推荐学习年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形八三角变换与解三
高考数学(文)二轮专题复习篇教案:专题三 三角函数、解三角形、平面向量 第二讲 解三角形
![高考数学(文)二轮专题复习篇教案:专题三 三角函数、解三角形、平面向量 第二讲 解三角形](https://img.taocdn.com/s3/m/bd681a94da38376baf1fae64.png)
tan 45°=1,sin2α+cos2α=1 等.
变式训练 1 (1)若 0<α<π2,-π2<β<0,cos4π+α=13,cosπ4-β2= 33,则 cosα+β2等于( )
3 A. 3
B.-
3 3
53 C. 9
D.-
6 9
(2)已知 sin α=12+cos α,且 α∈0,π2,则sincoαs-2απ4的值为________.
第二讲 三角变换与解三角形
1. 两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β.
(2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=1t∓antaαn±αttaannββ.
2. 二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α.
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)tan 2α=1-2tatnanα2α.
3. 三角恒等变换的基本思路
(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧.
“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.
a∶b∶c=sin A∶sin B∶sin C.
5. 余弦定理
a2=b2+c2-2bccos A,b2=a2+c2-2accos B,
c2=a2+b2-2abcos C. 推论:cos A=b2+2cb2c-a2,cos B=a2+2ca2c-b2, cos C=a2+2ba2b-c2.
6. 面积公式 S△ABC=12bcsin A=12acsin B=12absin C.
[推荐学习]2018年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形八三角变换与解三
![[推荐学习]2018年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形八三角变换与解三](https://img.taocdn.com/s3/m/853002daba1aa8114531d9b9.png)
[推荐学习]2018年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形八三角变换与解三课时作业(八) 三角变换与解三角形( )A .36B .37C .38D .39 解析:由正弦定理,知a2sin 2A+b2sin 2B=2c 2,即2=2sin 2C ,∴sin C =1,C =π2,∴sin A (1-cos C )=sin B sin C ,即sin A =sin B ,∴A =B =π4.以C 为坐标原点建立如图所示的平面直角坐标系,则M (2,4),设∠MPC =θ,θ∈⎝⎛⎭⎪⎫0,π2,则MP 2+MQ2=16sin 2θ+4cos 2θ=(sin 2θ+cos 2θ)⎝ ⎛⎭⎪⎫16sin 2θ+4cos 2θ=20+4tan 2θ+16tan 2θ≥36,当且仅当tan θ=2时等号成立,即MP 2+MQ 2的最小值为36.答案:A11.(2017·长沙市统一模拟考试)化简:2sinπ-α+sin2αcos2α2=________.解析:2sin π-α+sin2αcos2α2=2sin α+2sin αcos α121+cos α=4sin α1+cos α1+cos α=4sin α.答案:4sin α12.(2017·新疆第二次适应性检测)cos10°1+3tan10°cos50°的值是________.解析:依题意得cos10°1+3tan10°cos50°=cos10°+3sin10°cos50°=2sin 10°+30°cos50°=2sin40°sin40°=2. 答案:213.(2017·课标全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得3sin 60°=6sin B ,∴ sin B =22.又∵c >b ,∴ B =45°,∴ A =180°-60°-45°=75°. 答案:75°14.如图,一栋建筑物的高为(30-103) m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别为15°和60°,在楼顶A 处测得塔顶C的仰角为30°,则通信塔CD的高为________ m.解析:在Rt△ABM中,AM=ABsin∠AMB=30-103 sin15°=30-103sin45°-30°=30-1036-24=20 6.易知∠MAC=30°+15°=45°,又∠AMC =180°-15°-60°=105°,从而∠ACM=30°.。
2024届高三数学二轮复习专题集训专题3三角函数与平面向量31
![2024届高三数学二轮复习专题集训专题3三角函数与平面向量31](https://img.taocdn.com/s3/m/0ba896d6846a561252d380eb6294dd88d0d23d9f.png)
2024届高三数学二轮复习专题集训专题3三角函数与平面向量312024届高三数学二轮复习专题集训专题3三角函数与平面向量31三角函数与平面向量是高中数学中的重要内容,也是数学二轮复习中的重点。
学好这一部分知识点,对于提高数学成绩至关重要。
本文将重点介绍2024届高三数学(理)二轮复习专题集训中的专题3三角函数与平面向量的内容,包括三角函数的基本概念、性质和一些重要公式,以及平面向量的基本概念、运算法则和应用等内容。
首先,我们来介绍三角函数的基本概念和性质。
三角函数有正弦函数、余弦函数、正切函数等,它们代表了角度和直角三角形边之间的关系。
正弦函数表示的是一个角的对边与斜边的比值,余弦函数表示的是一个角的邻边与斜边的比值,正切函数表示的是一个角的对边与邻边的比值。
三角函数的周期都是360度或2π弧度,可以通过函数图像的变化规律和一些基本特点进行分析和运用。
在学习三角函数的过程中,我们要掌握一些基本的三角函数公式,例如,和差化积公式、倍角公式、半角公式等。
这些公式可以帮助我们简化复杂的三角函数表达式,转化为更简单的形式,从而更好地解决问题。
接下来,我们介绍平面向量的基本概念和运算法则。
平面向量是具有大小和方向的量,可以用箭头表示。
平面向量有加法和乘法(数量乘法和点乘)两种运算法则。
向量加法满足交换律、结合律和有零向量的存在性质,可以通过平行四边形法则和三角法则进行计算。
向量乘法有数量乘法和点乘法。
数量乘法是将向量与一个实数相乘,使向量的长度发生变化,方向与原来一致(或相反)。
点乘法是将两个向量的对应分量相乘再相加,得到的是一个实数,表示了两个向量之间的夹角关系。
最后,我们要了解平面向量的应用。
平面向量在几何、力学等领域中有着广泛的应用。
例如,可以使用向量来表示平面上的几何图形,计算它们的面积、周长等属性。
还可以使用向量进行力的合成、分解和计算,探究力的平衡、作用和应用等。
此外,还可以利用向量的性质解决一些几何问题,例如直线的垂直、平行关系,点和直线的位置关系等。
高三数学二轮复习 考前冲刺攻略第一步八大提分笔记三三角函数解三角形平面向量 课件文(全国通用)
![高三数学二轮复习 考前冲刺攻略第一步八大提分笔记三三角函数解三角形平面向量 课件文(全国通用)](https://img.taocdn.com/s3/m/8fcc1d771eb91a37f1115cac.png)
(4)平面向量的两个重要定理 ①向量共线定理:向量 a(a≠0)与 b 共线当且仅当存在 唯一一个实数 λ,使 b=λa. ②平面向量基本定理:如果 e1,e2 是同一平面内的两个 不共线向量,那么对这一平面内的任一向量 a,有且只有一 对实数 λ1,λ2,使 a=λ1e1+λ2e2,其中 e1,e2 是一组基底.
