高考数学压轴专题(易错题)备战高考《平面向量》基础测试题含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新】《平面向量》专题解析
一、选择题
1.已知平面向量a v ,b v 的夹角为3
π,且||2a =v ,||1b =v ,则2a b -=v v ( ) A .4
B .2
C .1
D .16
【答案】B
【解析】
【分析】
根据向量的数量积和向量的模的运算,即可求解.
【详解】 由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r , 所以|2|2a b -=r r ,故选B.
【点睛】
本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.
2.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r ,AB AC λ=u u u r u u u r ,若
9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则实数λ=( )
A B C D 【答案】D
【解析】
【分析】 将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可.
【详解】
由0OA OB OC ++=u u u r u u u r u u u r r
,知O 为ABC ∆的重心, 所以211()323
AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r , 所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u u r u u u r
2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r ,||2||
AB AC λ===u u u r u u u r . 故选:D
【点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.
3.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )
A .65
B .85
C .2
D .83
【答案】B
【解析】
【分析】 建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.
【详解】
建立如图所示的平面直角坐标系,则D (0,0).
不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),
(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u r CA CE DB λμ=+u u u r u u u r u u u r Q
∴(-2,2)=λ(-2,1)+μ(1,2), 2222λμλμ-+=-⎧∴⎨+=⎩解得652
5λμ⎧=⎪⎪⎨⎪=⎪⎩
则85λμ+=. 故选:B
【点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
4.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r 方向上的投影为( )
A .165-
B .165
C .1613-
D .1613
【答案】C
【解析】
【分析】 先计算出16a b r r ⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b
⋅r r r 可得 【详解】 ()4,3a =r Q ,()5,12b =-r ,
4531216a b ⋅=⨯-⨯=-r r , 则向量a r 在b r 方向上的投影为1613a b b
⋅-=r r r , 故选:C.
【点睛】
本题考查平面向量的数量积投影的知识点. 若,a b r r 的夹角为θ,向量a r 在b r 方向上的投影为cos a θ⋅r 或a b b
⋅r r r
5.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )
A .1162DF A
B A
C =--u u u r u u u r u u u r B .1134
DF AB AC =--u u u r u u u r u u u r C .3142DF AB AC =-+u u u r u u u r u u u r D .1126
DF AB AC =--u u u r u u u r u u u r 【答案】A
【解析】
【分析】
设AB AF λ=u u u r u u u r ,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r ,即可得出答案.
【详解】
设AB AF λ=u u u r u u u r ,111124444
AE AB A A C A AC D F λ==+=+u u u r u u u u u u r u u u r r u u u r u u u r 因为C E F 、、三点共线,则1=144
λ+,=3λ 所以1111132262
DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选:A
【点睛】
本题主要考查了用基底表示向量,属于中档题.
6.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( )
A .4
B .2
C .2
D 2
【答案】A
【解析】
【分析】 画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,12y y >, 由90ACB ∠=︒可求2
2
1216y y -=,结合221244y y CD =-即可求解 【详解】 如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭
u u u r u u u r , ()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016
y y y y ---= 解得2
2
1216y y -=(0舍去),所以222212124444y y y y CD -=-==
故选:A
【点睛】
本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题 7.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r ,则x =( ) A .1
B .2
C .3
D .4 【答案】A
【解析】
【分析】
根据向量的坐标运算,求得(3)(2,6)a b +=r r ,再根据向量的数量积的坐标运算,即可求解,得到答案.
【详解】 由题意,向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r ,则向量
(3)3(1,1)(1,3)(2,6)a b +=+-=r r ,
所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r ,解得1x =,故选A.
【点睛】
本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.
8.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩
,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m
的最小值为( )
A .125
B .125-
C .32
D .32
- 【答案】B
【解析】
【分析】
先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可.
【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r ,
由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值,
由242x y x y +=⎧⎨=⎩,得854
5x y ⎧=⎪⎪⎨⎪=⎪⎩
,∴84,55C ⎛⎫ ⎪⎝⎭, ∴416122555
m y x =-=
-=-, 故选:B. 【点睛】
本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
9.如图,两个全等的直角边长分别为3AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+等于( )
A.
323
3
-+
B.
32
3
3
+
C.31
-D.31
+
【答案】B
【解析】
【分析】
建立坐标系,求出D点坐标,从而得出λ,μ的值.
【详解】
解:1
AC=
Q,3
AB=,30
ABC
∴∠=︒,60
ACB
∠=︒,以AB,AC为坐标轴建立坐标系,则
13
,1
2
D
⎛⎫
+


