钙钛矿太阳能电池及其研究进展

合集下载

分析新型钙钛矿太阳能电池研究进展及面临的问题

分析新型钙钛矿太阳能电池研究进展及面临的问题

分析新型钙钛矿太阳能电池研究进展及面临的问题摘要:新型钙钛矿太阳能电池是一种新型清洁可再生能源,将其应用到实际生活中充分满足了社会节能、低碳、环保的发展要求。

为此,文章在阐述新型钙钛矿太阳能电池基本构造的基础上,分析当前新型钙钛矿太阳能电池的研究进展和研究存在问题,并从提升新型钙钛矿太阳能电池转换效率、增强新型钙钛矿太阳能电池稳定性、降低新型钙钛矿太阳能电池污染性几个方面就其未来发展优化进行展望。

关键词;新型钙钛矿太阳能电池;构造;节能环保;发展展望新型钙钛矿太阳能电池的出现弥补了第三代太阳能电池开发成本高、稳定性差、使用效率低的问题,同时,从实际加工生产上来看,新型钙钛矿太阳能电池的加工原材料丰富、制作流程简单、转换效率高。

从产生到发展至今,新型钙钛矿太阳能电池拥有十一年的发展历史(2009年最早出现在日本),是一种有望替代化石燃料的清洁能源。

为此,文章结合新型钙钛矿太阳能电池的研究发展现状就如何优化新型钙钛矿太阳能电池的生产研发进行探究。

1.新型钙钛矿太阳能电池工作原理和基本结构新型钙钛矿太阳能电池在使用的时候太阳光会照射到吸光层上,能量超过吸收层禁带宽度的光子会将钙钛矿层中的价电子激发到导带上,并在价带位置下留下空穴。

