【名师整理 真题感悟】2014高考数学(苏教版)常考问题专项冲关突破:常考问题5 导数的综合应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题5 导数的综合应用
[真题感悟]
(2013·江苏卷)设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a
的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的
结论.
解(1)令f′(x)=1
x-a=
1-ax
x<0,考虑到f(x)的定义域为(0,+∞),故a>0,
进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理,f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g′(x)=e x-a=0,得x=ln a.当x<ln a时,g′(x)<0;当x>ln a时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.
综上,有a∈(e,+∞).
(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g′(x)=e x-a>0,
解得a<e x,即x>ln a,因为g(x)在(-1,+∞)上是单调增函数,类似(1)有ln a≤-1,即0<a≤e-1.结合上述两种情况,有a≤e-1.
(ⅰ)当a=0时,由f(1)=0以及f′(x)=1
x>0,得f(x)存在唯一的零点;
(ⅱ)当a<0时,由于f(e a)=a-a e a=a(1-e a)<0,f(1)=-a>0,且函数f(x)在[e a,1]
上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时,f′(x)=1 x-
a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.
(ⅲ)当0<a≤e-1时,令f′(x)=1
x-a=0,解得x=a
-1.当0<x<a-1时,f′(x)>0,
当x>a-1时,f′(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.
①当-ln a-1=0,即a=e-1时,f(x)有一个零点x=e.
②当-ln a-1>0,即0<a<e-1时,f(x)有两个零点.
实际上,对于0<a<e-1,由于f(e-1)=-1-a e-1<0,f(a-1)>0,且函数f(x)在[e -1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.
另外,当x∈(0,a-1)时,f′(x)=1
x-a>0,故f(x)在(0,a
-1)上是单调增函数,
所以f(x)在(0,a-1)上只有一个零点.
下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.
为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h′(x)=e x-2x,再设l(x)=h′(x)=e x-2x,则l′(x)=e x-2.
当x>1时,l′(x)=e x-2>e-2>0,所以l(x)=h′(x)在(1,+∞)上是单调增函数.故当x>2时,h′(x)=e x-2x>h′(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数.进而当x>e时,
h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.
当0<a<e-1,即a-1>e时,f(e a-1)=a-1-a e a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又
当x>a-1时,f′(x)=1
x-a<0,故f(x)在(a
-1,+∞)上是单调减函数,所以f(x)
在(a-1,+∞)上只有一个零点.
综合(ⅰ),(ⅱ),(ⅲ),当a≤0或a=e-1时,f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2.
[考题分析]
高考对本内容的考查主要有:
(1)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;
(2)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.When you are old and grey and full of sleep,
And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,
And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled
And paced upon the mountains overhead
And hid his face amid a crowd of stars.
The furthest distance in the world
Is not between life and death
But when I stand in front of you
Yet you don't know that
I love you.
The furthest distance in the world
Is not when I stand in front of you
Yet you can't see my love
But when undoubtedly knowing the love from both
Yet cannot be together.
The furthest distance in the world
Is not being apart while being in love
But when I plainly cannot resist the yearning
Yet pretending you have never been in my heart.
The furthest distance in the world
Is not struggling against the tides
But using one's indifferent heart
To dig an uncrossable river
For the one who loves you.
倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
周遭流岚升腾,没露出那真实的面孔。
面对那流转的薄雾,我会幻想,那里有一个世外桃源。
在天阶夜色凉如水的夏夜,我会静静地,静静地,等待一场流星雨的来临…
许下一个愿望,不乞求去实现,至少,曾经,有那么一刻,我那还未枯萎的,青春的,诗意的心,在我最美的年华里,同星空做了一次灵魂的交流…
秋日里,阳光并不刺眼,天空是一碧如洗的蓝,点缀着飘逸的流云。
偶尔,一片飞舞的落叶,会飘到我的窗前。
斑驳的印迹里,携刻着深秋的颜色。
在一个落雪的晨,这纷纷扬扬的雪,飘落着一如千年前的洁白。
窗外,是未被污染的银白色世界。
我会去迎接,这人间的圣洁。
在这流转的岁月里,有着流转的四季,还有一颗流转的心,亘古不变的心。