-sinα cosα
-cosα -cosα cosα
3 三角函数的图象与性质 (1)五点法作图; π (2)对称轴:y=sinx,x=kπ+2,k∈Z;y=cosx,x=kπ, k∈Z;
π k π + , 0 对称中心: y=sinx, (kπ, 0), k∈Z; y=cosx, , 2 kπ k∈Z;y=tanx, 2 ,0 ,k∈Z.
6 解三角形 a b c (1)正弦定理:sinA=sinB=sinC=2R(R 为三角形外接圆 的半径).注意:①正弦定理的一些变式:(ⅰ)a∶b∶c= a b c sinA∶sinB∶sinC; (ⅱ)sinA=2R, sinB=2R, sinC=2R; (ⅲ)a =2RsinA,b=2RsinB,c=2RsinC;②已知三角形两边及一 对角,求解三角形时,若运用正弦定理,则务必注意可能有 两解,要结合具体情况进行取舍.在△ABC 中 A>B⇔ sinA>sinB.
9 平面向量的基本概念及线性运算 → → → (1)加、 减法的平行四边形与三角形法则: AB+BC=AC; → → → AB-AC=CB. (2)向量满足三角形不等式:||a|-|b||≤|a± b|≤|a|+|b|. (3)实数 λ 与向量 a 的积是一个向量,记为 λa,其长度 和方向规定如下: ①|λa|=|λ||a|;②λ>0,λa 与 a 同向;λ<0,λa 与 a 反向; λ=0 或 a=0,λa=0.
高三数学第二轮复习资料 专题三: 三角函数、三角变换、解三角形、平面向量
![高三数学第二轮复习资料 专题三: 三角函数、三角变换、解三角形、平面向量](https://img.taocdn.com/s3/m/7f7b4905650e52ea55189852.png)
专题三 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tanα=y x .(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 23. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x 值、y值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝⎛⎭⎫2x -π3+3, ∴T =π.2. (·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝⎛⎭⎫x +φ2+π8=sin ⎝⎛⎭⎫2x +φ+π4为偶函数,则φ=π4. 3. (·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A. 4. (·课标全国)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝⎛⎭⎫54x +π4,其减区间为⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z , 显然⎝⎛⎭⎫π2,π⊆⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4, 其减区间为⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z , 显然⎝⎛⎭⎫π2,π⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且 f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( ) A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π,k π+π2(k ∈Z ) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β). 审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝⎛⎭⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝⎛⎭⎫π6,2,所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝⎛⎭⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和.变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4 B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫12x -π4 D .f (x )=2sin ⎝⎛⎭⎫12x -3π4 答案 B解析 由图象可知A =2,T 2=3π2-⎝⎛⎭⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝⎛⎭⎫12x +φ.又f ⎝⎛⎭⎫-π2=2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2,即sin ⎝⎛⎭⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝⎛⎭⎫12x +3π4,选B. 题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎫ωx +π3+3(ω>0)的最小正周期为π. (1)求f (x )的解析式;(2)求f (x )在区间⎣⎡⎦⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝⎛⎭⎫cos ωx cos π3-sin ωx sin π3+ 3 =2sin ωx cos ωx -23sin 2ωx + 3 =sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b 2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sin t +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是( )A.⎣⎡⎦⎤0,π3 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤π3,5π6D.⎣⎡⎦⎤5π6,π答案 C解析 因为y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎡⎦⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎡⎦⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎫|φ|<π2,且其图象关于直线x =0对称,则( ) A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为增函数 B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎫0,π4上为减函数 答案 B解析 f (x )=2sin ⎝⎛⎭⎫2x +π3+φ,其图象关于直线x =0对称, ∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x .∴y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为减函数. 题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎡⎦⎤-π6,5π6上有且只有一个交点.如图, 由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y =-k在⎣⎡⎦⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎡⎦⎤0,π2上的单调区间. 解 g (x )=sin ⎝⎛⎭⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎡⎦⎤0,π3. 令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎡⎦⎤π3,π2.变式训练4 (·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝⎛⎭⎫2π3,0对称;③函数f (x )在区间⎝⎛⎭⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝⎛⎭⎫11π12=sin ⎝⎛⎭⎫2×11π12-π3=sin ⎝⎛⎭⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝⎛⎭⎫2π3=sin ⎝⎛⎭⎫2×2π3-π3=sin π=0,图象C 关于点⎝⎛⎭⎫2π3,0对称,所以②正确;当-π12≤x ≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin2⎝⎛⎭⎫x -π3=sin ⎝⎛⎭⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎫π2+φ(0<φ<π),其图象过点⎝⎛⎭⎫π6,12. (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,π4上的最大值和最小值. 规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分] 又∵f (x )过点⎝⎛⎭⎫π6,12,∴12=12cos ⎝⎛⎭⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3. [5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎫2x -π3.