由于钙钛矿材料激子束缚能的减少,在室内温度环境下能够分离出自由载流子。

新型钙钛矿太阳能电池是经过长时间的发展出现了多种期间结构,基本上可以分为介观结构、平面异质结构。

介质结构最早被人们应用在染料敏化的太阳能电池上,后来在先进工艺的发展支持下逐渐发展衍变为钙钛矿太阳能电池。

平面异质结构钙钛矿太阳能电池是利用钙钛矿层Wannier-Molt型激子在光照下分离,由此会产生电子和空穴。

自由电子在被激发到钙钛矿导上的时候,自由电子会和空穴结合在一起。

1.新型钙钛矿太阳能电池研究进展新型钙钛矿太阳能电池是一种复合型吸光材料,在使用的过程中会和电子、空穴传输融合在一起,最终形成一个新型太阳能电池。

钙钛矿太阳能电池的研究现状与展望

钙钛矿太阳能电池的研究现状与展望

钙钛矿太阳能电池的研究现状与展望钙钛矿太阳能电池是近年来备受关注的一种新型光伏技术,其高光电转化效率和低成本的特点使其受到了广泛的研究和应用。

本文将介绍钙钛矿太阳能电池的研究现状,探讨其展望和未来的挑战。

一、钙钛矿太阳能电池的基本原理钙钛矿太阳能电池由电池组件、电池电路、电子输运层、阳极和阴极等多个组成部分组成。

电池组件是最重要的组成部分,其中含有钙钛矿材料,该材料具有优异的光吸收性能和电子传输性能,可以将光能转化为电能。

在阳极和阴极之间,通过电荷的运输来产生电流。

二、研究现状目前,钙钛矿太阳能电池的研究主要集中在提高其能效和稳定性方面。

近年来,通过不断优化钙钛矿材料的性能和晶体结构,钙钛矿太阳能电池的能效得到了较大的提升。

2019年,perovskite-silicon-tandem太阳能电池实现了25.2%的能效,对于大面积光伏发电应用具有重要意义。

然而,钙钛矿太阳能电池的稳定性仍然是阻碍其商业化应用的重要因素。

钙钛矿太阳能电池易受潮湿、高温、光辐射和氧化等因素的影响,导致其能效显著降低。

为了解决这个问题,研究人员经过不断尝试,提出了不同方案,如使用稳定性较好的材料代替传统钙钛矿材料或改进了制备工艺和钙钛矿太阳能电池的晶体结构等。

三、展望与未来挑战钙钛矿太阳能电池的未来发展前景十分广阔。

其高光电转化效率和低制造成本有望使其成为未来光伏电池市场的主导技术。

钙钛矿太阳能电池还有许多优点,如透明性、柔性和颜色可控性,可以满足不同应用领域的需要,如窗户、墙壁等。

尽管钙钛矿太阳能电池呈现出灿烂的发展前景,但其稳定性问题,导致其其商业化应用发展仍然面临挑战。

研究人员需要不断探索新的材料和技术来提高其稳定性,保障其长期稳定性能,以促进其正式商业化应用。

另外,提高钙钛矿太阳能电池的制备效率和批量化制备能力也是未来的重要挑战。

总之,钙钛矿太阳能电池是一种非常具有发展前景的新型光伏技术。

在未来,随着技术的不断升级和优化,其能够在可再生能源领域发挥更大的作用,并且广泛应用于民用和商业领域。

钙钛矿太阳能电池国内外现状和发展趋势

钙钛矿太阳能电池国内外现状和发展趋势

钙钛矿太阳能电池国内外现状和发展趋势钙钛矿太阳能电池是一种新型的高效太阳能电池技术,具有高转换效率、低成本、可制备柔性器件等优点,因此备受关注。

本文将从国内外现状和发展趋势两个方面来探讨钙钛矿太阳能电池的发展情况。

一、国内现状近年来,中国在钙钛矿太阳能电池领域取得了显著进展。

国内多所高校和研究机构投入大量资源进行钙钛矿太阳能电池的研究和开发工作。

在材料研究方面,中国科学院、清华大学等机构提出了一系列改进和创新,如引入新的钙钛矿材料、优化电池结构等。

在工艺制备方面,国内研究机构不断改进制备工艺,提高了钙钛矿太阳能电池的制备效率和稳定性。

此外,国内企业也开始投入到钙钛矿太阳能电池的生产中,推动了产业化进程。

二、国外现状国外在钙钛矿太阳能电池领域的研究也非常活跃。

英国、美国、德国等国家的研究机构和企业在钙钛矿太阳能电池的研究和开发方面取得了很多成果。

例如,英国牛津大学的研究团队提出了一种新型的钙钛矿太阳能电池结构,大大提高了电池的稳定性和光电转换效率。

美国麻省理工学院的研究团队开发了一种可弯曲的钙钛矿太阳能电池,为柔性电子设备的应用提供了新的可能性。

三、发展趋势从国内外现状来看,钙钛矿太阳能电池的发展前景非常广阔。

未来的发展趋势主要集中在以下几个方面:1. 材料研究:钙钛矿太阳能电池的性能取决于材料的选择和优化。

未来的研究将聚焦于寻找更好的钙钛矿材料,提高电池的光电转换效率和稳定性。

2. 工艺制备:制备工艺的改进将有助于提高钙钛矿太阳能电池的制备效率和降低成本。

例如,采用新的工艺能够实现大规模生产,推动产业化进程。

3. 应用拓展:钙钛矿太阳能电池不仅可以用于传统的光伏发电,还可以应用于电动汽车、移动设备、建筑一体化等领域。

未来的发展将会进一步拓展钙钛矿太阳能电池的应用领域。

4. 环境友好:钙钛矿太阳能电池具有较低的能源消耗和环境污染,是一种环境友好型能源技术。

未来的发展将更加注重钙钛矿太阳能电池的可持续性和环境友好性。

钙钛矿太阳能电池的研究及应用

钙钛矿太阳能电池的研究及应用

钙钛矿太阳能电池的研究及应用太阳能电池是现代清洁能源的重要组成部分,它可以将太阳能转化成电能,为人类提供持续的电力供应。

过去几十年来,太阳能电池的技术经历了快速发展,其中钙钛矿太阳能电池作为一种新型的太阳能电池,备受科学家和工程师们的青睐。

钙钛矿太阳电池具有高转化效率和良好的稳定性,可以适用于各种场合,例如在家庭和商业领域的应用,以及大规模的工业生产。

本文将探讨钙钛矿太阳能电池的研究现状及其应用前景。

一、钙钛矿太阳能电池的研究现状钙钛矿是一种具有晶体结构的矿物质,其分子结构中含有钙离子和钛氧离子。

钙钛矿材料可以用于制备太阳能电池,其主要作用是吸收太阳能并将其转化为电能。

近年来,国内外许多科学家和工程师对钙钛矿太阳能电池进行了长期而深入的研究。

研究结果表明,这种太阳能电池在光电转换效率、稳定性和成本等方面具有很大的优势,在很大程度上可以替代传统的硅太阳能电池。

目前,钙钛矿太阳能电池研究涉及的主要领域包括:1.材料选配与优化钙钛矿材料的选配和优化是制备钙钛矿太阳能电池的关键。

目前,一些新型钙钛矿材料,例如钙钛矿合金、大面积钙钛矿薄膜等,已经得到了广泛关注和研究。

同时,人们研究了钙钛矿太阳能电池的稳定性以及长期使用过程中的变化规律,以进一步优化材料性能。

2.器件结构设计太阳能电池的器件结构对其性能有很大影响。

目前,人们正在研究电池结构的优化,例如采用双面结构设计、引入电荷转移层等方法,以提高钙钛矿太阳能电池的效率和稳定性。

3.光伏材料产业化随着技术的进步,钙钛矿太阳能电池的成本正在逐渐降低,这将推动其产业化进程。

一些领先的清洁能源企业已经开始投入生产,并将其应用于大规模的光伏电站建设中。

二、钙钛矿太阳能电池的应用前景钙钛矿太阳能电池具有良好的应用前景,这得益于其具有以下的特点:1.高光电转换效率相比于传统的硅太阳能电池,钙钛矿太阳能电池具有更高的光电转换效率。

最新研究结果显示,钙钛矿太阳能电池的光电转换效率已经达到了20%以上。

钙钛矿太阳能电池研究进展与发展现状

钙钛矿太阳能电池研究进展与发展现状

温馨小提示:本文主要介绍的是关于钙钛矿太阳能电池研究进展与发展现状的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇钙钛矿太阳能电池研究进展与发展现状能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

钙钛矿太阳能电池研究进展与发展现状(大纲)一、引言1.1钙钛矿太阳能电池的背景及意义1.2国内外研究现状概述二、钙钛矿材料的基本性质与特点2.1钙钛矿材料的晶体结构2.2钙钛矿材料的电子结构与光学性质2.3钙钛矿材料的优势与挑战三、钙钛矿太阳能电池的工作原理3.1光电转换过程3.2载流子传输与复合过程3.3钙钛矿太阳能电池的结构与分类四、钙钛矿太阳能电池的研究进展4.1材料优化与改性4.1.1晶体结构调控4.1.2组分优化4.1.3纳米结构设计4.2设备结构与工艺优化4.2.1吸收层厚度与界面修饰4.2.2电子传输层与空穴传输层设计4.2.3串联电池结构4.3稳定性与长期可靠性研究4.3.1环境稳定性4.3.2热稳定性4.3.3电化学稳定性五、钙钛矿太阳能电池的发展现状与趋势5.1国内外产业化进展5.2商业化应用与市场前景5.3发展趋势与展望六、结论与展望6.1研究成果总结6.2面临的挑战与未来发展方向一、引言随着全球能源需求的不断增长,可再生能源的研究与开发正变得越来越重要。

