人教版七年级下册8.2消元—解二元一次方程组同步练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年度初一数学第二学期人教(2012)七年级下册
第八章二元一次方程组8.2消元—解二元一次方程组同步练习
一、选择题
1.二元一次方程组524x y x y +=⎧⎨-=⎩
的解为( ) A .14x y =⎧⎨=⎩ B .23x y =⎧⎨=⎩ C .32x y =⎧⎨=⎩ D .41
x y =⎧⎨=⎩ 2.若方程组01ax y x by +=+=⎧⎨⎩的解是11
x y =⎧⎨=-⎩,那么a 、b 的值是( ). A .10a b ==, B .112a b ==, C .10a b =-=, D .00a b ==,
3.用加减法将方程组2311255
x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ). A .26y =
B .816y =
C .26y -=
D .816y -= 4.已知21x y =⎧⎨=⎩是二元一次方程组81ax by bx ay +=⎧⎨-=⎩
的解,则45a b -的平方根为( )
A
B .2
C .
D .2± 5.用代入法解方程组124y x x y =-⎧⎨-=⎩
时消去y ,下面代入正确的是( ) A .24x x --= B .224x x --= C .24x x -+= D .224x x -+=
6.在方程4x -5y=6中,用含x 的式子表示y ( )
A .465x y +=
B .465x y +=-
C .465x y -=-
D .465
x y -=
7.同时满足方程21132
x y +=与325+=x y 的解是( ) A .2,x =3y =
B .3,x =-4y =
C .3,x =2y =-
D .3,x =-2y =- 8.已知关于x ,y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩,的解是42x y =⎧⎨=⎩
.则关于x ,y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩,的解是( )
A .42x y =⎧⎨=⎩
B .3
2x y =⎧
⎨=⎩ C .5
2x y =⎧⎨=⎩ D .6
218x y =⎧⎨=⎩
9.方程组356234x y x y -=⎧⎨-=⎩①②,将②3⨯-①2⨯得( )
A .32y -=
B .410y +=
C .0y =
D .22x y -=
10.一等腰三角形的两边长x 、y 满23x y -=足方程组23
328x y x y -=⎧⎨+=⎩则此等腰三角形的周长为 (

A .5
B .4
C .3
D .5或4
11.已知单项式532y x a b +与2244x y a b --的和仍是单项式,则x 、y 的值为( )
A .1
{2x y == B .2
{1x y ==- C .0
{15x y == D .2
{
1x y ==
12.若二元一次方程组2332x y x y +=⎧⎨-=⎩的解同时也是方程2x -my=-1的解,那么m 的值为( )
A .2-
B .1-
C .3
D .4
二、填空题
13.若方程组431{1 3.x y ax a y +=+-=,
()的解x 与y 相等,则a =________.
14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.
15.已知关于x ,y 的方程组3225435x y k x y k +=⎧⎨+=-⎩
与方程3x y +=的解相同,则k 的值为________. 16.用加减法解方程组235,327.x y x y -=⎧⎨
-=⎩①②时,用方法23⨯-⨯②①,可消去未知数x .那么方法________可消去未知数y.
17.已知关于x ,y 的方程组23,32 1.x y k x y k +=⎧⎨+=+⎩①②
,的解的和是k -,则k =________.
18.若2327(521)0+++-+=a b a b ,则ab 的平方根______ .
三、解答题
19.解方程组20{328.x y x y -=+=,
20.已知2x -y 的平方根为±4,-2是y 的立方根,求-2xy 的平方根.
21.小红做拼图游戏时发现:8个一样大小的长方形恰好可以拼成一个大的长方形,如图1所示.小丽看见了,也想来试一试,结果拼成如图2所示的正方形,不过中间留下一个空白,恰好是边长为2cm 的小正方形,问:你能算出每个小长方形的长和宽各是多少吗?
22.当a ,b 都是实数,且满足26a b -=,就称点1,12b P a ⎛
⎫-+ ⎪⎝⎭
为“完美点”.
(1)判断点(2,3)
A是否为“完美点”
(2)已知关于x,y的方程组
6
2
x y
x y m
+=


-=

,当m为何值时,以方程组的解为坐标的点(,)
B x y是“完美点”,
请说明理由.
参考答案
1.C2.A3.D4.C5.D6.D7.C8.B9.C10.A11.B12.C 13.
14.69
15.11
16.32⨯-⨯②①(方法不唯一) 17.17
- 18
.19.21x y =⎧⎨=⎩
20.±8
21.长10cm ,宽6cm
22.(1)不是;(2)当12
m =
时,以方程组的解为坐标的点(,)B x y 是“完美点”.。

相关文档
最新文档