6.小结与复习
高中第一册(下)数学小结与复习(2-3-4-5-6)
![高中第一册(下)数学小结与复习(2-3-4-5-6)](https://img.taocdn.com/s3/m/b165e4b5f021dd36a32d7375a417866fb84ac01a.png)
小结与复习(2)一、讲解X 例:例1在△ABC 中,已知cosA =135,sinB =53,则cosC 的值为…………() A. 6516 B.6556 C. 65566516或 D. 6516- 例2在△ABC 中,∠C>90︒,则tanAtanB 与1的关系适合………………()A. tanAtanB>1B. tanAtanB<1C. tanAtanB =1D.不确定例3已知434π<α<π,40π<β<,53)4cos(-=α+π,135)43sin(=β+π, 求sin(α + β)的值 例4已知sin α + sin β =22,求cos α + cos β的X 围 例5设α,β∈(2π-,2π),tan α、tan β是一元二次方程04332=++x x 的两个根,求α + β例6 设方程sin x x m =在开区间(0,2π)内有相异的两个实数根α,β,求m 的取值X 围及α+β的值.例7 已知sin(π-α) -cos(π + α) =42(0<α<π),求sin(π + α) + cos(2π-α)的值 例8 已知2sin(π-α) -cos(π + α) = 1 (0<α<π),求cos(2π-α) + sin(π + α)的值 三、作业:《精析精练》P66 能力测试小结与复习(3)一、讲解X 例:例1已知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值 例2已知3sin 2α + 2sin 2β = 1,3sin2α- 2sin2β = 0,且α、β都是锐角,求α+2β的值 例3已知sin α是sin θ与cos θ的等差中项,sin β是sin θ、cos θ的等比中项, 求证:α=θ+π=β2cos 2)4(cos 22cos 2 例4已知sin α = a sin(α+β) (a >1),求证:a-ββ=β+αcos sin )tan( 例5如图半⊙O 的直径为2,A 为直径MN 延长线上一点,且OA=2,B 为半圆周上任一点,以AB 为边作等边△ABC (A 、B 、C 按顺时针方向排列)问∠AOB 为多少时,四边形OACB 的面积最大?这个最大面积是多少?解:设∠AOB=θ则S △AOB =sin θ S △ABC =243AB 作BD ⊥AM, 垂足为D, 则BD=sin θ OD=-cos θAD=2-cos θ∴22222)cos 2(sin ϑϑ-+=+=AD BD AB=1+4-4cos θ=5-4cos θ∴S △ABC =43(5-4cos θ)=ϑcos 3435- 于是S 四边形OACB =sin θ-3cos θ+435=2sin(θ-3π)+435 ∴当θ=∠AOB=65π时四边形OACB 的面积最大,最大值面积为2+435例6 求函数y=3tan(x 6π+3π)的定义域、最小正周期、单调区间。
第六章《实数》小结与复习
![第六章《实数》小结与复习](https://img.taocdn.com/s3/m/9c1c7190d1f34693dbef3e28.png)
第六章《实数》小结与复习甘肃省镇原县上肖初级中学周晓刚教材分析《人教版义务教育课程标准实验教科书<数学>》七年级下册第六章实数小结与复习。
本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。
在中学数学中占有重要的地位,本章内容不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的大部分知识做好准备。
教学目标(一)教学知识点:1、经历小结与复习,建立本章知识框架图。
2、进一步复习本章知识,强调有关概念、运算的联系与区别及数的范围由有理数扩大到实数后,有关概念和运算的变化情况。
(二)能力训练要求:通过回顾与思考使学生能进一步掌握实数的相关知识并会灵活运用,体会归纳的数学思想方法。
(三)情感与价值观要求:1、培养学生学会归纳,整理所学知识的能力。
2、认识事物之间的内在联系及相互转化。
3、培养学生的数学应用意识。
教学重点有关概念、运算。
教学难点知识间的内在联系与区别。
教学方法教师引导学生进行归纳教具准备多媒体演示等教学过程一、知识要点回顾:(教师引导学生建立知识框架图)(一)算术平方根、平方根、立方根(二)实数的分类、有关概念及运算2、实数与数轴上的点的对应关系:是一一对应关系3、实数的相反数:a 的相反数是-a4、实数的绝对值:5、实数的运算:和在有理数范围内一样(包括运算顺序和运算律)二、知识题型演练:(教师利用多媒体展示题目,学生口答或板演) 1.选择:(1)下列说法正确的是( )416.±的平方根是A的算术平方根的相反数表示66.-B任何数都有平方.C一定没有平方根2.a D - A.2和3之间 B.4和6之间 C.6和8之间 D.7和9之间a 0,>a a 0,0=a 0,<-a a (2)估计8的值在()2.填空:3.判断:(1)实数不是有理数就是无理数。
代数式小结与复习教学反思
![代数式小结与复习教学反思](https://img.taocdn.com/s3/m/4db8031576c66137ee061963.png)
《代数式小结与复习》教学反思陈剑泉复习是一个系统、完善、深化所学内容的关键环节,有利于学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力。