在众多可再生能源技术中,太阳能电池因其广泛的应用前景和可持续性而备受关注。

在过去几十年里,传统的硅基太阳能电池技术已经取得了显著的进步,但进一步提高其转换效率和降低制造成本仍然是一个巨大的挑战。

钙钛矿太阳能电池的材料与性能研究

钙钛矿太阳能电池的材料与性能研究

钙钛矿太阳能电池的材料与性能研究太阳能作为可再生能源的一种重要形式,近年来备受研究者的关注。

而钙钛矿太阳能电池就是其中一种备受瞩目的新型太阳能电池。

钙钛矿太阳能电池的高效率以及较低的制造成本使其成为一种有潜力取代传统硅基太阳能电池的绿色能源解决方案。

本文将介绍钙钛矿太阳能电池的材料组成、工作原理以及最新的研究进展。

首先,让我们来了解钙钛矿太阳能电池的材料组成。

钙钛矿太阳能电池的关键材料是一种特殊的钙钛矿晶体,它通常由钙钛矿铅(II)碘化物(CH3NH3PbI3) 组成。

这种钙钛矿晶体具有优异的光吸收性能和电荷传输能力,使其成为一种理想的光电转换材料。

此外,钙钛矿太阳能电池还包含其他辅助材料,如导电玻璃基底、电子传输层和阳极等。

这些材料的选择和组合将直接影响钙钛矿太阳能电池的性能。

接下来,让我们深入探讨钙钛矿太阳能电池的工作原理。

钙钛矿太阳能电池的工作原理可以简单地概括为光吸收和电荷分离两个步骤。

首先,光线穿过导电玻璃基底和电子传输层,进入到钙钛矿晶体中。

钙钛矿晶体的结构使其能够高效地吸收光能,并将其转化为电子激发态。

接着,激发的电子会从钙钛矿晶体中释放出来,经过电子传输层进入阳极,形成电子流。

而阳极上的电荷缺失区域将引起电荷分离,使得电子流和正孔流分别流向负载,从而产生电能。

钙钛矿太阳能电池的高效率和较低的制造成本受益于其独特的材料和工作原理。

然而,钙钛矿材料的稳定性和寿命仍然是该技术面临的主要挑战。

由于钙钛矿材料易于分解和氧化,导致钙钛矿太阳能电池的性能随时间而下降。

为了克服这一问题,研究者们致力于寻找更稳定的钙钛矿材料替代品。

例如,一些研究正在探索钙钛矿太阳能电池中非铅的替代材料,如钙钛矿锡、钙钛矿铜等。

这些新的材料具有较高的稳定性,有望解决钙钛矿太阳能电池材料稳定性的问题。

除了寻找稳定性更好的材料,还有其他的研究进展旨在提高钙钛矿太阳能电池的性能。

例如,一些研究者尝试改进钙钛矿晶体的电荷传输能力,通过控制晶体结构和界面性质来优化电子和正孔的运动。

钙钛矿太阳能电池制备方法及性能优化研究

钙钛矿太阳能电池制备方法及性能优化研究

钙钛矿太阳能电池制备方法及性能优化研究一、钙钛矿太阳能电池制备方法1. 化学溶液法化学溶液法是目前制备钙钛矿太阳能电池的常用方法之一。

需要将钙钛矿材料的前体化合物以一定的溶剂溶解,形成钙钛矿的前驱体溶液。

然后,通过旋涂、溅射等方法在导电基底上沉积钙钛矿薄膜。

将其进行热处理,形成钙钛矿薄膜。

2. 真空蒸发法真空蒸发法是另一种常用的制备钙钛矿太阳能电池的方法。

其制备步骤是将稳定的钙钛矿前驱体材料放置在真空腔体中,通过加热和真空技术,使前驱体材料在导电基底上沉积成薄膜。

3. 溶胶-凝胶法溶胶-凝胶法是一种较为简单的方法,通过将钙钛矿前驱体材料的溶胶涂覆在导电基底上,然后进行热处理使得溶胶转变为凝胶,最终形成钙钛矿薄膜。

以上三种方法是目前常见的钙钛矿太阳能电池制备方法,不同的制备方法会影响钙钛矿薄膜的结晶度、微观结构等,从而影响其光伏性能。

二、性能优化研究1. 晶体形貌控制钙钛矿薄膜的晶体形貌对其光伏性能有着重要影响。

一般来说,较为光滑、致密的钙钛矿薄膜会有更好的光伏性能。

通过调控制备方法中的溶液配方、沉积工艺等参数,可以控制钙钛矿薄膜的晶体形貌,从而提高其光伏转换效率。

2. 界面工程界面工程是另一个重要的性能优化方向。

钙钛矿太阳能电池的器件结构一般由导电基底、电子传输层、钙钛矿活性层、空穴传输层和金属电极等组成。

通过控制这些界面的性质,可以调控电子和空穴的输运行为,从而提高器件的光伏性能。

3. 稳定性优化钙钛矿太阳能电池在实际应用中常常面临稳定性较差的问题。

稳定性的优化技术同样是当前研究的热点之一。

通过引入稳定性改进剂、合理设计器件结构等手段,可以提高钙钛矿太阳能电池的稳定性,延长其使用寿命。

对钙钛矿太阳能电池制备方法及性能优化研究具有重要意义。

通过对制备方法和性能的深入研究,可以提高钙钛矿太阳能电池的光伏转换效率、稳定性等关键性能,推动其在实际应用中的广泛应用。

希望在未来的研究中,可以进一步探索钙钛矿太阳能电池的制备方法和性能优化技术,为其实际应用提供更为可靠的技术支撑。

钙钛矿太阳能电池调研报告

钙钛矿太阳能电池调研报告

钙钛矿太阳能电池调研报告1.简介钙钛矿太阳能电池是一种新型的太阳能电池,具有高效转换率和较低的制造成本等优势,被广泛认为是未来太阳能领域的重要发展方向。

本报告通过对钙钛矿太阳能电池的调研,对其技术原理、应用前景以及市场状况进行分析。

2.技术原理钙钛矿太阳能电池的关键材料是钙钛矿,其结构与晶体硅太阳能电池不同。

钙钛矿太阳能电池利用钙钛矿材料的光电转换特性,将太阳光转化为电能。

钙钛矿材料具有宽能带隙和高吸收系数,能够将更多的光子转化为电子,并具有较高的载流子迁移率,提高了电池的转换效率。

3.优势与应用-高效转换率:钙钛矿太阳能电池的转换效率已经达到了22.1%,远高于传统硅太阳能电池的17%左右。

-制造成本低:钙钛矿太阳能电池采用的是简单的溶液法制备工艺,制造成本较低。

-软性设计:钙钛矿太阳能电池可以制成柔性薄膜,可以应用于弯曲表面,扩展了应用领域。

4.市场状况目前钙钛矿太阳能电池市场仍处于发展初期,但发展势头良好。

据统计,2024年全球钙钛矿太阳能电池产能为4.5GW,预计到2025年将达到约45GW的规模。

目前,全球有众多科研机构和企业在钙钛矿太阳能电池领域进行研发,如牛津大学、日本新泽堂等。

同时,一些太阳能企业也开始投入钙钛矿太阳能电池的生产线建设,并进行产业化布局。

然而,钙钛矿太阳能电池也面临一些挑战,如稳定性、寿命以及环境友好性等问题,需要进一步研究和改进。

5.结论钙钛矿太阳能电池作为一种新型的太阳能电池,具有高转换效率和低制造成本等优势,为可再生能源领域带来了新的机遇。

虽然目前仍面临一些挑战,但其市场前景广阔,有望成为未来太阳能领域的重要技术。

各界应共同关注和支持钙钛矿太阳能电池的研发和产业化进程,推动可再生能源的可持续发展。

钙钛矿太阳能电池的材料性能研究

钙钛矿太阳能电池的材料性能研究

钙钛矿太阳能电池的材料性能研究在不断发展的科技领域,太阳能电池被认为是一种可持续和清洁能源的解决方案。

而在太阳能电池的种类中,钙钛矿太阳能电池因其较高的转换效率和低成本而备受关注。

本文将探讨钙钛矿太阳能电池的材料性能研究,介绍其组成、工作原理以及目前的研究现状。

钙钛矿太阳能电池由钙钛矿材料作为光敏层构成,其具有优异的光吸收和光电转换性能。

钙钛矿是一种晶体结构中的材料,具有类似钻石的硬度和优异的光电性能,适用于太阳能电池的应用。

光敏层通常由有机-钙钛矿材料或无机-钙钛矿材料构成,其中有机-钙钛矿材料较为常见。

钙钛矿太阳能电池的工作原理基于光生电荷的分离和电荷的传输。

当太阳光照射到钙钛矿材料上时,光子的能量被吸收并激发出电子-空穴对。

这些电子-空穴对会沿着材料内部的电场分离开来,并在电子传输层和空穴传输层中形成电流。

最终,这些电流被导电回路吸收并产生电能。

钙钛矿太阳能电池的材料性能研究主要集中于提高其光吸收效率、电荷传输效率和长期稳定性。

目前,研究人员通过调整钙钛矿材料的晶体结构和成分,以及优化光敏层和电子传输层的性质来提高光电转换效率。

在光吸收效率方面,研究人员通过改变钙钛矿材料的组分比例和结构来改善其吸收光谱范围。

此外,设计多重光敏层和纳米结构也可以增强光吸收效果。

然而,如何在提高光吸收的同时不降低光电转换效率仍是一个挑战。

电荷传输效率是影响钙钛矿太阳能电池性能的关键因素之一。

研究人员通过调整材料的表面性质、界面能级等参数来改善电荷传输效率。

此外,使用合适的电子传输层和空穴传输层也是提高电荷传输效率的重要手段。

长期稳定性是太阳能电池应用中一个重要的考虑因素。

由于钙钛矿材料易受湿度、氧气和温度的影响,所以稳定性的提高是一个挑战。

研究人员通过改进界面工程、添加稳定剂和优化防潮层等手段来提高钙钛矿太阳能电池的长期稳定性。

总结起来,钙钛矿太阳能电池由具有优异光电性能的钙钛矿材料组成。

其工作原理基于光生电荷的分离和电荷的传输。

有机无机杂化钙钛矿太阳能电池综述

有机无机杂化钙钛矿太阳能电池综述

有机无机杂化钙钛矿太阳能电池综述有机无机杂化钙钛矿太阳能电池(perovskite solar cells, PSCs)是一种新型的太阳能电池,具有高效和低成本等优点,成为了近年来研究热点。

该电池以珍珠石钙钛矿(CH3NH3PbI3)为典型例子,通过将有机和无机材料结合在一起,实现了高效的电荷转移和收集。

本文将综述有机无机杂化钙钛矿太阳能电池的基本原理、研究进展、存在的问题及未来发展方向。

1.基本原理有机无机杂化钙钛矿太阳能电池的基本结构由五部分组成:透明导电玻璃(FTO)、紫外光敏化剂(TiO2)、钙钛矿敏化剂(CH3NH3PbI3)、有机材料(如聚3,4-乙烯二氧噻吩,PEDOT:PSS)和对电极(如金属氧化物)。

当太阳光照射到钙钛矿敏化剂上时,它会吸收光子,并将光能转化为电子-空穴对(exciton)并分离。

电子被输送到电极,而空穴被输送到接触材料。

最终,电子和空穴会重新结合,在此过程中释放出能量,从而产生电流。

2.研究进展尽管有机无机杂化钙钛矿太阳能电池是一种新型的太阳能电池,但研究已有数十年的历史。

最近几年,由于其高效、低成本和易制备等特性,研究和开发工作得到了迅猛发展。

目前,有机无机杂化钙钛矿太阳能电池的光电转换效率已经从不到10%提高至超过25%,并且仍有潜力进一步提高。

(1)材料选择:钙钛矿敏化剂的选择对电池的性能有着重要影响。

同时,导电玻璃、光敏剂及电极材料的优化也可以提高光电转换效率。

(2)器件结构:随着对器件结构的研究深入,齐次器件、mesoporous结构等不同形式的PSCs被逐渐发展。

此外,采用双结构或Tandem结构也可以提高电池的效率。

(3)稳定性:一直以来,有机无机杂化钙钛矿太阳能电池的稳定性一直是一个需要解决的问题。

最近的研究表明,稳定化处理和控制电池中的氧气和水分子可以显著提高PSCs 的稳定性。

3.存在问题然而,有机无机杂化钙钛矿太阳能电池仍然存在一些问题,其中一个主要问题是稳定性问题。

钙钛矿太阳电池的研究与应用

钙钛矿太阳电池的研究与应用

钙钛矿太阳电池的研究与应用随着能源需求的不断增长,各种新型的能源技术得到了越来越多的研究和应用。

其中,面向未来的清洁能源技术——太阳能,正成为人们格外关注的领域。

太阳能电池作为太阳能利用的核心技术之一,一直以来都是太阳能领域的研究热点。

近年来,钙钛矿太阳电池因其高效性、低成本、可塑性等优良特性,被认为是未来太阳能电池的重要代表,成为了太阳能领域研究的热点,本文将就钙钛矿太阳电池的研究与应用进行探讨。

1. 钙钛矿太阳电池的优势1.1 高效性钙钛矿太阳电池的高效性是其最主要的优点之一。

一般而言,钙钛矿太阳电池的转换效率可以达到20%以上,甚至有部分实验结论显示,其转换效率可达到26.7%。

这一高效性质得益于钙钛矿材料结构的独特性质,使其能够有效吸收太阳能,转化为电能。

1.2 低成本相比于传统太阳电池,钙钛矿太阳电池不仅效率更高,而且成本更低。

尽管钙钛矿材料价格高于硅材料,在生产中会有额外的工艺和设备成本,但由于其可塑性和易加工性等优点,使其生产成本和装配成本都较低,更易于生产大规模的太阳电池板。

1.3 可塑性钙钛矿材料具有较高的可塑性和加工性,生产时可以制作成不同形状的太阳电池板,也可以为建筑物和车辆等应用场景量身定制,使钙钛矿太阳电池可以更好地适应特殊的应用环境。

