HDB3编译码综合实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.K1一K8置10010000,测量P12、P22,码变换波形,由于有四个连0码,P23有四连0检出信号,P22输出有破坏点V码出现。把P22与CP2比较,你会发现,这时四连0是做BOOV变换。因为这时两个V间有偶数个B码。测量P33,比较P12与P32,P32有插入B脉冲检出。这时收端可以检测到破坏点、CP3时钟提取正常,测量译码PCM输出与P12比较,恢复数据相同。
式中:fr一信道码速率;Pe一信道误码率;FrPe-1秒钟内的误码个数;FB:反变换后的码速率;P’e:反变换后的误码率;fBP’e:反变换后1秒钟内的误码个数。
(四)实际应用介绍
目前大量采用型号为CD22103的CMOS大规模集成电路的HDB3编、解码器,它可将编、解码器两大功能电路集成在一个大规模电路里。可将发送来的NRZ码变为HDB3码,也可将接收到的HDB3码还原为NRZ码。
(一)传输码型的选择
在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。归结起来,传输码型的选择,要考虑以下几个原则:
1.传输信道低频截止特性的影响
在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。
3.K1一K8置00000000,测量P12、P22变换AMI码波形,仍然保持全0电平。测量译码P3l,则时钟信号提取不到,CP3为全0。
*4.用频谱仪测量AMI码信号频谱特性。
B、HDB3码实验
K9、K10置HDB3(波形记录20个码元以上)
1.K1一K8置10Ol11OO,测量P12、P22波形,观察HDB3码变换规则,在没有四连0时,P23无四连0检出信号,HDB3与AMI码变换规则相同。但由于要储存计算有无4个连0。故P22输出比输入P12要延时5位码元。其余类同。这一点与老师上课时和书本上的内容有差别。测量译码P3l,CP3时钟提取波形。测量P33检测不到破坏点V码,比较P12与P32,P32无插入B脉冲检出。比较P12与译码PCM码输出。恢复数据与发端相同。
(2)二进制信号序列中的“0”码在HDB3码中仍编为“0”码,但对出现四个连“0”码时应按特殊规律编码;
(3)二进制信号中“1”码,在HDB3码中应交替地成+1和-1码(信号交替反转),但在编四个连“0”码时要引入传号交替反转码的“破坏点”V码(V码本身就是“1”码,可正、可负);
(4)二进制序列中四个连“0”按以下规则编码:
(a)信码中出现四个连“0”码时,要将这四个连“0”码用000V或B00V取代节来代替。(B也是“1”码,可正、可负)。B、V为附加的传号码,称为取代码。
(b)如果HDB3码中四个连“0”码前面的一个传号码的极性与前一个破坏点V的极性相反,则四个连“0”码的第一个“0”码应编为“0”码;如果HDB3码中四个连“0”码前的一个传号码的极性与前一个破坏点V的极性相同,则四个连“0”码的第一个“0”码就编成B码。这一规则保证了相继破坏点具有交替的极性,因而不会引入直流成份。
实验箱HDB3编译码实验,华南理工大学电子与信息工程系
示波器CA8020
直流稳压器HT一1712
频率计一台
三、实验原理
PCM信号在电缆信道中传输时一般采用基带传输方式,尽管是采用基带传输方式,但也不是将PCM编码器输出的单极性码序列直接送入信道传输,因为单极性脉冲序列的功率谱中含有丰富的直流分量和较多的低频分量,不适于直接送人用变压器耦合的电缆信道传输,为了获得优质的传输特性,一般是将单数性脉冲序列进行码型变换,以适应传输信道的特性。
*5.用频谱仪测量HDB3码频谱。
五、实验数据处理及结果分析
3.三阶高密度双极性码(HDB3码)
HDB3码是三阶高密度双极性码简称,HDB3码保留了AMI码所有优点,还可将连“0”码限制在3个以内,它克服了AMI码对“0”码个数无法限制的缺点。HDB3码序列的功率如图3-4(c)所示。
HDB3码编码规则:
二进制序列变换为HDB3码按下列规则进行:
(1)HDB3是伪三进码,它的三个状态可用+1,-1和0来表示;
单极性码的直流成分,信号能量大部分集中在低频部分,另外占空比越大,则直流成分也越大,信号能量越集中在低频部分。由于单极性码存在上述缺点,它不适合于作为信道传输码型,但在设备内部的传输多采用单极性码。为了减少码间干扰和便于时钟提取,常采用含有时钟频率的单极性半占空码。
2.传号交替反转码(AMI码)
图3-2(c)所示是双极性占空码,由于传号码(“1”码)的极性是交替反转的,所以又称传号交替反转码,简称AMI,AMI码与二进码序列的关系是:二进码序列中“0”仍编为“0”;而二进码序列中的“1”码则交替地变为“+1”码及“-1”码,例如:
从频谱中可以看出它有以下优点:
①无直流成分,低频成分也少,有利于采用变压器进行远供电源的隔离,而且对变压器的要求(如体积)也可以降低。
②高频成分少,不仅可节省信道频带,同时也可以减少串话,因信码能量集中在fB/2处,所以通常以fB/2频率来衡量信道的传输质量。
③码型提供了一定的检错能力,因为传号码的极性是交替反转的,如果发现传号码的极性不是交替反转的,就一定出现误码,因而可以检出单个误码。
图3一1是表示具有远端供电时变压器隔离电源的作用,以保护局内设备。
由于变压器的接入,使信道具有低频截止特性,如果信码流中存在直流和低频成分,则无法通过变压器,否则将引起波形失真。
2.码型频谱中高频分量的影响