那么,怎样才能上好数学复习课呢?首先,应遵循以下三条原则:一、自主性原则。
在复习过程中,要充分发挥学生的自主性,让学生积极、主动参与复习全过程,特别是要让学生参与归纳、整理的过程,不要用教师的归纳代替学生的整理。
在复习中要体现:知识让学生梳理;规律让学生寻找;错误让学生判断。
充分调动学生学习的积极性和主动性,激发学生学习兴趣。
二、针对性原则。
复习必须突出重点,针对性强,注重实效。
在复习过程中,一是要注意全班学生的薄弱环节,二是要针对个别学生的存在问题。
要紧扣知识的易混点、易错点设计复习内容,做到有的放矢,对症下药。
三、系统性原则。
在复习过程中,必须对数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。
使学生所学的分散知识系统化。
其次,按以下步骤进行操作:一、忆。
让学生回忆所学的主要内容,并让学生进行讨论、口述。
回忆,就是学生将过去学过的旧知识不断提取而再现的过程。
回忆是复习课不可缺少的环节,教师要有意识地引导学生看课题回忆所学的知识,看课本目录回忆单元知识。
复习开始时,先向学生说明复习的内容和要求,然后引导学生回忆。
回忆时,可先粗后细,并让学生进行充分讨论,在此基础上引导学生进行口述,或出示有关复习提纲,引导学生进行系统的回忆。
二、梳。
“梳”是引导学生对所学的知识进行梳理、总结、归纳,帮助学生理清知识线,分清解题思路,弄清各种解题方法联系的过程。
要根据学生的回忆,进行从点到线、由线及面的总结,做到以一点或一题串一线、联一面,特别是要注意知识间纵横向联系和比较,构建知识网络。
要教会学生归纳、总结的方法。
在帮助学生理清知识脉络时,可以根据复习内容教学信息容量的多少,分项、分步进行整理。
“梳”的过程是梳理、沟通的过程,是将所学知识前后贯通,把知识进行泛化的过程。
小学生学期学习总结(通用17篇)
![小学生学期学习总结(通用17篇)](https://img.taocdn.com/s3/m/ccc19e5d11a6f524ccbff121dd36a32d7375c720.png)
小学生学期学习总结(通用17篇)小学生学期篇1又一个学期就这样结束了.迎来了盼望已久的寒假.时光飞逝,斗转星移。
回首这半年的点点滴滴,朝朝暮暮,心中顿生了许多感触。
这半年中经历的每一天,都已在我心中留下了永久的印记,因为这些印记见证我这样一个新生的成长。
在过去半年的内,通过不断地学习,我收获了很多.时间就是这么无情头也不回的向前走着,而我们却在为了不被它丢下死命的追赶着。
是的,谁都不想被时间丢下.而我们也随着时间的流逝一点一点的成长.而美好的纯真随着风雨的磨灭化成了成熟.或许这正是成长的代价.回想自己还是考生的那段日子,显得是那么的遥远。
我在憧憬中懂得了来之不易的珍惜;在思索中了解了酝酿已久的真理;在收获后才知道努力的甜美。
突然觉得自己似乎明白了许多事情,但是仔细琢磨后又不尽然……原来过去所见所识都是那么的偏见而又肤浅,以前的天真似乎在一瞬间幻化成无知和可笑,我想谁又不是这样的呢?或许在以后也回嘲笑现在的渺小……我们不得不笑着回首我们所走过的路.出勤情况:请了一次病假.拉下一天的课希望下学期争取做到全勤本学期没有迟到的情况。
在日常生活上:以前我是一个衣来伸手饭来张口的小孩子,而通过学习生活和这半年老师和同学们的帮助,使我养成了独立性,不再娇生惯养,现在我已经能做一些力所能及的家务了。
在学习上:我深知学习的重要性。
面对二十一世纪这个知识的时代,面对知识就是力量,科学技术是第一生产力的科学论断,我认为离开了知识将是一个一无是处的废人。
以资本为最重要生产力的"资本家"的时代将要过去,以知识为特征的"知本家"的时代即将到来。
而中学时代是学习现代科学知识的黄金时代,中国的本科教育又是世界一流的,我应该抓住这个有利的时机,用知识来武装自己的头脑,知识是无价的。
首先,合理安排时间,调整好作息时间,分配好学习、工作、娱乐的时间。
时间是搞好学习的前提与基础,效率和方法更为重要。
第6章数据的分析与比较小结与复习
![第6章数据的分析与比较小结与复习](https://img.taocdn.com/s3/m/492c2822915f804d2b16c1fc.png)
5.极差和方差从不同的方面反映了数据的分 散程度:极差反映的是数据的分布跨度或波 动的范围,而方差反映的是数据相对于其平 均数的平均偏离,两者的意义不同,作用也 不同. 6.上述各项,同学们应在课文中的例题、 练习题、习题及后面所附的复习题中寻找 例证细心体会,加深理解.
2.加权平均数是平均数的推广:当一组数据 中不同的数重复出现的次数不同时,我们 用权数的大小来反映重复次数的多少;通 常也用权数来反映一组数据中不同成分的 比例或重要性,对于不同的实际问题,权 数常有不同的涵义.
3.极差由一组数据的最大值和最小值完全 确定,用来反映一类量的分布的跨度或其 波动的幅度.
4.平均数反映一组数据的平均水平或数据 的集中位置,值得注意的是:平均数并不 一定代表数据组中的个别数,平均数相同 的数组在性质上仍可能有很大的区别,这 就是它们相对于平均数的分布情况不同, 即数组中的数相对于平均数的偏差不同, 方差是一组数据中的各数相对于其平均数 的偏差的平方的平均值,它概括地反映了 一组数据在其平均数的周围分布的情况.
义务教育课程标准实验教科书 SHUXUE 七年级下
展辉初中部七年级数学备课组
1.本章学习了加权平均数、极差、方差等概念, 这些概念从不同的角度反映一组数据的特征性 质.在学习时,我们要掌握平均数、加权平均 数、极差、方差的计算方法,理解它们的统计 意义及它们在实际问题中的具体涵义,了解它 们在生产和日常生活中的实际应用,学会对数 据的特征性质进行概括、分析和比较.