2. 钙钛矿太阳电池的研究进展2.1 材料结构优化钙钛矿太阳电池材料是影响其性能的关键因素之一。

过去几年,研究人员已经开始着手研究钙钛矿太阳电池的材料结构,主要是通过调整钙钛矿材料的晶体结构和表面性质来提高电池的效率。

在这方面,研究人员已经采用了各种方法,如掺杂、表面修饰等,以提高钙钛矿太阳电池的光电转换效率并改善其稳定性。

2.2 新型钙钛矿材料的开发目前,已经研制出了各种类型的钙钛矿太阳电池材料,如有机-无机混合钙钛矿、低维钙钛矿、类全无机钙钛矿等。

这些新型钙钛矿材料具有结构独特,能量变化规律更加稳定,处理简便等特点,因此也吸引着越来越多的研究人员关注。

钙钛矿太阳能电池稳定性研究进展

钙钛矿太阳能电池稳定性研究进展

钙钛矿太阳能电池稳定性研究进展刘文兵;李亮;刘桂成;王新东【摘要】In recent years, organic-inorganic hybrid perovskite solar cell (PSC) has become a highlight in the field of photovoltaic materials. As a new type of solar cell, the perovskite solar cell has been widely concerned by scientists all around the world. Recently, the power conversion efficiency (PCE) of PSC has been promoted to more than 21 % in laboratory. As is known to all, the poor stability of high efficiency devices is a stumbling block to the industrialization, and the research on how to improve the stability of perovskite solar cells has increased in recent years. This paper summarized the stability of the latest progress from perovskite as the absorbing light material was introduced into the solar cell research, focusing on two aspects about stability of material and device interface composition of perovskite solar cell. The interface stability of the whole cell was described with the stability of the physical and chemical properties of the CH3NH3PbI3 as the object. At last, the development course of perovskite solar cell was reviewed, and the stability of perovskite solar cell was summarized and the development direction of this field was also proposed from the point of view of practical application.%近几年,基于有机-无机杂化的钙钛矿太阳能电池成为光伏材料领域的研究热点.同时作为新型太阳能电池,钙钛矿太阳能电池受到科学家的广泛关注.目前在实验室制备的电池能量转换效率已经超过21%.但是此类太阳能电池的稳定性存在很大问题,如果不能得到有效解决,必然会阻碍其产业化的进程.这几年关于如何提升钙钛矿太阳能电池稳定性方面的研究不断增多.文章归纳关于钙钛矿太阳能电池稳定性方面研究的最新进展.以CH3NH3PbI3为对象,对其物理、化学方面的稳定性问题以及整个电池器件内各层之间存在的界面稳定性问题进行阐述.最后回顾钙钛矿太阳能电池发展历程,对钙钛矿太阳能电池稳定性问题进行总结并从实际应用角度展望未来该领域的发展方向.【期刊名称】《有色金属科学与工程》【年(卷),期】2017(008)002【总页数】12页(P31-42)【关键词】光伏材料;能量转换效率;稳定性;CH3NH3PbI3;界面【作者】刘文兵;李亮;刘桂成;王新东【作者单位】北京科技大学冶金与生态工程学院,北京 100083;北京科技大学冶金与生态工程学院,北京 100083;北京科技大学冶金与生态工程学院,北京 100083;北京科技大学冶金与生态工程学院,北京 100083【正文语种】中文【中图分类】TM914.4无论是从化石能源的远景储量考虑还是从其消耗过程中引起产生的环境污染问题考虑,化石能源都不能满足人类未来可持续发展的需要.因此不断探索和开发清洁可再生能源成为世界各国应对传统能源问题的必然选择.目前,我国在水电、风能、太阳能等可再生能源方面得到了长足的发展,并成为国家能源结构中重要的组成部分.太阳能是最清洁、最廉价的能源形式,如何更有效、廉价的将太阳能转换成电能成为当前光伏领域的研究热点.最近几十年,各种材料的太阳能电池不断涌现.图1所示为钙钛矿太阳能电池的效率的发展趋势[1].虽然太阳能电池发展不断壮大,但是,作为第一代太阳能电池的晶体硅电池,以其高效、长寿命等优势仍占据当前光伏应用市场中主导地位.然而在过去的几年,一种以金属有机卤化物作为吸光材料的钙钛矿太阳能电池(Perovskite Solar Cells,PSC),由于其制备工艺简便、成本低、光电转换效率高等优点而迅速成为光伏领域的研究热点,也成为继DSSCs、OPV等第3代太阳能电池家族之后的又一新成员.尽管钙钛矿太阳能电池经过这几年的研究,电池效率已经超过21%[1],但是稳定性逐步成为钙钛矿太阳能电池走向商业化的绊脚石,目前关于电池稳定性的影响因素和控制条件还有待进一步的认识.下面简要介绍钙钛矿材料的结构和光电性质,从器件材料和界面出发,重点综述有关钙钛矿太阳能电池稳定性最新的研究进展,并对PSC未来的发展进行展望.2009年日本Miyasaka等[2]首次将有机-无机卤化铅钙钛矿材料CH3NH3PbBr3、CH3NH3PbI3作为敏化剂引入染料敏化太阳能电池,并分别获得了3.13%、3.81%的转换效率,自此拉开人们对钙钛矿太阳能电池研究的序幕.2011年,Park等[3]以 CH3NH3PbI3为光敏化剂制备量子点敏化太阳能电池,取得当时同类电池的最高效率——6.54%.随着对钙钛矿太阳能电池结构和材料性能的进一步优化研究,2012年,Park与Gra¨tzel[4]课题组合作,利用CH3NH3PbI3作为敏化剂,Spiro-OMeTAD(2,2',7,7'-四[N,N'-二(4-甲氧基苯基)氨基]-9,9'螺二芴)作为空穴收集材料,制备出光电转换效率达到9.7%的全固态太阳能电池.随着效率的不断提升,钙钛矿太阳能电池逐渐吸引更多科研人员的注意力.2013年,Gra¨tzel等[5]通过两步连续沉积法制得效率高达15%的钙钛矿太阳能电池.这一成果对钙钛矿太阳能电池的发展来说无疑是具有里程碑意义的,造就了当前钙钛矿太阳能电池火热的研究局面.2014年,Zhou等[6]通过对TiO2的掺杂,优化载流子传输路径,最后获得19.3%的最高效率,对应的开路电压1.13 V,短路电流22.75 mA/cm2,填充因子75.01%.令人兴奋的是,钙钛矿太阳能电池的PCE现在已经突破21%,并向着超越单晶硅太阳能电池效率的方向迈进.短短六七年时间,钙钛矿太阳能电池能以大步伐走向高效太阳能电池行列,得益于钙钛矿材料(以CH3NH3PbI3说明)材料本身和对制备工艺的不断优化.这几年钙钛矿太阳能电池获得了很大的发展,关于钙钛矿太阳能电池的材料和制备方法层出不穷,电池效率也不断被刷新.但是这类电池还存在很多问题亟待解决,比如稳定性、金属Pb的毒性问题、取代使用或回收的问题[7-9].目前钙钛矿太阳能电池的寿命还达不到商业化要求,电池的衰退机理还不是十分明朗,因此总结分析器件稳定性问题,探索新材料、优化制备工艺将是下一步为实现电池器件在大气环境长期稳定工作的主要任务.1.1 钙钛矿太阳能电池制备钙钛矿太阳能电池发展到今天,核心部分钙钛矿材料的溶液合成方法不断优化.