[7分] 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14. [12分]评分细则 (1)将点⎝⎛⎭⎫π6,12代入解析式给1分;从cos ⎝⎛⎭⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分.阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (·江苏)函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1, ∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34 B.34 C.43 D .-43答案 D解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x ) ( )A .在区间⎣⎡⎦⎤-π,-π2上是减函数 B .在区间⎣⎡⎦⎤2π3,7π6上是增函数C .在区间⎣⎡⎦⎤π8,π4上是增函数D .在区间⎣⎡⎦⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y =sin ⎝⎛⎭⎫x +π3单调递减,所以y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3在区间⎣⎡⎦⎤2π3,7π6上是增函数,选B. 5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎫5π4-π4=2π, ∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1,∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎫5π12-π4=2π3,ω=3,所以sin ⎝⎛⎭⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫3x +π4=sin ⎣⎡⎦⎤3⎝⎛⎭⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A.3. 函数y =log 2sin x 在x ∈⎣⎡⎦⎤π6,π4时的值域为( )A .[-1,0] B.⎣⎡⎦⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎡⎦⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于 ( )A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为 ( )A.π8B.38πC.34πD.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝⎛⎭⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ) 得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是__________. 答案 ⎣⎡⎦⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同, ∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎫2x -π6. ∵x ∈⎣⎡⎦⎤0,π2,∴2x -π6∈⎣⎡⎦⎤-π6,5π6, sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, ∴f (x )∈⎣⎡⎦⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝⎛⎭⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4, 得T =2π2=π,故①对;f ⎝⎛⎭⎫π4=2sin π4≠±2,故②错; f ⎝⎛⎭⎫π8=2sin 0=0,故③对;y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4-π4=2sin ⎝⎛⎭⎫2x +π4, 故④错.故填①③. 三、解答题13.(·湖南)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎡⎦⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1. 第二讲 三角变换与解三角形1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3. 三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧. “化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”. (2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β)等. 4. 正弦定理a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5. 余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 三角形中的常用结论(1)三角形内角和定理:A +B +C =π. (2)A >B >C ⇔a >b >c ⇔sin A >sin B >sin C . (3)a =b cos C +c cos B .1. (·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( )A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2. (·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B 的大小为 ( ) A.π6 B.π3 C.2π3 D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.3. (·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. (·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于 ( )A .4 3B .2 3 C. 3 D.32答案 B解析 利用正弦定理解三角形.在△ABC 中,AC sin B =BCsin A,∴AC =BC ·sin Bsin A =32×2232=2 3.5. (·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.答案 2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a ,则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.题型一 三角恒等变换例1 (1)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( ) A.22 B.33C. 2D. 3 (2)已知α,β ∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 审题破题 (1)利用同角三角函数关系式先求sin α或cos α,再求tan α;(2)注意角之间的关系⎝⎛⎭⎫α+π4=(α+β)-⎝⎛⎭⎫β-π4. 答案 (1)D (2)-5665解析 (1)∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.(2)因为α,β∈⎝⎛⎭⎫3π4,π,所以α+β=⎝⎛⎭⎫3π2,2π,所以cos(α+β)>0.易得cos(α+β)=45. 又π2<β-π4<3π4,所以cos ⎝⎛⎭⎫β-π4<0, 易得cos ⎝⎛⎫β-π4=-513. 故cos ⎝⎛⎭⎫α+π4=cos[(α+β)-(β-π4)] =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4=45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665.反思归纳 (1)公式应用技巧:①直接应用公式,包括公式的正用、逆用和变形用;②常用切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.变式训练1 (1)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2等于( ) A.33 B .-33 C.539 D .-69答案 C解析 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2, ∴sin ⎝⎛⎭⎫π4+α=223.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63, ∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2 =13×33+223×63=539. (2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α-π4的值为________. 