北师大版数学八年级下册第六章平行四边形小结与复习课件
![北师大版数学八年级下册第六章平行四边形小结与复习课件](https://img.taocdn.com/s3/m/835d4950854769eae009581b6bd97f192279bfba.png)
在△ABE和△2 CDF中
2
∠B=∠D
AB=CD ∠EAB=∠FCD ∴△ABE≌△CDF,∴BE=DF.
∵AD=BC ∴AF=EC.
例2 如图,在▱ABCD中,∠ODA=90°,
AC=10cm,BD=6cm,则AD的长为( A )
A.4cm B.5cm C.6cm D.8cm
【解析】∵四边形ABCD是平行四边形,
【解析】∵在▱ABCD中,对角线AC和BD交于点O, AC=24cm,BD=38cm,AD=28cm, ∴AO=CO=12cm,BO=19cm,AD=BC=28cm, ∴△BOC的周长是:BO+CO+BC=12+19+28=51(cm).
典例解析
例3 如图,四边形ABCD的对角线交于点O,下列哪组 条件不能判断四边形ABCD是平行四边形( D ) A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CD C.AD∥BC,AD=BC D.AB=CD,AO=CO
C.AB=CD
D.AC=BC
【解析】A.∵四边形ABCD是平行四边形,
∴AB∥CD,∴∠1=∠2,故A正确;
B.∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,故B正确; C.∵四边形ABCD是平行四边形, ∴AB=CD,故C正确;
总结归纳
主要考查了平行四边形的性质,关键是掌握 平行四边形对边相等且平行,对角相等.
AC=10cm,BD=6cm
∴OA=OC= 1 AC=5cm,OB=OD= 1 BD=3cm,
2
2
∵∠ODA=90°,
∴AD= OA2-OD2 =4cm.
总结归纳
主要考查了平行四边形的性质,平行四边形 的对角线互相平分,解题时还要注意勾股定理的 应用.
直角三角形的小结与复习
![直角三角形的小结与复习](https://img.taocdn.com/s3/m/bef6e1dd80eb6294dd886cf6.png)
E
B
C D
作业
如图,AC与BD相交于点. O,DA⊥AC,
DB⊥BC,AC=BD,说明OD=OC成立 的理由. A O D C B
如图:AC与BD相交于点O,DA⊥AC, DB⊥BC,AC=BD,说明OD=OC成立 的理由. A B 解:理由如下:连接DC, O ∵ DA⊥AC DB⊥BC ∴∠A=∠B=90° 又∵AC=BD(已知) C D CD=DC(公共边) ∴Rt△ACD≌Rt△BDC(HL) ∴∠BDC=∠ACD(全等三角形的对应角相等) ∴ OD=OC(等角对等边)
A
E
2、如图:直线L上有三个正方形A、B、C。
若A、C的面积分别为5和11,则B的面积为
多少?
B A C
例2、如图:设A城市气象台测得台风中心,在 A城正西方向300千米的B处,正向北偏东600的BF 方向移动,距台风中心200千米的范围内是受台风 影响的区域,那么A城是否受到这次台风的影响? 为什么?如果你是气象员,请你算一算。
.
1、如图:在Rt△ABC中,∠C=90°,AC=10cm, BC=5cm,一条线段PQ=AB,P、Q两点分别在AC 上和过A点且垂直于AC的射线AM上运动,请探 究当点P满足什么条件时,△ABC和△PQA全等。 解:当P点为AC中点或P点与C点 重合时△ABC和△PQA全等. 1)当P为AC中点时,PA=PC=5cm, M ∴PA=CB, Q ∵AB=QP ∴Rt △ABC≌ Rt △QPA(HL) B 2)当P点与C点重合时,AC=PA ∵AB=PQ ∴Rt △ABC≌ Rt △PQA(HL)
∴ △ACD是Rt △ ∴S四边形ABCD= ×4 ×3﹢ ×12 ×5=36
1 2 1 2
练习
第6章 实数复习小结 人教版数学七年级下册大单元教学课后作业(含答案)
![第6章 实数复习小结 人教版数学七年级下册大单元教学课后作业(含答案)](https://img.taocdn.com/s3/m/dfaec8a6988fcc22bcd126fff705cc1755275f89.png)
[ 课后提升训练] 6.3复习小结1.在,,,,2022这五个数中无理数的个数为()A.2B.3C.4D.52.下列运算正确的是( )A.=4B.﹣|﹣2|=2C.=±3D.23=63.下列说法中正确的是().A.0.09的平方根是0.3B.C.0的立方根是0D.1的立方根是4.已知,那么的值为()A.1B.-1C.D.5.已知表示取三个数中最小的那个数,例加:,当时,则x的值为()A.B.C.D.6.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是()A.6cm B.12cm C.18cm D.24cm7.下列关于数轴的叙述,正确的有()个(1)实数m,n在数轴上的对应点的位置如图所示,则,;(2)数轴上表示数m和的点到原点的距离相等,则m为1;(3)数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数轴上有一点D,D点所表示的数为d,且,则D点的位置介于C、O之间;A.0B.1C.2D.38.若=0,则x的值是( )A.﹣1B.0C.1D.29.(填“”“”“”).10.若=0,则(b﹣a)2009=___.11.若两个连续的整数、满足,则的值为__________ .12.对实数a、b,定义“★”运算规则如下:a★b=,则★(★)=_________.13.如图,实数,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为________.14.计算:+++.15.已知某正数的两个平方根分别是和,b的算术平方根是2,求的平方根.16.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知,且x为整数.∵,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵,∴x的十位数字一定是______;∴______.(2),且y为整数,按照以上思考方法,请你求出y的值.17.用“”定义一种新运算:规定,如:.(1)若,求的值;(2)若,求的值.18.已知正数a的两个不同平方根分别是和,的算术平方根是4.(1)求这个正数a以及b的值;(2)求的立方根.【参考答案】1.A【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在,,,,2022这五个数中无理数为和,共2个.故选:A.