总得来说,目前主流的合成方法根据合成所需步骤可分为2类:一步法和二步法.钙钛矿太阳能电池的基本制备流程如下[10]:将FTO(Fluorine-doped tin oxide)导电玻璃分切为需要的尺寸,在去离子水、丙酮等溶液中超声清洗,吹干后备用;在玻璃基底导电面上旋涂一层TiO2,然后经过450~500℃退火处理得到TiO2晶体薄膜,作为电池的电子传输层;接着在TiO2上制备如CH3NH3PbIx(Brx)形式的钙钛矿材料;然后制备一层如Spiro-OMeTAD的材料,作为电池的空穴传输层;最后用热蒸发法沉积一层银或者金作为电池背电极.根据有无介孔材料将钙钛矿太阳能电池分为平面异质结和介孔型结构2种目前比较典型的器件类型,如图2[11]所示.1.2 典型钙钛矿型CH3NH3PbI3的晶体结构与光电性能钙钛矿是以俄罗斯矿物学家Perovski名字命名的,最初是指CaTiO3,后来经过不断发现和合成了更多相同结构的物质,便将结构形如ABX3的晶体材料统称为钙钛矿,CH3NH3PbI3就是其中之一.钙钛矿基本结构示意见图3[12],其中,A位对应CH3NH+3,B位对应Pb2+,X位对应I-.金属阳离子Pb2+和卤素阴离子I-在空间形成以Pb为中心I为角的PbI6正八面体结构,这些正八面体结构在三维空间中通过I延伸,而有机基团CH3NH+3就位于这些八面体之间的空隙当中.钙钛矿晶体结构的稳定性可以通过容忍因子t进行初步判断,,其中rA和rB 分别是正八面体结构中阳离子A和B的离子半径,rX是阴离子半径.一般来说,若要形成稳定的钙钛矿结构,t的取值需要在0.78~1.05之间.但是当0.8<t<0.9时,钙钛矿的稳定性存在争议[13].所以只用t来判断钙钛矿的稳定性不准确,因此八面体因子μ也被引入到对钙钛矿稳定性的预测中,其中μ=rB/rX.可以通过引入不同的A、B、X组分来调节t、μ获得比较稳定的钙钛矿吸光材料.另外不同A、B、X组成导致钙钛矿吸光材料具有不同的光电性能.这几年对CH3NH3PbI3的研究发现,其具有电子、空穴双传导的特性,禁带宽度1.55 eV,通过Cl/Br的引入可以调节禁带宽度基本能实现对可见光范围内光谱的全部吸收[14].CH3NH3PbI3的电子扩散长度在105 nm左右,空穴扩散长度在129 nm左右,通过引入Cl之后,CH3NH3PbI3-xClx的电子和空穴扩散长度比CH3NH3PbI3提高近十倍,相应的电子和空穴平均扩散长度分别为1 069 nm 和1 213 nm左右[15].较长的扩散长度有利于载流子在器件中的传输,降低电子-空穴的复合几率,这也是有机-无机杂化钙钛矿具有优良光电性能的原因之一.良好的稳定性(长寿命)是钙钛矿太阳能电池实现商业化生产的前提条件.目前在实验室条件下制备的钙钛矿太阳能电池的效率已经突破21%[1],因此探索如何实现电池在实际应用环境下的长期平稳运行是当前关于钙钛矿太阳能电池研究的重点.钙钛矿太阳能电池的稳定性包括电池器件各材料自身的稳定性[16-27],主要是材料物理稳定性和化学稳定性以及电池界面的稳定性,其中以钙钛矿材料的稳定性为主要部分.对稳定性机理进行系统的研究十分必要.经过近几年的研究发现,光、热、氧、水等因素对钙钛矿稳定性都有不同程度的影响,但是它们协同对钙钛矿电池的影响本质还不是很清晰.文中从材料稳定性和界面稳定性出发,综述当前关于PSC稳定性的机理研究和应对器件退化采取的控制方法.2.1 材料稳定性钙钛矿太阳能电池主要由玻璃基底FTO、电子传输层、钙钛矿层、空穴传输层、对电极等5个部分组成.其中钙钛矿材料是钙钛矿太阳能电池的核心,钙钛矿材料的质量很大程上决定电池器件的性能,下面主要从4个方面就钙钛矿材料的稳定性问题进行综述.2.1.1 热稳定性任何应用性材料都有它的使用温度范围,温度过高必然导致材料结构变化,性能失效,最后失去使用价值.基于有机-无机杂化的卤化铅钙钛矿材料也有其稳定性存在的温度范围.因此探索钙钛矿材料物理稳定性原因和随温度变化规律对钙钛矿太阳能电池器件的研究非常重要.相比于在高温下能稳定存在的CaTiO3,同样作为离子晶体的CH3NH3PbI3材料,其分解温度却非常低.为研究 CH3NH3PbI3热稳定性机理,Stoumpos等[28]在流动的氮气环境中对其进行热重分析.当温度达到300℃左右时,初始钙钛矿物质质量开始明显减少,而且分解过程与其合成过程存在一定联系.但是仅通过热重测试还不能完全用于解释钙钛矿材料的稳定性问题.后来Bertrand Philippe等[29]对空气和湿度进行严格控制,在超真空环境下对钙钛矿材料试样进行加热处理.当钙钛矿材料被加热到100℃后保温20 min,之后再加热到200℃保温20 min,结果显示钙钛矿材料中的I/Pb和N/Pb比分别由最初的2.9和0.9(均分别低于理论值的3和1),变为2.0和0,如图4左边所示[29].这直接说明材料在经过上述操作后基本完全分解.可能发生的反应如下式:为了能更直接的解释钙钛矿材料热稳定性问题,Bert Conings等[30]先从理论上对钙钛矿结构进行计算.指出在85℃下,钙钛矿材料会随着时间延长不断分解.接着又从实验设计角度对钙钛矿的稳定性进行研究,结果表明在干燥氮气、干燥氧气和一般环境(相对湿度50%)3种不同情况下85℃保温24 h,SEM如图5所示[30].从图5可以看出,相对于初始的形貌,在85℃干燥氮气环境中保温24 h后,钙钛矿表面出现部分粒状结构;在干燥氧气环境中经过同样处理后,钙钛矿表面类似结构明显增多;在相对湿度50%的环境中经过同样处理后,发现钙钛矿表面基本布满类似结构.后来经过XRD、XPS等分析,钙钛矿材料在85℃条件下的不同环境中有不同程度的分解,从形貌图看出钙钛矿材料表面出现新相物质.最近,Leong等[31]研究了钙钛矿电池器件性能在80~360 K温度范围内的变化情况.当温度低于330 K时,电池效率略有增加,之后当温度处在330~360 K时出现下降.在低温阶段(T<250 K),开路电压Voc保持在1.0~1.1 V之间,而在较高温度(T<360 K)范围,开路电压Voc随温度上升呈直线下降趋势,通过对电池效率和开路电压的测量,间接说明随着温度的变化,电池内部材料结构发生变化,导致性能下降.不同的研究人员从不同的角度对钙钛矿材料的耐热性进行分析,结论各有偏差,可能与实验设计和所处环境不同有关.但是最后结果都说明钙钛矿材料不能在高温环境下稳定存在.作为电池的应用,器件材料只需要在实际的气象环境中能长期稳定不分解.因此研究关于器件在低温(-40℃)和高温(如80℃下)环境下的光电性能稳定性的变化意义很大,借助原位的检测手段可以准确分析钙钛矿材料在不同环境下结构和形貌的变化,归纳其热稳定性规律.CH3NH3PbI3的热稳定性取决于其晶体结构即晶体内各原子及原子基团之间的相关作用力.为了提高钙钛矿太阳能电池的热稳定性,已经出现很多策略来优化基于CH3NH3PbI3钙钛矿太阳能电池的热稳定性. Snaith等[32]利用聚合物官能化的单壁碳纳米管(SWNTs)嵌入绝缘聚合物基体后作为电池空穴传输材料,组装电池后发现器件热稳定性得到很大提升,同时器件对水的防御能力也增强很多.2.1.2 水稳定性近年来的研究发现,水 (气态水和液态水)对钙钛矿材料的分解有很大作用.尽管关于如何强化钙钛矿太阳能电池器件水稳定性的方法不断增多,但是关于水对钙钛矿材料的影响机理却还没有得到一致认同.因此为了应对钙钛矿电池对环境苛刻性,目前器件的制备过程基本在手套箱内完成.制约了钙钛矿太阳能电池商业化应用进程.水对钙钛矿电池器件有哪些影响?Kamat等[33]从吸光性能、形貌、晶体结构以及激子状态角度出发对钙钛矿在潮湿环境下进行了深入研究.吸收光谱测试显示钙钛矿材料的光电性能(图6(a))在相对湿度90%环境中随时间的延长下降显著.通过SEM(图6(b),(c))观察表面钙钛矿微观结构发生改变[33].最近Kelly等[34]也进行了类似的工作.通过严格控制电池器件的环境湿度,利用原位吸收光谱和掠入X射线衍射(GIXRD)实时监测钙钛矿晶体结构的变化.钙钛矿长时间暴露在湿气环境后,起初760 nm的吸收光谱变得不再明显,反而显示出类似PbI2的吸收光谱,见图7(a)[34].为了更好的量化钙钛矿的分解速率,研究410 nm吸收谱与时间的关系,并且与3种不同相对湿度(80%、50%、20%)情况下的标准数据进行对比,见图7(b)[34].从上面的2组结果可以看出,湿度对电池性能的影响是致命的.不能解决水对电池器件的影响也就失去其实际应用的可能性.