答案 -142解析 cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=(cos α+sin α)(cos α-sin α)22(sin α-cos α)=-2(cos α+sin α).∵sin α=12+cos α,∴cos α-sin α=-12,两边平方得1-2sin αcos α=14,∴2sin αcos α=34.∵α∈⎝⎛⎭⎫0,π2, ∴cos α+sin α=(cos α+sin α)2= 1+34=72,∴cos 2αsin ⎝⎛⎭⎫α-π4=-142.题型二 解三角形例2 △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .审题破题 (1)利用正弦定理,化去角B 的三角函数,再化简求值;(2)由条件结构特征,联想到余弦定理,求cos B 的值,进而求出角B . 解 (1)由正弦定理,得a sin B =b sin A , 又a sin A sin B +b cos 2A =2a ,所以b sin 2A +b cos 2A =2a ,即b =2a .所以ba = 2.(2)由余弦定理和c 2=b 2+3a 2,又0°<B <180°,得cos B =(1+3)a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12.又cos B >0,故cos B =22,又0°<B <180°,所以B =45°.反思归纳 关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练2 (·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3. (2)在△ABC 中,cos B =79,∴sin B =1-cos 2B = 1-⎝⎛⎭⎫792=429.由正弦定理得:a sin A =bsin B,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.题型三 解三角形的实际应用例3 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =14,BC =10,AC =16,∠C =∠D .(1)求AB 的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用较低,请说明理由.审题破题 首先借助余弦定理列式,通过等量关系求出角C 的大小,进而求AB 的长度;然后借助正弦定理比较三角形的面积大小,并作出判断. 解 (1)在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos C =162+102-2×16×10cos C .①在△ABD 中,由余弦定理及∠C =∠D 整理得, AB 2=AD 2+BD 2-2AD ·BD cos D =142+142-2×142cos C .② 由①②得:142+142-2×142cos C =162+102-2×16×10cos C ,整理可得cos C =12,又∠C 为三角形的内角,所以∠C =60°.又∠C =∠D ,AD =BD ,所以△ABD 是等边三角形, 即AB 的长度是14.(2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,∠C =∠D ,所以S △ABD >S △ABC .又已知建造费用与用地面积成正比,故选择△ABC 建造环境标志费用较低. 即小李的设计使建造费用较低.反思归纳 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.变式训练3 (·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.典例 (12分)已知向量a =(cos ωx ,sin ωx ),b =(cos ωx ,3cos ωx ),其中0<ω<2.函数f (x )=a ·b -12,其图象的一条对称轴为x =π6.(1)求函数f (x )的表达式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,S 为其面积,若f ⎝⎛⎭⎫A 2=1,b =1,S △ABC=3,求a 的值. 规范解答解 (1)f (x )=a ·b -12=cos 2ωx +3sin ωx cos ωx -12=1+cos 2ωx 2+32sin 2ωx -12=sin ⎝⎛⎭⎫2ωx +π6.[3分] 当x =π6时,sin ⎝⎛⎭⎫ωπ3+π6=±1, 即ωπ3+π6=k π+π2,k ∈Z . ∵0<ω<2,∴ω=1.[5分]∴f (x )=sin ⎝⎛⎭⎫2x +π6. 令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,∴k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为[k π-π3,k π+π6],k ∈Z .[7分](2)f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6=1, 在△ABC 中,0<A <π,π6<A +π6<76π,∴A +π6=π2,A =π3.由S △ABC =12bc sin A =3,b =1,得c =4.[9分]由余弦定理得a 2=42+12-2×4×1×cos π3=13,故a =13.[12分]评分细则 (1)f (x )没有化成sin ⎝⎛⎭⎫2ωx +π6的得1分;(2)k ∈Z 没写的扣1分;(3)得出A =π3的给1分.阅卷老师提醒 (1)三角形和三角函数的结合是高考命题的热点,灵活考查分析、解决问题的能力.(2)此类问题的一般解法是先将三角函数化成y =A sin(ωx +φ)的形式,利用三角函数求值确定三角形的一个角,然后和正、余弦定理相结合解题. (3)解题中要充分注意在三角形中这个条件,重视角的范围.1. 已知cos (π-2α)sin (α-π4)=-22,则sin α+cos α等于( )A .-72 B.72 C.12D .-12答案 D解析 cos (π-2α)sin (α-π4)=-cos 2αsin (α-π4)=sin (2α-π2)sin (α-π4)=2cos(α-π4)=2cos α+2sin α=-22,∴sin α+cos α=-12,故选D.2. (·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则 ( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解.由题意知f (x )=sin 2⎝⎛⎭⎫x +π4=1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2, 令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 3. (·天津)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010B.105C.31010D.55答案 C解析 在△ABC 中,由余弦定理得AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010.4. 设α、β均为锐角,且cos(α+β)=sin(α-β),则tan α的值为( )A .2 B. 3 C .1 D.33答案 C解析 由已知得cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β),∵β为锐角,∴cos β+sin β≠0,因此有cos α=sin α, 从而tan α=1.5. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B的值为( )A.π6 B.π3C.π6或5π6D.π3或2π3答案 D解析 由(a 2+c 2-b 2)tan B =3ac , 得a 2+c 2-b 22ac =32·cos B sin B ,即cos B =32·cos B sin B,∴sin B =32.又∵0<B <π,∴角B 为π3或2π3.故选D.6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C .当3sin A -cos ⎝⎛⎭⎫B +π4取最大值时,A 的大小为 ( ) A.π3 B.π4 C.π6 D.2π3答案 A解析 由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4,所以B =3π4-A .于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. ∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2.故选A.专题限时规范训练一、选择题1. 已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45 D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 2. (·四川改编)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是( )A. 3 B .2 3 C.32 D.12答案 A解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝⎛⎭⎫π2,π,∴sin α≠0,2cos α+1=0即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 3. 