【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键.2.A【分析】由算术平方根的含义可判断A,C,由绝对值的含义可判断B,由立方的含义可判断D,从而可得答案.【详解】解:=4,故A符合题意;故B不符合题意;故C不符合题意;故D不符合题意;故选:A.【点睛】本题考查的是绝对值的含义,乘方运算,算术平方根的含义,掌握“求解一个数的算术平方根”是解本题的关键.3.C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A、0.09的平方根是±0.3,故选项错误;B、,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.4.B【分析】根据非负数的性质求出x、y的值再代入计算即可.【详解】∵∴∴∴故选:B【点睛】本题是一道主要考查算术平方根和绝对值的非负数的题目,理解算术平方根的定义和非负数的性质是解答关键.5.D【分析】根据题意可知都小于1且大于0,根据平方根求得的值即可求解.【详解】解:∵∴都小于1且大于0(负值舍去)故选D【点睛】本题考查了求一个数的平方根,判断的范围是解题的关键.6.D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.7.A【分析】(1)先由点n,m在数轴上的位置确定n,m的取值范围,再比较即可;(2)由题意可知数m和数m+2相等或是互为相反数,进而求出答案;(3)根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:(1)由数轴可得:-1<m<0<2<n<3,且|m|<|n|.∴,-2<2m<0,∴,故(1)错误;(2)由题意得:|m|=|m+2|,∴m=m+2或m=-(m+2),∴m=-1.故(2)错误;(3)由数轴可知:c<0,b=5,|c|<5,|d-5|=|d-c|,∴BD=CD,∴D点介于O、B之间,故(3)错误;故选:A.【点睛】本题主要考查了实数与数轴之间的对应关系,比较简单,因为是选择题故可用取特殊值的方法进行比较,以简化计算.8.C【分析】利用算术平方根性质确定出x的值即可.【详解】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.【点睛】此题考查算术平方根的性质的应用,解一元一次方程,正确理解算术平方根的性质得到x﹣1=0是解题的关键.9.>【分析】负数比较大小,绝对值大的反而小,进而得出结论.【详解】解:∵3<∴-3>-故答案为:>.【点睛】本题考查实数的大小比较,熟练掌握实数的性质是解决问题的关键.10.1【分析】先由算术平方根的非负性求出b-a=1,再代入求解即可.【详解】解:∵=0,∴a-b+1=0,则b-a=1,∴(b﹣a)2009=12009=1.故答案为:1.【点睛】本题考查代数式求值、算术平方根的非负性,利用整体代入思想求解是解答的关键.11.【分析】求出在哪两个连续整数之间即可求得两个连续整数,,进而求得的值.【详解】∵,∴,即,∵,∴,,∴,故答案为:【点睛】本题考查了估算无理数的大小,属于基础题,熟练掌握“夹逼法”的应用是解答本题的关键.12.2【分析】根据新定义得到★=,在结合新定义计算★即可得出.【详解】解:∵<,∴★=,∴★(★)=★=,故答案为:2.【点睛】本题考查了新定义下的实数运算,包括实数的大小比较等,理解题意是解题关键.13.-3【分析】先求出D点表示的数,再得到m的取值范围,最后在范围内找整数解即可.【详解】解:∵点B关于原点O的对称点为D,点B表示的数为,∴点D表示的数为,∵A点表示,C点位于A、D两点之间,∴,∵m为整数,∴;故答案为:.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.14..【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.【详解】解:原式.【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.15..【分析】根据一个数的平方根互为相反数列式求出的值,然后根据b的算术平方根是2,求出的值,代入求出的值,求平方根即可.【详解】解:∵某正数的两个平方根分别是和,∴,整理,可得,解得.∵b的算术平方根是2,∴,∴,∵,∴的平方根是.【点睛】(1)此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)此题还考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.16.(1)2#,2#,22#(2)【分析】(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.【详解】(1)解:∵,且x为整数.∵,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵,∴x的十位数字一定是2;∴22.故答案为:2,2,22.(2)∵,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵,∴y的十位数字一定是8;∴.【点睛】本题考查立方根,灵活运用立方根的计算是解题的关键.17.(1)(2)【分析】(1)根据绝对值和偶次方的非负数性质可得、的值,再按规定的运算程序运算求值即可;(2)根据新运算,先把方程转化为一元一次方程,再求的值.【详解】(1)解:,而,,,,解得,,;(2),,去括号,可得:,移项,可得:,合并同类项,可得:,系数化为,可得:.【点睛】本题考查了新定义,非负数的性质,解一元一次方程,能根据新运算展开是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成.18.(1),(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“的算术平方根是4”,把a的值代入,即可得出b的值.(2)根据(1)得出,,然后把,代入,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是和,∴,解得:,∴,,∵,∴,又∵的算术平方根是4,又∵,∴,∴把代入,可得:,解得:.(2)解:由(1)可得:,,把,代入,可得:∴【点睛】本题考查了平方根的性质、算术平方根、立方根,解本题的关键在熟练掌握平方根的性质.。
2024年北师大七年级数学上册第六章 小结与复习(课件)
![2024年北师大七年级数学上册第六章 小结与复习(课件)](https://img.taocdn.com/s3/m/f41a0081534de518964bcf84b9d528ea80c72f72.png)
要点梳理
一、数据的收集
1. 收集数据的方法
收集数据的常用方法有:调查、试验、查阅资料 等,调查又分为实地调查、问卷调查和访问调查等.
