(1)知,f(x)min=a﹣alna﹣1,
设g(a)=a﹣alna﹣1,
则g'(a)=1﹣lna﹣1=﹣lna,
由g'(a)=0得a=1,
由g'(x)>0得,0<x<1,此时函数单调递增,
由g'(x)<0得,x>1,此时函数单调递减,
∴g(a)在a=1处取得最大值,即g(1)=0,
因此g(a)≥0的解为a=1,
∴a=1.
21.【答案】
【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.
又f (x ﹣y )=,
所以f (﹣x )=f[(1﹣x )﹣1]= = =
= = =,
故函数f (x )奇函数.
(2)令x=1,y=﹣1,则f (2)=f[1﹣(﹣1)]=
=,
令x=1,y=﹣2,则f (3)=f[1﹣(﹣2)]=
= =,
∵f (x ﹣2)==,
∴f (x ﹣4)=
, 则函数的周期是4.
先证明f (x )在[2,3]上单调递减,先证明当2<x <3时,f (x )<0,
设2<x <3,则0<x ﹣2<1,
则f (x ﹣2)=
,即f (x )=﹣<0, 设2≤x 1≤x 2≤3,
则f (x 1)<0,f (x 2)<0,f (x 2﹣x 1)>0,
则f (x 1)﹣f (x 2)=
, ∴f (x 1)>f (x 2),
即函数f (x )在[2,3]上为减函数,
则函数f (x )在[2,3]上的最大值为f (2)=0,最小值为f (3)=﹣1.
【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.
22.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB .
【解析】

题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a ,
∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,
25|43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .
(2)圆心)22,2(-C 到直线022=+-y x 的距离为12|22222|=+--=
d , ∴21222||22=-=-=d r AB .
考点:圆的方程;2.直线与圆的位置关系.1
23.【答案】(1)()
[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】

点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.
24.【答案】
【解析】解:由已知得:A={x|﹣1≤x ≤3},
B={x|m﹣2≤x≤m+2}.
(1)∵A∩B=[0,3]

∴,
∴m=2;
(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}
∴m﹣2>3,或m+2<﹣1,
∴m>5,或m<﹣3.。

相关文档
最新文档