已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 B解析 由题意知,12×4×3×sin C =33,∴sin C =32.又0°<C <90°,∴C =60°.4. 在△ABC 中,若0<tan A ·tan B <1,那么△ABC 一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定答案 B解析 由0<tan A ·tan B <1,可知tan A >0,tan B >0,即A ,B 为锐角,tan(A +B )=tan A +tan B1-tan A tan B>0,即tan(π-C )=-tan C >0,所以tan C <0,所以C 为钝角,所以△ABC为钝角三角形,选B.5. 已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4等于 ( )A .-255B .-3510C .-31010D .255答案 A解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.6. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知C =2A ,cos A =34,b =5,则△ABC 的面积为( )A.1574B.1572C.574D.572答案 A解析 cos A =34,cos C =2cos 2A -1=18,sin C =378,tan C =37,如图,设AD =3x ,AB =4x ,CD =5-3x ,BD =7x .在Rt △DBC 中,tan C =BD CD =7x5-3x =37,解之得:BD =7x =327,S △ABC =12BD ·AC =1574.7. 函数f (x )=sin 2x -4sin 3x cos x (x ∈R )的最小正周期为( )A.π8B.π4C.π2D .π答案 C解析 f (x )=sin 2x -2sin 2x sin 2x =sin 2x (1-2sin 2x )=sin 2x cos 2x =12sin 4x ,所以函数的周期为T =2πω=2π4=π2,选C.8. 在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题。
高三数学二轮复习专题 三角函数(公开课)
![高三数学二轮复习专题 三角函数(公开课)](https://img.taocdn.com/s3/m/4838154c4b7302768e9951e79b89680202d86b41.png)
高三数学二轮复习专题三角函数(公开课)高三数学二轮复习专题三角函数(公开课)一、基础知识回顾三角函数是高中数学中的重要内容之一。
在这个专题中,我们将回顾三角函数的基础知识,包括正弦函数、余弦函数、正切函数等的定义、性质以及相互之间的关系。
1. 三角函数的定义在直角三角形中,我们定义了三角函数的概念。
对于一个角A,定义了三个比值:正弦函数sinA=对边/斜边,余弦函数cosA=邻边/斜边,正切函数tanA=对边/邻边。
2. 三角函数的周期性我们知道,三角函数具有周期性。
例如,正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。
这意味着在一个周期内,三角函数的值是重复的。
这种周期性使得三角函数在实际问题中具有广泛的应用。
3. 三角函数的性质三角函数有许多重要的性质。
例如,正弦函数和余弦函数是偶函数,即f(x)=f(-x);正切函数是奇函数,即f(x)=-f(-x)。
此外,三角函数还具有增减性和界值性质。
二、三角函数的图像与性质下面我们将进一步讨论三角函数的图像与性质。
通过对三角函数图像的分析,我们能够更好地理解三角函数的特点和性质。
1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,振动范围在[-1,1]之间。
正弦函数的图像关于y轴对称,且在0点处取得最小值。
我们可以通过调整系数来改变正弦函数的振幅和周期。
2. 余弦函数的图像与性质余弦函数的图像也是一条连续的波浪线,振动范围也在[-1,1]之间。
与正弦函数不同的是,余弦函数的图像关于x轴对称,且在0点处取得最大值。
同样地,我们可以通过系数调整来改变余弦函数的振幅和周期。
3. 正切函数的图像与性质正切函数的图像是一条连续的曲线,其值在整个实数轴上变化。
正切函数在某些点上没有定义,这些点是函数的奇点。
我们可以通过系数调整来改变正切函数的振幅和周期。
三、三角函数的应用三角函数在实际问题中有广泛的应用。
在这一部分,我们将介绍一些常见的三角函数应用,并通过例题来加深理解。
2024届高考数学二轮复习专题1三角函数与解三角形课件
![2024届高考数学二轮复习专题1三角函数与解三角形课件](https://img.taocdn.com/s3/m/05d23530f342336c1eb91a37f111f18582d00c6c.png)
即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量
高考数学大二轮复习专题一平面向量、三角函数与解三角形第四讲三角函数与解三角形的综合问题课件文3
![高考数学大二轮复习专题一平面向量、三角函数与解三角形第四讲三角函数与解三角形的综合问题课件文3](https://img.taocdn.com/s3/m/37b97ff16aec0975f46527d3240c844768eaa031.png)
上的单调区间及值域 性及值域
转化与化归思想在
解题过程中应用
[规范解答] (1)f(x)= 3sin2x-π3+4cos2x
=
3sin
2xcosπ3-cos
2xsin
π3+2(1+cos
2x)……………1
分
=
3 2 sin
2x-32cos
2x+2cos
2x+2
= 23sin 2x+12cos 2x+2=sin2x+π6+2,……………2 分
将函数 f(x)的图象向右平移π6个单位,再向下平移 2 个单位,得 到 g(x) = sin 2x-π6+π6 + 2 - 2 = sin 2x-π6 的 图 象,……………………3 分 即 g(x)=sin2x-π6.……………………4 分 (2)由π6≤x≤23π,可得π6≤2x-π6≤76π.……………………5 分 当π2≤2x-π6≤76π,即π3≤x≤23π时,函数 g(x)单调递减.
(2)由(1)知 B=120°-C, 由题设及正弦定理得 2sin A+sin(120°-C)=2sin C, 即 26+ 23cos C+12sin C=2sin C,可得 cos(C+60°)= - 22.…………………8 分 因为 0°<C<120°,所以 sin(C+60°)= 22,……………10 分
[学审题]
条件信息
想到方法
注意什么
信息❶和差公式及降 利用三角恒等变换化 f(x) (1)化简 f(x)时,注意
幂公式
为 Asin(ωx+φ)结构
变换准确尤其是 φ
三角函数图象平移变换规 的求法
信息❷图象平移变换
律
(2)把握准平移变换
规律,这一点易出错
高考数学二轮复习专题一三角函数与平面向量第3讲平面向量课件理
![高考数学二轮复习专题一三角函数与平面向量第3讲平面向量课件理](https://img.taocdn.com/s3/m/47b413521ed9ad51f01df2b3.png)
高考定位 平面向量这部分内容在高考中的要求大部分都为 B级,只有平面向量的应用为A级要求,平面向量的数量积 为C级要求.主要考查:(1)平面向量的基本定理及基本运算, 多以熟知的平面图形为背景进行考查,填空题难度中档; (2)平面向量的数量积,以填空题为主,难度低;(3)向量作为 工具,还常与三角函数、解三角形、不等式、解析几何结合, 以解答题形式出现.
2.平面向量的两个充要条件 若两个非零向量a=(x1,y1),b=(x2,y2),则 (1)a∥b⇔a=λb⇔x1y2-x2y1=0. (2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.
3.平面向量的三个性质 (1)若 a=(x,y),则|a|= a·a= x2+y2. (2)若 A(x1,y1),B(x2,y2),则
=-356(a2+b2)+2366a·b=-356×229+2366×4=78.
答案
7 8
4.(2017·江苏卷)已知向量 a=(cos x,sin x),b=(3,- 3), x∈[0,π ]. (1)若 a∥b,求 x 的值; (2)记 f (x)=a·b,求 f (x)的最大值和最小值以及对应的 x 的值.
真题感悟
1.(2015·江苏卷)已知向量 a=(2,1),b=(1,-2),若 ma+ nb=(9,-8)(m,n∈R),则 m-n 的值为________. 解析 ∵a=(2,1),b=(1,-2),∴ma+nb=(2m+n, m-2n)=(9,-8),即2mm-+2nn= =9-,8,解得mn==52,,故 m -n=2-5=-3.
解 (1)∵a∥b,∴3sin x=- 3cos x, ∴3sin x+ 3cos x=0,即 sinx+π6 =0. ∵0≤x≤π ,∴π6 ≤x+π6 ≤76π ,∴x+π6 =π ,∴x=5π6 .
高考数学二轮复习专题三平面向量、三角函数、三角形3.
![高考数学二轮复习专题三平面向量、三角函数、三角形3.](https://img.taocdn.com/s3/m/af4bb93c27284b73f24250a1.png)
(2)∵ f58π=2,f118π=0,且 f(x)的最小正周期大于 2π, ∴ f(x)的最小正周期为 4118π-58π=3π, ∴ ω=23ππ=23,∴ f(x)=2sin23x+φ. ∴ 2sin23×58π+φ=2, 得 φ=2kπ+1π2,k∈Z. 又|φ|<π,∴ 取 k=0,得 φ=1π2. 故选 A.