那么水是如何引起钙钛矿材料分解的?最近Aurelien M.A.Leguy等[35]结合时间-分辨椭圆光度法和XRD测试对钙钛矿分别以膜材料、晶体材料、电池器件3种不同形式与水作用的可逆性机理进行系统的研究.首先对钙钛矿单晶进行水合机理的研究,经过在相对湿度70%环境中放置60 h后,测得材料带宽从1.6 eV变为3.1 eV.XRD结果发现单晶钙钛矿材料转变成CH3NH3PbI3·H2O.接着对钙钛矿薄膜多晶材料进行类似的研究,发现在相对湿度80%中放置0.5~1.0 h后,XRD显示钙钛矿材料表面生成上述一水合钙钛矿,2.0 h后显示有二水合钙钛矿存在.因此他们根据水合物随时间的形成过程,推测可能存在下面反应:其中CH3NH3PbI3·H2O作为中间产物,很容易发生可逆反应脱水变为钙钛矿.但是当水含量达到一定值后,CH3NH3PbI3·H2O很容易发生分解生成不可逆反应生成CH3NH+3,可能存在的表达式如下:后来Huang等[36]利用XPS、SEM、XRD检测手段更进一步分析钙钛矿的分解过程.结合实验结果,得出下面钙钛矿在潮湿环境下可能存在的一系列反应:这与先前的研究存在一定差异,钙钛矿的分解出现铅的氧化物和碳酸盐.同时说明钙钛矿材料受外界条件影响分解的复杂性,适当的水含量对于钙钛矿的影响是可以忽略的,但是过高的水含量会直接引起钙钛矿不可逆的分解.为了有效应对水对电池器件的影响,最近Kijung Yong等[37]利用聚四氟乙烯疏水材料覆盖在钙钛矿材料表面,制备出的电池表现出良好的抗水性.图8[37]展示对比聚合物存在与否水分子进入钙钛矿的示意图和接触角大小.表面经过聚四氟乙烯处理后的电池器件的稳定性得到很好的提升,30 d后电池仍能保持初始效率的90%.水不可避免的存在与水对电池器件的显著影响这对矛盾的有效解决还是在于寻找到能够像已经产业化的太阳能电池材料对水的抵抗策略,当前对钙钛矿材料的钝化处理和对整个器件的封装都表明对提高电池的稳定性是至关重要.毫无疑问,水对钙钛矿材料的影响确实存在,对于水与钙钛矿电池器件的作用机理以及对水的预防研究方面已经取得一定成果,但是为什么钙钛矿材料如此容易与水反应的机理还没有从最基本的理论上给出解释,包括钙钛矿材料自身的结构特点以及与水的作用变化关系等.可以说明的是,对电池器件进行一定的封装还是可以大幅度提高钙钛矿太阳能电池对水的不稳定性.另外,钙钛矿材料与外界小分子(H2O、O2)之间相互作用的研究可以考虑采用原子示踪的方法分析其在器件中的演变历程,进行更加科学严谨,有针对性的进行实验来解释其是如何与钙钛矿材料作用的.作为太阳能电池,自然要在太阳能光照下工作.但是随着钙钛矿太阳能电池的发展,关于其在光照下的不稳定性问题也在跟进研究.高效器件中必不可少的一部分——电子传输层,常用的是金属氧化物TiO2.由于TiO2的光催化特性[38-39],吸附在TiO2层上的水/氧在紫光照射下会被氧化成超氧负离子和氢氧自由基,这些生成的超氧离子能迅速地使钙钛矿层发生分解[40].因此未来可能商业化的钙钛矿太阳能电池在一般大气环境中的使用必须是稳定的.这就意味着电池器件不能因为环境中的水、氧的存在快速退化.以往的许多用于光伏的半导体材料在氧的存在下很容易被氧化,即使是在基态比较稳定的材料,处于激发态时便很容易与氧反应的,光照和高温条件则能加速材料氧化.Park和Snaith等[41]最开始的研究表明,钙钛矿电池器件在干燥空气中能长时间稳定.这也说明对于材料本身而言是不易与氧反应的,但是在光照和水、加热情况下,氧便开始起作用.在钙钛矿电池器件中,TiO2一般被作为致密层和介孔层.由于TiO2的带隙在3.2 eV左右,往往被用作光催化剂.因此基于TiO2作为电子传输层的钙钛矿器件在光照下很容易引起钙钛矿材料的一系列反应.为了抑制TiO2的光催化活性,Seigo Ito等[42]在电子传输层和钙钛矿层之间添加Sb2S3作为钝化层.通过对比有无Sb2S3电池器件的性能以及材料结构的变化,推测出在光照条件下,钙钛矿层分解可能的形式,见图9[42].在没有Sb2S3的情况下,CH3NH3PbI3层经过长时间的光照后分解为PbI2、CH3NH2、HI,其中CH3NH2、HI以气体形式脱离器件(图9(a)).当添加Sb2S3后(图9(b)),经过同样的光照时间,钙钛矿材料显示出良好的稳定性,可以判断钙钛矿材料的分解是从TiO2界面开始的.Sb2S3的存在抑制TiO2的光催化活性,阻碍离子碘向单质碘的转变.从而提高钙钛矿器件在光照条件下的稳定性.光、氧对钙钛矿器件的影响在当前的研究来看,并非独立,而是协同作用.Snaith等[43]最先对钙钛矿太阳能电池随紫外光老化时间稳定性进行研究.解释了TiO2氧空穴位点在紫外光照射下,TiO2产生电子-空穴与吸附的氧自由基之间的反应机理.另外,Haque等[44]对光、氧同时存在情况下对钙钛矿稳定性进行研究.结果表明在光照和干燥空气条件下,基于CH3NH3PbI3的钙钛矿材料很快分解为CH3NH2、PbI2、I2.分析可能是光照引起的超氧离子(O-2)与CH3NH3PbI3反应,造成后者的分解.结合检测的数据,得出如图10所示可能存在的反应过程[44].为了研究光和氧共同存在对MeNH3PbI3的分解退化的影响,最近Daniel Bryant等[45]分别在光照、氮气;黑暗、干燥空气;光照、干燥空气;光照、相对湿度48%等4组不同条件下进行对比实验研究,从图11(a)、(b)中可知,在这2种情况下,MeNH3PbI3性能并不明显变化.对比实验结果不难发现在光、氧同时存在的条件下,MeNH3PbI3很容易分解退化.从图11(c)、(d)中可以看出[45],MeNH3PbI3性能在这2种情况中发生明显的变化,即MeNH3PbI3不能在这2种环境中稳定存在.为了研究光、氧的同时存在是如何影响整个器件稳定性的,他们又设计一系列实验,图11显示4种不同换将下钙钛矿材料吸光性能的变化结果,图12展示了电池器件在6种不同下效率随时间的变化关系,进一步说明钙钛矿电池性能和稳定性受光和氧的共同影响.综合前面的介绍,钙钛矿太阳能电池的稳定性不只是取决于材料本身的热稳定、光稳定、氧稳定、水稳定等,各种影响因素之间并不完全孤立,材料的稳定根源还是因为材料自身的微观结构形成的光电等属性.相比于晶体硅太阳能电池,硅原子间作用力强,结构稳定,不易与水、氧等反应,具有长寿命,而基于有机卤化铅的钙钛矿太阳能电池吸光材料属于离子晶体,自身物理稳定性不佳.组成电池器件之后,由于光照射,器件中的二氧化钛容易产生光催化作用导致内部材料易与水、氧等反应.因此,对与采取的一种或几种提高稳定性的措施可能在上述几个方面产生良好的效果.Seok等[46]利用化学方法将 Br部分取代 I,得到CH3NH3Pb(I1-xBrx)3作为光吸收材料.x=0.2时,电池器件比x=0时表现出更好的稳定性,侧面说明钙钛矿材料的稳定性.Pb-Br之间的结合比Pb-I之间的结合更强,因此在CH3NH3PbI3中部分引入Br提高了器件的稳定性.Tai等[47]利用Pb(SCN)2作为铅源制备CH3NH3PbI3-x(SCN)x形式的钙钛矿材料,这类钙钛矿电池器件表现出比传统CH3NH3PbI3更好的稳定性,而且PCE最高能达到15%.另外关于FAPbI3钙钛矿材料的稳定性也要比MAPbI3要好很多.通过对钙钛矿材料组成部分的取得,优化各组分之间的相互作用,能显著提高器件在一般环境中的稳定性,这是关于如何优化材料来提高钙钛矿电池稳定性的研究方向.这也说明对于钙钛矿类电池的稳定性问题,可以结合材料本身考虑.通过优化材料组成部分来提高器件的稳定性,当然材料组分的改变也就意味着材料属性的改变,对应的光电性能也会发生相应的转变,从电池的应用研究来讲,需要综合考虑电池效率和稳定性问题.关于水、氧等对钙钛矿材料稳定性的研究方法可以考虑采用原子示踪技术,帮助从源头研究水、氧等小分子对钙钛矿材料和电池器件稳定性影响的历程,同时结合以往的成果探索新的材料和优化制备条件提高钙钛矿电池性能和稳定性.2.2 界面稳定性除了钙钛矿材料自身的光电稳定性对器件影响之外,器件各层材料之间的接触面对器件性能的影响也起到重要作用,因此综合分析各层界面性质对器件稳定性的影响对于优化整个器件,获得高效电池十分重要.界面的不稳定性主要存在于钙钛矿层与电子、空穴传输层之间.钙钛矿层材料的在结晶过程中晶粒间出现空隙,导致当电子、空穴材料接触时复合严重,电池性能降低,并影响器件的稳定性.另外前文关于TiO2在光照条件下容易与接触的钙钛矿材料和氧反应导致材料分解,通过引入钝化材料可以抑制TiO2的光催化作用光、氧引起器件不稳定.。