2. 统计活动的过程 (1)明确调查目的和问题; (2)确定调查对象; (3)选择调查方法; (4)展开调查; (5)收集并整理数据; (6)分析数据,得出结论.
二、普查和抽样调查 1. 普查有关概念
A. 随机抽取该校一个班级的学生 B. 随机抽取该校一个年级的学生 C. 随机抽取该校一部分男生 D. 分别从该校初一、初二、初三年级中各随机抽
取10%的学生
考点三 根据统计图获取调查信息
例3 某校课外小组为了解同学们对学校“阳光跑操” 活动的喜欢程度,抽取部分学生进行调查.被调查的 每个学生按 A (非常喜欢)、B (比较喜欢)、C (一般)、 D (不喜欢) 四个等级对活动评价.图①②是该小组采 集数据后绘制的两幅统计图.经确认扇形统计图是正 确的,而条形统计图尚有一处错误且并不完整.请你 根据统计图提供的信息,解答下列问题:
解析:在条形图和扇形图中,关于 A,B 的统计量是 已知的,且是成比例的,说明两个组数据若错则都错, 若正确则都正确,而题目告诉我们只有一个是错的, 所以错的只有条形图中的 C 了。由此入手,先算出样 本容量,再由样本容量进一步算出等级 D 的人数,再 用样本容量减去 A,B,D 等级的人数即得 C 等级的 人数,然后更正.(4) 用样本中的“非常喜欢”和 “比较喜欢”的学生占样本的比例乘总人数600,即 得全校对此活动“非常喜欢”和“比较喜欢”的学生 共有多少人.
(1) 此次调查的人数为__2_0_0____人; (2) 条形统计图中存在的错误是___C_____(填A,B, C中的一个),并在图中加以改正;
第六章 一元一次方程小结与复习(一)教学设计
![第六章 一元一次方程小结与复习(一)教学设计](https://img.taocdn.com/s3/m/115ec8ae6529647d2728527c.png)
小结与复习(一)教学目标了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透“转化”的思想方法。
重点、难点1.重点:一元一次方程的解法。
2.难点:灵活运用一元一次方程的解法。
教学过程一、复习提问 定义:只含有一个未知数,且含未知数的项的次数1的整式方程。
一元一次方程 解法步骤:去分母、去括号、移项、合并同类项、系数化为l ,把一个一元一次方程“转化”成x=a “的形式。
二、练习1.下列各式哪些是一元一次方程。
(1)2x +1=3x —4 (2) 532+x = 21-x (3)—x=0 (4) x 5一2x=0 (5)3x 一y=l 十2y ((1)、(2)、(3)都是一元一次方程,(4)、(5)不是一元一次方程)2.解下列方程。
(1)21(x 一3)=2一21(x 一3) (2) 45[54(21x 一3)-254]=1-x 学生认真审题,注意方程的结构特点。
选用简便方法。
第(1)小题,可以先去括号,也可以先去分母,还可以把x 一3看成一个整体,解关于x一3的方程。
第(2)题有双重括号,一般情况是先去小括号,再去中括号,但本题结构特殊,应先去中括号简便,注意去中括号时,要把小括号看作一个整体,中括号里先看成2项。
3.解力程:(l) 2x —6115+x =l+342-x (2)3.05.01x -—32x=02.03.0x +l 点拨:去分母时注意事项,右边的“1”别忘了乘以6,分数线有两层含义,去掉分数线时,要添上括号。
(2)先利用分数的基本性质,将分母化为整数。
点拨:“将分母化为整数”与“去分母”的区别。
本题去分母之前,也可以先将方程右边的230x 约分后再去分母。
4.解方程。
(1)|5x 一2|=3(2)|321x -|=1 分析:(1)把5x 一2看作一个数a ,那么方程可看作|a |=3,根据绝对值的意义得a =3或a =一3(2)把321x -看作一个数,或把|321x -|化成|321x -| 5.已知,|a 一3|+(b 十1)2 =o ,代数式22m a b +-的值比21b 一a 十m 多1,求m 的值。
§第6章 解一元一次方程 小结与复习(2)
![§第6章 解一元一次方程 小结与复习(2)](https://img.taocdn.com/s3/m/16d1b3866529647d272852e3.png)
§第6章小结与复习(2)科目:七年级数学备课人:王淑轶【教学目标】1.进一步能以一元一次方程为工具解决一些简单的实际问题。
2.能借助图表整体把握和分析题意,从多角度思考问题、寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题的能力。
【教学重点】运用方程解决实际问题。
【教学难点】寻找等量关系,间接设元。
【教学过程】一、复习回顾列一元一次方程解应用题的一般步骤是什么?二、自主探究例1:从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
求甲乙两地之间高速公路的路程。
思路分析:若设甲乙两地之间高速公路路程为x千米,则甲乙两地间原来公路长度为千米。
根据行驶时间“原需行驶7个小时”,可将原来行完全程的速度表示为千米∕小时;根据行驶时间“现在只需4个小时即可到达”,可将现在行完全程的速度表示为千米∕小时。
进而根据“车速平均每小时增加了30千米”,依据等量关系列方程为:。
解答该题:例2:为了准备小勇6年后上大学的学费5000元,他的父母现在准备参加教育储蓄。
现有两种储蓄方式可供选择:(1)直接存6年定期,年利率是2.88%,6年后取出;(2)先存3年定期的,3年后再将本利和自动转存3年定期,3年期的年利率是2.7%。
你认为哪种储蓄方式开始存入的本金比较少?分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出采用这两种储蓄方式刚开始存入时需存入多少元,进行比较即可确定。
假设开始存入x元。
如果按照第一种储蓄方式,那么列方程:x×(1+2.88%×6)=5000解得 x≈4263(元)如果按照第二种蓄储方式:依据等量关系“第二个3午后本利和=5000”,可以列方程x×(1+2.7%×3) ×(1+2.7%×3)=5000解得 x≈4279(元)因为4263元<4279元,因此选取第一种储蓄方式(即直接存6年定期)开始时存入的本金少。
第二章 小结与复习+教学反思
![第二章 小结与复习+教学反思](https://img.taocdn.com/s3/m/b493aa79cf84b9d528ea7ab8.png)
°
例4 如图所示,
l1, l2 , l3
交于点O, ∠1=∠2,∠3:∠1=8:1, 求∠4的度数.