⎝⎭

()3,0
AB=
u u u r
,()
0,1
AC=
uu u r


13
,1
2
AD
⎛⎫
=+


⎝⎭
u u u r

Q AD AB AC
λμ
=+
u u u r u u u r u u u r


1
3
2
3
1
2
λ
μ

=
⎪⎪

⎪=+
⎪⎩
,∴
3
3
1
λ
μ

=
⎪⎪

⎪=+
⎪⎩

23
1
λμ
∴+=+.
故选:B.
【点睛】
本题考查了平面向量的基本定理,属于中档题.
10.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuu r =2,则△ABC 的面积为( )
A B .32 C .D .【答案】C
【解析】
【分析】 利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积.
【详解】
在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,
可得cosB 222123a c b ac +-==,则sinB = BA u u u r ⋅BC =u u u r 2,可得cacosB =2,则ac =6,
∴△ABC 的面积为:
116223
acsinB =⨯⨯=. 故选C .
【点睛】
本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力. 11.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r ,则λμ+=( )
A .13-
B .13
C .12-
D .12 【答案】C
【解析】
【分析】
由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r
,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r ,列式分别求出λ和μ,即可求得λμ+.
【详解】
解:已知D 、P 分别为BC 、AD 的中点,
由向量的加减法运算,
得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r

2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r , 又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,
则1221μλλμ-=⎧⎨+=-⎩
, 则12
λμ+=-. 故选:C.
【点睛】
本题考查平面向量的加减法运算以及向量的基本定理的应用.
12.设双曲线()22
2210,0x y a b a b
-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若
(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8
λμ,则双曲线的离心率为( ) A .23 B 35 C .322 D .98
【答案】A
【解析】
【分析】
先根据已知求出,u λ,再代入225+=8
λμ求出双曲线的离心率. 【详解】 由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2
(,),(,),(,),bc bc b A c B c P c a a a
- 因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a a
λλ=+-. 所以,,b u c u c
λλ+=-=
解之得,.22b c c b u c c λ+-=
=
因为225+=
8λμ,所以225()(),228b c c b c e c c a +-+=∴=∴= 故答案为A
【点睛】 本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v 求出,u λ.
13.已知向量(b =r ,向量a r 在b r 方向上的投影为6-,若()a b b λ+⊥r r r ,则实数λ的值为( )
A .13
B .1
3- C .23 D .3
【答案】A
【解析】
【分析】
设(),a x y =r 6=-,()
4x λ=-,整体代换即可得解. 【详解】 设(),a x y =r ,
Q a r 在b r 方向上的投影为6-,∴62a b x b
⋅+==-r r r 即12x +=-.
又 ()a b b λ+⊥r r r ,∴()0a b b λ+⋅=r r r 即130x y λ++=,
∴()4x λ+=-即124λ-=-,解得13
λ=
. 故选:A.
【点睛】
本题考查了向量数量积的应用,属于中档题.
14.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r 的值为( ) A .1
B .2
C .3
D .4 【答案】C
【解析】
【分析】 由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r ,利用数量积的分配律即得解.
【详解】
AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r
, ()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r
故选:C
【点睛】
本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.
15.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r
,则sin 2θ+6cos 2θ的值为( ) A .12 B .2 C .22 D .﹣2 【答案】B 【解析】
【分析】
根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ
+=+,分子分母同除以cos 2θ,代入tanθ可得答案.
【详解】 因为向量m =r (1,cosθ),n =r (sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r 因为m r ⊥n r ,
所以sin 2cos 0θθ-=,即tanθ=2,
所以sin 2θ+6cos 2
θ22222626226141
sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.
【点睛】 本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.
16.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r
( )
A .1
B .2-
C .12
D .12
-
【答案】C
【解析】
【分析】
以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r
用基底表示,根据向量数量积的运算律,即可求解.
【详解】
222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 11,22
AE EC BE BC BA =∴=+u u u r u u u r u u u r , 211()()322
AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362
BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622
=-⨯⨯⨯=. 故选:C.
【点睛】
本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题. 17.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形 【答案】A
【解析】
【分析】
利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.
【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()
0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=
,故ABC ∆为直角三角形.
故选:A.
【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.
18.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )
A .
15,45
B .43,13-
C .45,15
D .13-,43 【答案】C
【解析】
【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2
AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.
【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2
OP xa yb x y =+=u u u r r r , 又由5(,5)2
AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504
OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41
x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .
【点睛】
本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.
19.已知单位向量,a b r r
满足3a b +=r r ,则a r 与b r 的夹角为
A .6π
B .4π
C .3π
D .2
π 【答案】C
【解析】
由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,
又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3
a b π〈〉∈r r ,故选C.
20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r
,120BAC ∠=︒,则||EB =u u u r ( )
A .4
B
C .2
D .4
【答案】A
【解析】
【分析】 根据向量的线性运算可得3144
EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.
【详解】 因为11131()22244
EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6
EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216
=⨯-⨯⨯⨯-+⨯ 1916
=

所以||4
EB =u u u r , 故选:A
【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

相关文档
最新文档