考点 1 三角函数的定义、诱导公式及基本关系
1.三角函数:设 α 是一个任意角,它的终边与单位圆交于点 P(x,y),则 sinα=y,cosα=x,tanα=yx.各象限角的三角函数值的符 号:一全正,二正弦,三正切,四余弦.
2.同角关系:sin2α+cos2α=1,csoinsαα=tanα. 3.诱导公式:在k2π+α,k∈Z 的诱导公式中“奇变偶不变,符 号看象限”.
例 1(1)已知角 α 的顶点与原点重合,始边与 x 轴的正半轴重合,
终边上一点 P(-4,3),则ccooss12π12+π-ααsinsin-92ππ-+αα的值为__-__34____; (2)(2017·北京卷)在平面直角坐标系 xOy 中,角 α 与角 β 均以
Ox 为始边,它们的终边关于 =___-__79___.
y
轴对称.若
sin
α=13,则
cos(α-β)
【解析】 (1)原式=--ssiinnαα··csoinsαα=tanα.根据三角函数的定义,
得 tanα=yx=-34,所以原式=-34. (2)由题意知 α+β=π+2kπ(k∈Z), ∴ β=π+2kπ-α(k∈Z), sin β=sin α,cos β=-cos α. 又 sin α=13, ∴ cos(α-β)=cos αcos β+sin αsin β =-cos2α+sin2α=2sin2α-1
高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理
![高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理](https://img.taocdn.com/s3/m/451b07974793daef5ef7ba0d4a7302768f996f47.png)
-b)⊥b,则 a 与 b 的夹角为( )
π
π
A.6
B.3
C.23π
D.56π
解析:由(a-b)⊥b,可得(a-b)·b=0,∴a·b=b2.
∵|a|=2|b|,∴cos〈a,b〉=|aa|··|bb|=2bb22=12.
∵0≤〈a,b〉≤π,∴a 与 b 的夹角为π3.故选 B. 答案:B
4.(2019·恩施州模拟)已知向量 a=(1, 3),b=-12, 23,则
3.(2019·河北衡水中学模拟)已知 O 是平面上一定点,A,B,
C
是平面上不共线的三点,动点
P
满
足
→ OP
=
O→B+O→C 2
+
λ
→ AB →
→
+
AC →
,λ∈[0,+∞),则点 P 的轨迹经过△
|AB|cos B |AC|cos C
ABC 的( )
A.外心
B.内心
C.重心
D.垂心
解析:设
答案:A
4.(2018·高考全国卷Ⅲ)已知向量 a=(1,2),b=(2,-2),c= (1,λ).若 c∥(2a+b),则 λ=________.
解析:2a+b=(4,2),因为 c∥(2a+b),所以 4λ=2,得 λ=12. 答案:12
[类题通法] 1.应用平面向量基本定理表示向量的实质是利用 平行四边形法则或三角形法则进行向量的加、减或数乘运 算.一般将向量归结到相关的三角形中,利用三角形法则列出 三个向量之间的关系. 2.用平面向量基本定理解决问题的一般思路:先选择一组基 底,并运用该组基底将条件和结论表示成向量的形式,再通过 向量的运算来解决.注意同一个向量在不同基底下的分解是不 同的,但在每组基底下的分解都是唯一的.
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 文-
![高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 文-](https://img.taocdn.com/s3/m/3067b1dc6e1aff00bed5b9f3f90f76c661374c2d.png)
第一讲 三角函数的图象与性质1.高考对三角函数图象的考查主要包括三个方面:一是用五点法作图,二是图象变换,三是已知图象求解析式或求解析式中的参数的值,常以选择题或填空题的形式考查.2.高考对三角函数性质的考查是重点,以解答题为主,考查y =A sin (ωx+φ)的周期性、单调性、对称性以及最值等,常与平面向量、三角形结合进行综合考查,试题难度属中低档.角的概念与诱导公式 1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.三角函数定义与同角三角函数基本关系1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x, y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1.(2)tan α=sin αcos α.三角函数的性质三角函数的基本性质列表如下: 函数y =sin x y =cos x y =tan x图象(续上表)定义域 R R值域 [-1,1] [-1,1] R 周期性最小正周期为2π最小正周期 为2π 最小正周期为π 奇偶性奇函数 偶函数奇函数单调性在⎣⎢⎢⎡⎦⎥⎥⎤-π2+2k π,π2+2k π (k ∈Z)上递增,在⎣⎢⎢⎡⎦⎥⎥⎤π2+2k π,3π2+2k π (k ∈Z)上递减在[2k π-π,2k π] (k ∈Z)上递增,在 [2k π,2k π+π] (k ∈Z)上递减在⎝ ⎛⎭⎪⎪⎫-π2+k π,π2+k π (k ∈Z)上都 是增函数对称中心坐标 (k π,0),k ∈Z⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ⎝ ⎛⎭⎪⎫k π2,0,k ∈Z对称轴 方程 x =k π+π2,k ∈Z x =k π,k ∈Z三角函数的变换正弦曲线y =sin x 的变换(其中ω>0):判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B.-125 C.512 D.-512解析:解法一 因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二 因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A.-1213 B.1213 C.513 D.-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A )A.①②③B.①③④C.②④D.①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin (π6x +φ)+k .据此函数可知,这段时间水深(单位:m )的最大值为(C )A.5B.6C.8D.10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.。