针对训练:如图所示,直线AB与CD相交于点O,∠AOC:∠AOD=2:3,求∠BOD的度数.
细节决定一切
2
板 书 设 计
学生对判定定理以及性质的运用上还是存在一定的问题。
教 学 反 思
证明的书写过程比较混乱,完全理不清思路。各种定理、 性质都混乱了。
教 学 过 程
平行线的性质: ① ② ③
① ② ③ 二:考点分析 例1
如图,AB⊥CD于点O,直线EF过O点,∠AOE=65°,求∠DOF的度数.
针对训练:如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠ DOF,∠DOE=50°,
求∠AOC、 ∠ EOF、 ∠ COF的度数.
例2 如图AC⊥BC,CD⊥AB于点D,CD=4.8cm,AC=6cm,BC=8cm,则点C到AB的 距离是 ___cm;点A到BC的距离是 ___cm;点B到AC的距离是 ____cm.
2、当两条直线相交所成的四个角中,有一个角是_____时,这两条直线互相垂直, 其中一条直线叫另一条直线的______,它们的交点叫______. 3.经过直线上或直线外一点,_____________一条直线与已知直线垂直. 4.直线外一点与直线上各点的所有连线中,_______最短.简称_________________ 5.直线外一点到这条直线的垂线段的______,叫作点到直线的距离. 6.在同一平面内,_______的两条直线叫作平行线. 7.经过直线外一点,________一条直线与已知直线平行. 8.平行于同一条直线的两条直线_______. 9.平行线的判定:
北师大版数学八年级下册第二章小结与复习 (6)
![北师大版数学八年级下册第二章小结与复习 (6)](https://img.taocdn.com/s3/m/b43511872cc58bd63186bd9b.png)
第一章小结与复习【学习目标】1.巩固本章知识,对等腰三角形、等边三角形和直角三角形有关性质与判定有整体性认识.2.熟悉角平分线、线段垂直平分线的性质与判定,并会进行相关证明.【学习重点】等腰三角形、等边三角形和直角三角形性质与判定的应用.【学习难点】有关性质定理的熟练应用.教与学环节知道行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.情景导入生成问题知识结构框图自学互研生成能力知识模块一等腰三角形与等边三角形【自主探究】范例1:已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为10.仿例1:如图1,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( A)A.35°B.40°C.45°D.50°(图1)(图2)仿例2:如图2,已知∠AOB=60°,点P在边OA上,OP=12,点M、N在边OB上,PM=PN,若MN =2,则OM=5.仿例3:如图,等边△ABC中,AE=CD,AD、BE相交于P,BQ⊥AD于Q.求证:BP=2PQ.证明:∵AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAC=∠BAP+∠CAD=60°,∴∠BAP+∠ABE=60°,∴∠BPQ=60°,∵BQ⊥AD,∠PBQ=30°,∴BP=2PQ.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:检测可当堂完成.知识模块二直角三角形范例2:Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( A)A.8 B.4 C.6 D.无法计算仿例1:如图,已知∠C=∠FBD=90°,FD⊥AB,垂足为点O,若使△ACB≌△DBF,还需添加的条件是答案不唯一,如AB=DF或AC=DB或CB=BF.仿例2:使两个直角三角形全等的条件是( D)A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等知识模块三线段垂直平分线与角平分线范例3:在△ABC中,AB的垂直平分线与AC边所在直线相交所得的锐角为50°,则∠A的度数为( C)A.50°B.40°C.40°或140°D.40°或50°仿例1:如图,D是线段AB、BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是( A)A.60°B.70°C.75°D.80°,(仿例1题图)) ,(仿例2题图)),(仿例3题图))仿例2:如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为6.仿例3:如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( B)A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形与等边三角形知识模块二直角三角形知识模块三线段垂直平分线和角平分线检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
小结与复习
![小结与复习](https://img.taocdn.com/s3/m/80db451a55270722192ef7e9.png)