有机无机杂化钙钛矿太阳能电池发展

有机无机杂化钙钛矿太阳能电池发展

有机无机杂化钙钛矿太阳能电池发展下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!有机无机杂化钙钛矿太阳能电池是近年来备受关注的新型光伏技术,其具有高光电转换效率、低成本制备等诸多优势,被视为未来太阳能电池领域的重要发展方向。

有机钙钛矿材料研究进展

有机钙钛矿材料研究进展

有机钙钛矿材料研究进展有机钙钛矿材料(Organic-inorganic hybrid perovskites)是一种新兴的太阳能转换材料,已在光电子器件领域引起了广泛的关注。

由于其具有较高的光吸收系数,高的载流子扩散长度以及较长的寿命,有机钙钛矿材料已成为高效太阳能电池的候选材料。

本文将综述有机钙钛矿材料在太阳能电池中的研究进展。

首先,有机钙钛矿材料的发展历程和特点将被介绍。

有机钙钛矿材料最初由Kojima等人于2024年报道,其化学结构为有机阴离子和无机阳离子钙钛矿结构的混合体。

这种材料结构导致了其优异的光学和电学性能。

有机钙钛矿材料的基本结构是有机阳离子(例如甲基铵)与无机钙钛矿(例如CH3NH3PbI3)之间的相邻方式堆积而成。

由于其材料制备简单、成本低、转换效率高,有机钙钛矿材料迅速成为太阳能电池领域的热点研究课题。

随后,我们将阐述有机钙钛矿材料在光电子器件中的应用。

太阳能电池是有机钙钛矿材料最具应用潜力的领域之一、通过利用有机钙钛矿材料具有较高的吸收系数和载流子扩散长度的特点,研究人员已经在有机钙钛矿太阳能电池上实现了较高的转换效率。

目前,有机钙钛矿太阳能电池的最高转换效率已超过25%,接近传统硅太阳能电池的效率。

此外,由于有机钙钛矿材料具有较好的光电性能,在光电子器件领域的其他应用,如光电检测器、光发射二极管等方面也取得了很多进展。

然后,本文将介绍有机钙钛矿材料的优化方法和挑战。

虽然有机钙钛矿材料已取得一系列有希望的研究进展,但其应用还面临一些挑战。

例如,有机钙钛矿材料对环境湿度非常敏感,容易发生结晶、分解等问题,这限制了其在实际应用中的稳定性。

此外,有效的电子传输和载流子寿命控制也是另一个挑战。

针对这些问题,研究人员提出了一系列改进方案,如界面工程、有机-无机杂化和表面修饰等方法。

最后,展望有机钙钛矿材料的未来发展方向。

有机钙钛矿材料作为一种新兴的太阳能转换材料,未来其在光电子器件领域的应用前景十分广阔。

柔性钙钛矿太阳能电池的研究进展

柔性钙钛矿太阳能电池的研究进展

柔性钙钛矿太阳能电池的研究进展郭金实【摘要】perovskite solar cell is in recent years the field of solar cell[]a star,in less than 7 years,its efficiency from 22% to 3.8% increasedrapidly.Due to the perovskite material itself can be prepared at low temperature,so it has the characteristics of light weight, flexible,wide applicability,and so on,it has been widely studied.The main research direction and the current research progress of the n-i-p and p-i-n are introduced in this paper.The main research directions and the current research progress are introduced.Finally,it points out the main problems and challenges in the field of flexible perovskite solar cells,and makes a prospect for the future.%钙钛矿太阳能电池是近年来太阳能电池领域的一颗新星,在不到7a的时间里,其效率从3.8%飞速地提高到了22%。

由于钙钛矿材料本身可以低温制备,因此具有质量轻、可弯曲、适用性广等特点的柔性钙钛矿电池,受到人们的广泛关注。

现针对柔性钙钛矿电池,分为n-i-p和p-i-n两种电池结构,分别介绍了对应的主要研究方向与目前的研究进展,并对其进行评述。

钙钛矿太阳电池吸光层材料研究进展

钙钛矿太阳电池吸光层材料研究进展

薄膜。在制备过程中,以前驱体溶液(PbI2 溶液和 CH3NH3I 溶液)的一次性或者分步沉积于基底,将 制备方法分为一步法或两步法。
采用一步法有利于 CH3NH3PbI3 薄膜的快速形 成 , 但 在 制 备 过 程 中 , 由 于 前 驱 体 溶 液 (PbI2 和 CH3NH3I)的快速反应致使产生大量的 CH3NH3PbI3 晶体簇。这些晶簇在后续晶化过程中成为形态多 样的结晶核,因此很难制备出形态单一的 CH3NH3PbI3钙钛矿晶体薄膜 12。为了解决一步法沉 膜过程中形貌难以控制的难题,Burschka 等 13提出 使 用 分 步 沉 积 的 方 法 在 介 孔 TiO2 层 之 上 制 备 CH3NH3PbI3 薄膜。该 方 法 为 PbI2 与 CH3NH3I 的 反 应提供了足够的时间,有利于对 CH3NH3PbI3 薄膜 形貌进行控制。但采用两步法难以保证反应生成 物满足 CH3NH3PbI3 化学计量比,因此材料的组分 可能缺失,难以保证材料的稳定性 14。由于位于晶 体内部和材料表面的缺陷会捕获光生载流子或促 进 CH3NH3PbI3 体内物质的迁移,薄膜的晶化程度 对器件性能和材料的稳定性影响明显 。 15
大量研究结果表明,钙钛矿吸光材料的形貌 及界面等因素对器件效率有很大影响 16-22。作者课 题组对钙钛矿器件的界面动力学机理进行了探 讨 23,并在此基础上提出“钙钛矿层内部电荷储存 对电池器件的输出电压起关键性作用”的机制 24, 建立了以无机氧化物 p-i-n 结构为框架的全新的钙 钛矿太阳电池 25- 。 29 图 2 是以“TiO2/Al2O3/NiO/碳
关键词:钙钛矿;稳定性;Pb 取代;太阳电池;无机非铅钙钛矿 中图分类号:O649
Advances and Developments in Perovskite Materials for Solar Cell Applications