高三数学二轮知识点总结
![高三数学二轮知识点总结](https://img.taocdn.com/s3/m/07d13d70b80d6c85ec3a87c24028915f814d8453.png)
高三数学二轮知识点总结在高三阶段,数学是一个很重要的科目,对于考生来说,掌握数学知识点是必不可少的。
本文将对高三数学二轮的知识点进行总结,希望对同学们的备考有所帮助。
1. 三角函数三角函数是高中数学中一个重要的章节。
其中,正弦函数、余弦函数和正切函数是必须要掌握的。
相关的知识点包括三角函数的基本性质、图像、周期性、解析式以及相关的变形与恒等式等。
2. 平面向量平面向量也是高中数学中的重点内容。
关于平面向量,需要掌握向量的概念、向量的加减法、数量积、向量的夹角、向量的共线性和异面性等相关的知识点。
3. 空间向量空间向量是在平面向量的基础上扩展而来的。
在学习空间向量时,要了解向量的概念、向量的共线性和共面性、数量积、向量的夹角以及平行四边形法则等。
4. 解析几何解析几何是数学中的一个重要分支,其中平面解析几何和空间解析几何是重要的内容。
在学习解析几何时,要掌握点、直线、平面的方程以及相互关系,如点到直线的距离、点到平面的距离等等。
5. 数列与数学归纳法数列与数学归纳法是数学中的基础概念。
学习数列与数学归纳法时,要了解数列的概念、数列的通项公式、数列的递推关系、数列的性质以及数学归纳法的基本原理和应用等。
6. 三角恒等变换与三角方程三角恒等变换和三角方程是高中数学中的难点。
在学习三角恒等变换时,要掌握三角函数的基本性质,如诱导公式、倍角公式、和差化积等。
在学习三角方程时,要了解三角方程的解法,如借助三角函数图像、三角函数对称性和三角函数的周期性等。
7. 函数与导数函数与导数是高中数学中的重要内容。
在学习函数与导数时,要了解函数的概念、函数的性质、函数的图像与性质、函数的运算以及导数的概念、导数的性质、导数与函数的关系等。
8. 不等式与极限不等式与极限是高中数学中的考察重点。
在学习不等式与极限时,要掌握不等式的性质、不等式的运算、不等式的解法,以及极限的概念、极限的运算、极限的性质和求极限的方法等。
9. 统计与概率统计与概率是高中数学中的一个分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推荐学习年高考数学二轮总复习第一部分专题攻略专题三平面向量三角函数三角形八三角变换与解三————————————————————————————————作者:————————————————————————————————日期:课时作业(八) 三角变换与解三角形1.(2017·陕西省高三教学质量检测试题(一))设角θ的终边过点(2,3),则tan错误!=( )A .15B .-错误!C .5 D.-5解析:由于角θ的终边过点(2,3),因此tan θ=错误!,故tan 错误!=\f (tan θ-1,1+t an θ)=错误!=错误!,选A.答案:A 2.已知sin错误!=cos 错误!,则cos2α=( )A.1 B .-1 C.错误! D.0解析:因为sin错误!=cos 错误!,所以错误!c osα-错误!sin α=错误!cos α-错误!sin α,即错误!s in α=-错误!c os α,所以tan α=错误!=-1,所以cos2α=c os 2α-si n2α=错误!=错误!=0.答案:D3.(2017·合肥市第一次教学质量检测)已知△AB C的内角A ,B,C 的对边分别为a ,b ,c,若cos C =错误!,b cos A+a cos B =2,则△ABC 的外接圆面积为( )A.4π B.8π C .9π D.36π解析:c=b c os A+a c osB =2,由cos C =错误!得sin C =错误!,再由正弦定理可得2R =\f(c ,s in C )=6,所以△A BC 的外接圆面积为πR 2=9π,故选C.答案:C 4.△ABC 中,a =错误!,b=错误!,sin B =错误!,则符合条件的三角形有( )A.1个B.2个C.3个D.0个解析:∵asinB=错误!,∴sinB<b=错误!<a=错误!,∴符合条件的三角形有2个.答案:B5.已知cos错误!+sinθ=错误!,则sin错误!的值是( )A.45B.错误!C.-错误! D.-错误!解析:因为cos错误!+sinθ=错误!,所以\f(3,2)cosθ+错误!sinθ=错误!,即错误!错误!=错误!,即3sin错误!=错误!,所以sin错误!=错误!,所以sin错误!=-sin错误!=-错误!.故选C.答案:C6.若sin2α=错误!,sin(β-α)=错误!,且α∈错误!,β∈错误!,则α+β的值是( )A.\f(7π,4)B.错误!C.错误!或错误! D.错误!或错误!解析:因为α∈错误!,所以2α∈错误!,又sin2α=错误!,故2α∈错误!,α∈错误!,所以cos2α=-错误!.又β∈错误!,故β-α∈错误!,于是cos (β-α)=-错误!,所以cos(α+β)=co s[2α+(β-α)]=cos2αcos (β-α)-sin2αsin(β-α)=-错误!×错误!-错误!×1010=错误!,且α+β∈错误!,故α+β=错误!.答案:A7.(2017·张掖市第一次诊断考试)在△A BC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c=2a,b si nB -a sin A=12a s in C ,则sin B 为( )A.错误! B .错误! C.错误! D.错误!解析:由bs in B -a s in A =错误!a sin C,且c =2a ,得b =错误!a ,∵cos B=错误!=错误!=错误!,∴sin B =错误!=错误!.答案:A8.△ABC 的内角A,B ,C 的对边分别为a ,b ,c.已知s in B +si n A (sin C-cos C )=0,a =2,c =\r (2),则C=( )A.错误! B.错误!C.\f (π,4) D .π3解析:本题考查正弦定理和两角和的正弦公式.在△ABC 中,si nB =s in (A+C ),则sin B +sin A (sin C -co sC ) =sin(A +C )+sin A(sin C -cos C )=0,即si nAcos C+cos A sin C +s inA sin C -sin A ·cos C =0, ∴cos Asin C +s in Asi nC =0,∵sin C≠0, ∴cos A +s in A =0,即tan A =-1,即A=错误!π.由错误!=错误!得错误!=错误!,∴sin C =错误!,又0<C<错误!,∴C=错误!,故选B.答案:B9.在△ABC中角A,B,C的对边分别是a,b,c,已知4sin2错误!