平凉四中数学导学案八年级(上)编号04 编制人 路耀军 审核人 课型 问题综合课 单元(章、节) 12 课时 1 班级 小组 学生姓名 小组评价 教师评价 平凉一、学习目标:1.知道第十一章全等三角形知识结构图.2.通过基本训练,巩固第十一章所学的基本内容.3.通过典型例题的学习和综合运用,加深理解第十一章所学的基本内容,发展能力. 二、学习重点和难点:1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用. 三、归纳总结,完善认知1.总结本章知识点及相互联系.2.三角形全等探究 三角形 全等的 条件 四、基本训练,掌握双基 1.填空(1)能够 的两个图形叫做全等形,能够 的两个三角形叫做全等三角形.(2)把两个全等的三角形重合到一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .(3)全等三角形的 边相等,全等三角形的 角相等. (4) 对应相等的两个三角形全等(边边边或 ).(5)两边和它们的 对应相等的两个三角形全等(边角边或 ). (6)两角和它们的 对应相等的两个三角形全等(角边角或 ). (7)两角和其中一角的 对应相等的两个三角形全等(角角边或 ).(8) 和一条 对应相等的两个直角三角形全等(斜边、直角边或 ).(9)角的 上的点到角的两边的距离相等. 2.如图,图中有两对三角形全等,填空: (1)△CDO ≌ ,其中,CD 的对应边是 ,DO 的对应边是 ,OC 的对应边是 ;(2)△ABC ≌ ,∠A 的对应角是 , ∠B 的对应角是 ,∠ACB 的对应角是 . 3.判断对错:对的画“√”,错的画“×”. (1)一边一角对应相等的两个三角形不一定全等. ( )(2)三角对应相等的两个三角形一定全等. ( )(3)两边一角对应相等的两个三角形一定全等. ( ) (4)两角一边对应相等的两个三角形一定全等. ( ) (5)三边对应相等的两个三角形一定全等. ( ) (6)两直角边对应相等的两个直角三角形一定全等. ( )两边一____两边一对角____________ ____________三边______________ ___边_____________ 两角一边对应相等 __________________ 一个条件 两个条件 三个条件A BC D E O(7)斜边和一条直角边对应相等的两个直角三角形不一定全等. ( ) (8)一边一锐角对应相等的两个直角三角形一定全等. ( ) 4.如图,AB ⊥AC ,DC ⊥DB ,填空: (1)已知AB =DC ,利用 可以判定 △ABO ≌△DCO ; (2)已知AB =DC ,∠BAD =∠CDA ,利用 可以判△ABD ≌△DCA ;(3)已知AC =DB ,利用 可以判定△ABC ≌△DCB ; (4)已知AO =DO ,利用 可以判定△ABO ≌△DCO ;(5)已知AB =DC ,BD =CA ,利用 可以判定△ABD ≌△DCA. 5.完成下面的证明过程: 如图,OA =OC ,OB =OD.求证:AB ∥DC.证明:在△ABO 和△CDO 中, OA OC ,AOB __________,OB OD ,⎧=⎪∠=⎨⎪=⎩∴△ABO ≌△CDO ( ).∴∠A = .∴AB ∥DC ( 相等,两直线平行).6.完成下面的证明过程:如图,AB ∥DC ,AE ⊥BD ,CF ⊥BD ,BF =DE. 求证:△ABE ≌△CDF. 证明:∵AB ∥DC ,∴∠1= . ∵AE ⊥BD ,CF ⊥BD , ∴∠AEB = . ∵BF =DE ,∴BE = .在△ABE 和△CDF 中,1______,BE ______,AEB _______,⎧∠=⎪=⎨⎪∠=⎩∴△ABE ≌△CDF ( ). 7 如图,CD ⊥AB ,BE ⊥AC ,OB =OC. 求证:∠1=∠2.A B CD O ABCDO12AB CDEF 21E D CBAO。
图形的相似(小结与复习6))(湘教版)
![图形的相似(小结与复习6))(湘教版)](https://img.taocdn.com/s3/m/eb43bf6e25c52cc58bd6be40.png)
A′ A
40° 40°
B
80°
C
B′
60 °
C′
1、根据下列条件能否判定△ABC与△A′B′C′相似? 为什么? (2) ∠A=40°,AB=3 ,AC=6 ∠A′=40°,A′B′=7 ,A′C′=14
A′ A
3 40°
7
40°
14
6
B
C
B′
C′
1、根据下列条件能否判定△ABC与△A`B`C`相似? 为什么? (3) AB=4 ,BC=6 ,AC=8 A`B`=18 ,B`C`=12 ,A`C`= 24 21
A D F B C E
如图,在□ABCD中,E为CD上一点, DE:CE=2:3,连结AE、BE、BD,且 AE、BD交于点F,则S△DEF:S△EBF :S△ABF=( ) (A)4:10:25 (B)4:9:25 (C)2:3:5 (D)2:5:25 B
1.如图,△PCD是等边三角形,A、C、D、B在同 一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵AC·BD=CD2. P
x的取值范围,并求出当BD为何值时AE取得最小值
解:∵△ABD∽△DCE
AB BD ∴ CD CE
即
∴ ∴
A 1 B
y
E
2x
1 y
C
1 x 2 x 1 y
x
2
D
1 y x
2x
y x2 2 x 1
0 x 2
2 1 y x 2 2
已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5, AB=DC=2. (1)如图,P为AD上的一点,满足∠BPC=∠A. ①求证;△ABP∽△DPC ②求AP的长. (2)如果点P在AD边上移动(点P与点A、D不重 合),且满足∠BPE=∠A,PE交直线BC于点E, 同时交直线DC于点Q,那么 ①当点Q在线段DC的延长线上时,设AP=x,CQ =y,求y关于x的函数解析式,并写出函 数的定义域; ②当CE=1时,写出AP的长
复习小结课该如何上
![复习小结课该如何上](https://img.taocdn.com/s3/m/6c434fe6102de2bd96058885.png)