一条电缆中包含有许多线对,线对间由于电磁辐射而引起的串话是随着频宰的升高而加剧,因此要求频谱中高频分量尽量少,否则因串话会限制信号的传输距离或传播容量。
④码型频谱中,虽无时钟频率成分,但AMI码经过非线性处理(全波整流),变换单极性码后,就会有时钟fB成分
由于上述优点,AMI码广泛使用于PCM系统中,它是CCITT建议采用的码型之一。
AMI序列的电路及其对应的波形如图3-3所示。
AMI编码的缺点是二进制序列中的“0”码变换后仍然是“0”码,如原二进制序列中连“0”码过多,则变换后AMI序列中仍然是连“0”过多,这就不利于定时信息的提取,为了克服这一缺点又提出了采用HDB3码的方案。图3.2传输码型及其功率刻度谱
电子科技大学中山学院学生实验报告
系别:电子工程系专业:电子信息工程课程名称:通信原理与系统
班级:姓名:学号:组别:
实验名称:HDB3编译码综合实验实验时间:年 月 日
成绩:教师签名:批改时间:
一、实验目的
1、了解抽样信号和抽样保持信号的形成。
2、验证抽样定理。
3、了解多路抽样路际串话的原因。
二、实验பைடு நூலகம்器
举例说明如下:
例1:二进码序列:···1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1···
AMI码:···1 0 0 0 - 1 0 0 0 0 1 - 1 0 0 0 0 0 1 0 0 0 0 – 1···
HDB3码: V+ - 1 0 0 0 1 B_ 0 0 V_ +1 – 1 B+ 0 0 V+0 -1 0 0 0 V_ 1
3.定时时钟的提取
码型频谱中应含有定时时钟信息,以便再生中继器接收端提取必需的时钟信息。
4.码型具有误码检测能力
若传输码型有一定的规律性,那么就可根据这一规律性来检测传输质量,以便做到自动监测。
5.码型变换设备简单,易于实现
(二)常用的传输码型
1.单极性码
单极性码是一种最简单、最基本的码型。
图3-2(a)是全占空(占空比100%)单极性码(NRZ)及其频谱,图(b)是半占空(占空比50%)单极性码及其频谱。
测量译码PCM输出,恢复的数据与P12输入相同。
4.K1一置0000000,测量P12、P22,观察HDB3码变换波形,这时四连0是做BOOV变换。P23有四连0检出信号。测量译码P3l、CP3,虽然P12无信号送人,CP3时钟仍然提取得出来。用频率计测量CP3,其数值与P1、P2是相同的,把K9、K10。转置AMI。则P3l、CP3时钟立即消失,把K9、K10再转HDB3,则P3l、CP3立即出现时钟。测量P33,有破坏点V码检出,比较P12与P32,P32有插入B脉冲检出。测量P12与译码PCM输出,恢复数据相同,仍然是全0码。
(c)四个连“0”码的第二个“0”和第三个“0”码总是编成“0”码。图3.3
(d)四个连“0”码的最后一个“0”码总是编成破坏点V码,以便接收端对破坏点的识别。
概括地说,HDB3码是一种四连“0”取代码,它的取代节是“000V”或“B00V”。这两个取代节选取原则是,使任意两个相邻v脉冲间的传号数为奇数时选用000V取代节,偶数时则选用B00V取代节,这一规定的结果相邻V脉冲的极性改变是符合极性交替原则的。
A、AMI码实验
K9、K10置AMI
1.K1一K8置10011100,测量P12、P22,观察AMI码变换规则,P22与P30比较,测量P30归零码变换波形。测量译码P31时钟提取波形,测量整形后CP3波形。注意时钟移位是用靠谐振回路失谐产生。
2.K1一K8置10000000,测量P12、P22波形,观察连0码多时,AMI码变换规则。测量译码时钟提取波形,你会发现,由于连0数多,P31时钟提取呈衰减趋势。CP3脉冲波形有断续。即AMI码连0数大多时,对时钟提取不利。
四、实验内容与步骤
准备工作:
1、按实验板上所标的电源电压开机,调准所需电压,然后关机;
2、把实验板电源连接线接好;
3、开机注意观察电流表
正电流+I<250mA
若与上述电流差距太大,要迅速关机,检查电源线有无接错或其它原因。
为了测试电路方便,我们提供了一个简易PCM信号发生器,根据开关的位置,可产生8位循环的随机码。实验者可自己选择K1-K8的开关。产生各种连0、连1单极性二进制基带信号。
3.K1一K8置1000000,测量Pl2、P22、HDB3码变换波形,这时你也可以看到有破坏点V码,测量P23;有四连0检出信号。把P22与CP2比较。你会发现这时四连0码是做0OOV变换,因为这时两个V间有奇数个B码。P33有破坏点V码脉冲检出,P12与P32比较,P32无插入B脉冲检出。
测量译码P3l,CP3时钟提取正常。
二进码序列:1 1 0 1 0 0 0 0 1 1
AMI序列:+1 -1 0 +1 0 0 0 0 –1 +1
由于AMI码的传号码前后交替反转,所以该码没有直流分量,高频、低频成分也较少,而且能量集中在fB/2处,但无时钟频率fB成分(这无关紧要,可在接收端采用全波整流方法。将AMI码还原成单极性半占空码,就可提取时钟信息)。
二进码序列:···1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1···
例2:HDB3码:V+-1 0 1 -1 0 0 0 V_ B+ 0 0 V+0 -1 0 1 0 -1 1 B_ 0 0 V_ 0 1
(三)传输码型变换的误码增值
数字信号在线路中传输时由于信道不理想和噪声干扰,接收端会出现误码,当线路传输码中出现一个数字码错误时,在码型反变换后的数字码中出现一个以上的数字码错误的现象称为误码增值,误码增值现象可用误码增值比(ε)来表示,误码增值比定义为:
相关文档
最新文档