-cos2C=错误!,且a+b=5,c=错误!,则△ABC的面积为( )A.错误! B.错误!C.错误!D.错误!解析:因为4sin2错误!-cos2C=错误!,所以2[1-cos(A+B)]-2cos2C+1=72,2+2cosC-2cos2C+1=72,cos2C-cosC+错误!=0,解得cosC=\f(1,2),由于0<C<π,故sinC=32.根据余弦定理有cosC=12=a2+b2-72ab,ab=a2+b2-7,3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,ab=6.所以S=错误!ab sinC=错误!×6×错误!=错误!.答案:A10.(2017·咸阳二模)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且错误!+错误!=2c2,sin A(1-cos C)=sin B sin C,b=6,AB边上的点M满足错误!=2错误!,过点M的直线与射线CA,CB分别交于P,Q两点,则MP2+MQ2的最小值是( )A.36 B.37C.38D.39解析:由正弦定理,知错误!+错误!=2c 2,即2=2sin 2C ,∴sinC =1,C =错误!,∴sin A (1-cos C )=sin Bsin C ,即sin A =s in B ,∴A =B=π4.以C 为坐标原点建立如图所示的平面直角坐标系,则M (2,4),设∠MPC =θ,θ∈错误!,则MP 2+MQ 2=错误!+错误!=(sin2θ+co s2θ)错误!=20+4tan 2θ+错误!≥36,当且仅当tan θ=错误!时等号成立,即MP 2+MQ 2的最小值为36.答案:A11.(2017·长沙市统一模拟考试)化简:\f (2s in π-α+sin 2α,cos 2α2)=________.解析:错误!=错误!=错误!=4sin α.答案:4s in α12.(2017·新疆第二次适应性检测)错误!的值是________.解析:依题意得错误!=错误!=错误!=错误!=2.答案:213.(2017·课标全国Ⅲ)△A BC 的内角A ,B ,C 的对边分别为a,b ,c .已知C=60°,b =6,c=3,则A =________.解析:由正弦定理,得\f (3,sin 60°)=\r(6)s in B,∴ sin B=错误!.又∵c >b ,∴ B =45°,∴ A =180°-60°-45°=75°. 答案:75°14.如图,一栋建筑物的高为(30-103) m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别为15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为________ m.解析:在Rt△ABM中,AM=错误!=错误!=错误!=错误!=20\r(6).易知∠MAC=30°+15°=45°,又∠AMC=180°-15°-60°=105°,从而∠ACM=30°.在△AMC中,由正弦定理得错误!=错误!,解得MC=40错误!.在Rt△CMD中,CD=MC×sin60°=60,故通信塔CD的高为60 m.答案:6015.(2017·北京卷)已知函数f(x)=\r(3)cos错误!-2sin x cos x.(1)求f(x)的最小正周期;(2)求证:当x∈错误!时,f(x)≥-错误!.解析:(1)f(x)=错误!cos 2x+错误!sin 2x-sin 2x=错误!sin 2x+错误!cos 2x=sin错误!,所以f(x)的最小正周期T=\f(2π,2)=π.(2)证明:因为-错误!≤x≤错误!,所以-错误!≤2x+错误!≤错误!,所以sin错误!≥sin错误!=-错误!,所以当x∈错误!时,f(x)≥-错误!.16.在△ABC 中,角A ,B ,C的对边分别为a,b,c ,已知错误!=2sin 错误!.(1)求B ;(2)若b =27,△ABC 的面积S =3\r (3),求a +c 的值. 解析:(1)由已知得a+c =2b sin 错误!,由正弦定理知 si nA +si nC =2s in B错误!,即sin(B +C )+si nC =sin B (3sin C +cos C ), 整理得\r(3)si nB s in C-c os B si nC =sin C , 因为s in C>0, 所以错误!s inB -co sB=1, 即sin错误!=错误!,因为B ∈(0,π),所以B=\f(π,3). (2)由(1)知B =π3,从而S =错误!ac sin B =错误!ac sin 错误!=错误!ac =3\r(3),所以ac =12.由余弦定理可得b 2=a2+c 2-2ac co sB =a2+c 2-ac =(a+c )2-3ac =(a+c )2-3×12=(a +c )2-36,故(a +c)2=b 2+36=(2错误!)2+36=64,所以a +c =8.17.(2017·全国卷Ⅲ)△AB C的内角A ,B ,C 的对边分别为a ,b ,c .已知si n A +错误!cos A =0,a =2错误!,b =2.(1)求c ;(2)设D 为B C边上一点,且AD ⊥AC ,求△ABD 的面积. 解析:(1)由已知可得tan A =-3,所以A =\f(2π,3). 在△ABC 中,由余弦定理得28=4+c 2-4cco s2π3,即c 2+2c-24=0,解得c =-6(舍去),c =4. (2)由题设可得∠C AD =π2,所以∠B AD=∠BAC -∠CAD =π6.故△ABD 面积与△A CD 面积的比值为错误!=1.又△ABC 的面积为12×4×2sin∠BAC =2\r(3),所以△ABD 的面积为\r(3). 18.(2017·东北四市高考模拟)已知点P (错误!,1),Q(cos x ,s inx),O 为坐标原点,函数f(x )=O P→·错误!.(1)求函数f (x )的最小正周期;(2)若A 为△ABC 的内角,f (A)=4,BC =3,△A BC 的面积为错误!,求△ABC 的周长.解析:(1)由题易知,错误!=(错误!,1),错误!=(错误!-cos x,1-si nx ),所以f (x )=错误!(错误!-cos x )+1-s in x =4-2sin 错误!,所以f(x)的最小正周期为2π. (2)因为f (A )=4,所以sin错误!=0,则x +错误!=k π,k ∈Z,即x =-错误!+k π,k ∈Z,因为0<A <π,所以A =错误!,因为△AB C的面积S=\f(1,2)bc sin A =错误!,所以b c=3.由a 2=b 2+c2-2bc cos A ,可得b 2+c 2=6,所以(b+c)2=b 2+c 2+2bc =12,即b +c =23. 所以△ABC 的周长为3+2\r (3).。