12◆‘7般-7(2008年第Jo期.高中版).教学论坛.复习小结课该如何上430300武汉市黄陂一中胡黎明“教材中每章节末的小结与复习该如何上”是一个值得我们探讨的问题.笔者有幸现场观摩了2007年湖北省高中数学优质课评比,现在以集合与简易逻辑章末小结与复习为例,来谈谈自己的一些体会.1两种不同的处理方法教师甲的处理方法:在内容安排上先由教师给出本章的知识框图,然后以选填题的形式出示一组基础训练,接下来是典型例题及变式训练,然后是小结与作业;在教学方法上采用启发式与讲练结合的方法;整个教学过程由教师提出一些问题,学生通过思考回答老师的问题.课堂气氛比较活跃,教学反馈良好.毫无疑问,教师甲的做法是我们很多高中数学教师处理方法的代表,他采用了上高三复习课的方法,先帮着学生将本章的主要知识框架理出来,然后在这个框架的基础上,通过基础训练及典型例题,为知识框图的每个主干配上枝叶,让学生能比较清晰、系统地掌握本章知识,再通过变式训练,让学生掌握知识的综合应用.教师乙的处理方法:首先对本章的基础性和重要性给予概述,通过问题序列,让学生在解决问题的同时完成本章的知识框图,不仅复习了本章的内容,同时潜移默化地让学生学会了对已有知识的梳理,下面是这位教师的教学片段:师:在集合与简易逻辑这章里我们学习了哪些知识?生:集合、简易逻辑、不等式.师:很好!其中集合与不等式是本章的知识基础,而简易逻辑是思维基础.(打出投影仪)师:下面就让我们一起来重温本章的主要内容,请大家判断下列哪些集合是相等的集合?A={戈Iy;茗。
一l。
z∈R};B={yI Y;茗2—1,z∈R};C={(x,y)l y=≯一1,算∈R};D={y=茗2一l};E={s f s=t2一1.t∈R}(学生思考、回答、教师点评.师生共同合作得出下面的框图)师:请同学们思考下面的问题:命题P:“若口6=O,则口=0或6=0”,写出命题p 的否命题和非P(师生共同合作将已有的框图进行如下延续)同样通过一些问题序列师生共同合作最终完成本章的知识框图为:集合。
(RJ)人教版七年级数学上册教学课件第6章 几何初步 小结与复习
![(RJ)人教版七年级数学上册教学课件第6章 几何初步 小结与复习](https://img.taocdn.com/s3/m/a9120e6b11661ed9ad51f01dc281e53a580251c8.png)
C
北
B
C. 北偏西 50° 方向上 D. 西偏北 50° 方向上
O
东
练一练
6. (四川德阳期末) 如图,将一张长方形纸片 ABCD 沿
对角线 BD 折叠后,点 C 落在点 E 处,连接 BE 交 AD
于 F,再将三角形 DEF 沿 DF 折叠
E
后,点 E 落在点 G 处,若 DG 刚好 A F
D
平分∠ADB,那么∠ADB 的度数是
全 国 文明 城
市
返回
考点3:线段长度的计算
例3 如图,C 为线段 AB 上一点,点 D 为 BC 的中点,
且 AB = 10 cm,BC = 4 cm.
(1) 图中共有 6 条线段. A (2) 求 AD 的长.
C DB
(2)解:因为点 D 为 BC 的中点,且 BC = 4 cm,
所以 BD = CD = BC = 2 cm.
第六章 几何初步
小结与复习
知识结构图
立体
从不同方向看立体图形
几 图形 何 图
展开立体图形 直线、射线、线段
形 平面 图形
角的度量
角 角的比较与运算
余角和补角
平面图形 角的平分线
知识回顾 一、几何图形
1. 立体图形与平面图形 (1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
2. 从不同方向看立体图形 考点1
从前面看 从左面看 从上面看 3. 立体图形的展开图 考点2
正方体
圆柱
三棱柱
圆锥
4. 点、线、面、体之间的联系 (1) 体是由 面 围成,面与面相交成 线 ,线 与线相交成 点 ;
6.4数据的收集与描述小结与复习
![6.4数据的收集与描述小结与复习](https://img.taocdn.com/s3/m/1e9a7afef705cc1755270949.png)
本章知识框架
提出问题
收集数据
整理和描述数据 条形、折线、扇形统计图 条形、折线、
分析数据 平均数、中位数、 平均数、中位数、众数
巩固练习
1、求下面各组数据的中位数; 、求下面各组数据的中位数; (1)30,50,70,20,15,65,40; ) , , , , , , ; (2)100,180,95,200,160,170. ) , , , , , . 2、在一次地理测试中,10名学生的得分如下: 、在一次地理测试中, 名学生的得分如下 名学生的得分如下: 80,70,95,80,70,70,85,80,60,75, , , , , , , , , , , 求这次地理测试中学生得分的众数. 求这次地理测试中学生得分的众数.
随堂练习
2、以6个连续奇数为一组的数据中,其中位数是 、 个连续奇数为一组的数据中, 个连续奇数为一组的数据中 22,则这组数据是 17, 19, 21, 23, 25, 27 ,则这组数据是___________________. 点拨:可知中位数是21和 的平均数 的平均数…… 点拨:可知中位数是 和23的平均数
知识回顾
5、描述一组数据的平均水平或集中趋势的常用 、 方法有平均数、众数和中位数. 方法有平均数、众数和中位数 平均数是一组数据的数值代表值 是一组数据的数值代表值, 平均数是一组数据的数值代表值,它刻画了这组 数据整体的平均状态. 数据整体的平均状态 中位数代表一组数据的数值大小的中点 代表一组数据的数值大小的中点, 中位数代表一组数据的数值大小的中点,如果数 据的个数是奇数个, 据的个数是奇数个,中位数是将数据按大小排列 位于中间的一个;如果数据的个数是偶数, 后,位于中间的一个;如果数据的个数是偶数, 中位数是位于中间的两个数的平均值. 中位数是位于中间的两个数的平均值. 众数是一组数据中出现次数最多的数据 众数是一组数据中出现次数最多的数据 .