钙钛矿太阳能电池光电转换效率研究进展

钙钛矿太阳能电池光电转换效率研究进展

钙钛矿太阳能电池光电转换效率研究进展冯宇昂【摘要】In recent years, energy shortage and environmental pollution have become the prominent problems in modern society. While vigorous development and promotion of clean energy technology is an effective means to solve these two problems. With enthusiasm for the mitigation of energy problems, we have conducted some investigations in this regard. In this paper, the development history of perovskite solar cells is briefly reviewed, and the methods to improve the efficiency of the perovskite solar cells such as reducing the carrier recombination probability, improving the preparation process, and applying new materials are introduced. Finally, some problems are summarized and the development directions of the perovskite solar cells are prospected.%近年来能源短缺、环境污染成为了现代社会的突出问题,而大力发展和推广清洁能源技术是解决这两大难题的有效手段,怀着缓解能源问题的热忱,我们在此方面进行了一些调查.本文简要回顾了钙钛矿太阳能电池的发展历史,并主要介绍了降低载流子复合几率、改善制备工艺、应用新材料等提高钙钛矿太阳能电池效率的方法,最后总结和展望了钙钛矿太阳能电池仍待改进的一些问题和发展方向.【期刊名称】《化工中间体》【年(卷),期】2017(000)007【总页数】2页(P33-34)【关键词】钙钛矿;太阳能电池;光电转换效率【作者】冯宇昂【作者单位】河南省郑州市第一中学河南 450000【正文语种】中文【中图分类】T钙钛矿,也称有机铅卤钙钛矿,一般用ABX3表示,其中A代表有机原子基团,B代表Pb元素,X则指卤素原子.钙钛矿的晶胞有两种表示形式,一是将A看作晶胞中心,则B处于立方体的顶点,X在棱心位置(如图一),二是将B看作晶胞中心,则A处于立方体的顶点,X在面心位置(如图二).总之,一个晶胞中总含有一个A、一个B和三个X. 本文从钙钛矿电池光电转换效率最新的研究成果着眼,介绍在降低载流子复合几率、改进传统溶液法制备工艺、新的电池材料三个方面的最新进展.钙钛矿太阳能电池的原理是光敏材料吸收光能,产生载流子(电子和空穴),载流子定向移动产生电流,从而对外做功.因此,要提高电池效率,就要增加同等光照条件下载流子的数量,降低其复合几率是重要手段之一.shen等发现,提高钙钛矿太阳能电池效率的关键在于对载流子的收集而不是分离.他们的研究表明,使用TiO2而不是Y2O3作为ETM,使用spiro作为HTM,限制TiO2尺度为30nm而不是18nm,实施界面调控等措施均有助于减少载流子在界面处的复合,从而提高钙钛矿太阳能电池的效率.另外,实现材料表面钝化可以有效降低载流子复合几率.溶液旋涂法、高温旋涂法和气相沉积法,是传统的制备钙钛矿薄膜材料的方法,其中以溶液旋涂法最为常见.而溶液旋涂法又分为两种:一步法和两步法.一步法是指直接将PbX2和CH3NH3X溶液混合并直接涂覆在TiO2上,干燥后生成CH3NH3PbX3,这种方法的优点是简单易行,成本低廉,但可控性较差,制备的薄膜厚度不均,缺陷较大.两步法是将CH3NH3I溶液和PbI2溶液先后分别涂覆到TiO2上,并可以通过控制CH3NH3I溶液的浓度来控制CH3NH3PbI3晶体的生长,调整晶体尺寸,从而优化转换效率.(1)改进光敏材料顾名思义,钙钛矿太阳能电池是将钙钛矿结构材料作为光敏吸收层的.改进光敏材料,可以从替换A、B、X这三个原子或原子团来着手.对卤素原子做出调整:2009年,Kojima A等人在首次制作钙钛矿太阳能电池时运用的光敏材料是CH3NH3PbBr3和CH3NH3PbI3,当时的电池效率仅有3.8%,后来Christian等人在CH3NH3PbI3中掺杂了一定量的Cl元素,并测得CH3NH3PbI(3-x)Clx的载流子迁移速率为11.6cm2/(V•s),明显高于CH3NH3PbI3的8cm2/(V•s)(载流子迁移速率越高,电池的效率也就越高),故混合卤素钙钛矿具有更高的载流子迁移速率.对有机原子团做出调整:随着铅卤钙钛矿太阳能电池的发展,多个课题组都报道了使用甲脒基(FA)取代甲胺基(MA)得到了一种新的钙钛矿材料:FAPbI3.对Pb原子做出调整:目前大部分实验表明Pb元素是使电池效率最高的元素,当然,铅会污染环境,用其他元素代替铅并保证电池效率也是未来的发展方向.(2)改进电子传输材料电子传输材料是指能接受带负电荷的电子载流子并传输电子载流子的材料,具有较高电子亲和能的半导体材料(即n型半导体)通常被用作电子传输材料.由于历史原因,钙钛矿太阳能电池中使用和研究最多的电子传输层材料为在染料敏化太阳能电池中常见的TiO2.TiO2与钙钛矿材料能带匹配,钙钛矿中产生的光生电子能够注入TiO2的导带,使光生电子空穴对分离,提高电荷分离及传输效率.但是TiO2需要400~500度高温烧结,制备困难,因此人们想到将其与导电性能极佳的石墨烯材料复合,电子传输速率得到了提升.(3)改进空穴传输材料目前应用最为广泛的空穴传输材料是Spiro-OMeTAD,它性能优越但价格极昂贵(约为黄金十倍!)且其中含碳碳双键,光照易使其分解,于是人们希望用容易制备、价格低廉而且稳定性高的无机材料替代之,Ivan Mora-Sero等采用无机p型半导体CuSCN作为空穴传输层材料,获得了6.4%的光电转换效率.Shihe Yang等采用NiO纳米颗粒作为空穴传输层,制备了反式平面异质结电池,效率达9.11%.虽然钙钛矿太阳能电池前景光明,但其仍然存在很多亟待解决的问题.首先,大多数科学家都只是致力于用不同的方式得到效率提高的结果,而没有得出描述钙钛矿太阳能电池效率变化的理论模型.其次,钙钛矿太阳能电池在水蒸气和氧气环境下的高度不稳定性,以及材料中所存在的铅元素都对其推广应用带来了困难.第三,如何实现大面积低能耗制备钙钛矿材料,满足产业化需求仍是目前所面临的重要问题.基于此,通过改善钙钛矿层与其他传导层间的界面性能,降低载流子复合几率,寻找更高效稳定的电子/空穴传输材料,能提高电池转换效率,也可以改善电池的稳定性.冯宇昂,男,河南省郑州市第一中学;研究方向:材料.【相关文献】[1]T.Miyasaka*et al,Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am.Chem. Soc. 2009,131,6050-6051.[2]Q. Shen * et al, Charge transfer and recombination at the metaloxide/CH3NH3PbClI2/spiro-OMeTAD interfaces:uncovering the detailed mechanism behind high effciency solar cells. Phys. Chem. Chem.Phys.,2014,16,19984-19992.[3]Hao-Wu Lin* et al,Effi cient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition Adv. Mater. 2014, 26, 6647-6652[4]Ivan Mora-Sero*et al.Recombinationstudyofcombinedha lides(Cl,Br,I)perovskite solarcells.J.Phys.Chem.Lett.,2014,5(10):1628-1635.[5]Shihe Yang,et al.High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiONanocrystals for Inverted Planar Perovskite Solar Cells.Angew.Chem.Int.Ed.,2014,53(46):12571.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3期2019年6月No.3 June,2019硅太阳能电池和薄膜太阳能电池构成了当前的太阳能电池市场,太阳能电池可分为第一代、第二代太阳能电池和第三代新太阳能电池。

第一代使用晶体硅作为主要结构,第二代薄膜太阳能电池的厚度比第一代低很多。

而第三代太阳能电池以有机薄膜太阳能电池、染料敏化太阳能电池和钙钛矿太阳能电池(PVSCs )为代表,具有效率高、成本低的优点,目前主要处于研究阶段。

其中,钙钛矿太阳能电池的结构来源于染料敏化电池,以有机金属卤化物作为吸光材料,以固态空穴传输材料代替液态电解质。

1 钙钛矿太阳能电池发展介绍1.1 结构与原理钙钛矿太阳能电池的结构来自染料敏化电池,染料敏化电池的光阳极基于FTO 玻璃,在侧基板上具有一层多孔TiO 2纳米晶体[1],吸光材料是吸附于TiO 2上的染料,另一侧基底上沉积Pt 作为电极,两级间以I/I 3-液态电解质填充。

在PVSCs 中,吸光材料是有机金属卤化物,液态电解质则由固态空穴传输材料替代[2],且PVSCs 多为平面异质结结构。

在后来的研究中,逐渐形成了以钙钛矿为光吸收层的电池结构,钙钛矿层两端界面分别和N 型电子传输材料、P 型空穴传输材料接触形成p-i-n 结构的异质结,欧姆接触由异质结两侧的光阳极和对电极形成。

介孔结构、含覆盖层介孔结构、p-i-n 平面结构和n-i-p 反型平面结构是目前主要的PVSCs 结构。

1.2 发展历程2009年,首次出现了P V S C s ,M i y a s a k a 等采用CH 3NH 3PbX 3(X=Br ,I )钙钛矿作吸光材料,TiO 2作光阳极,用钙钛矿纳米晶体作为TiO 2的修饰材料,光电转换效率(Photoelectric Conversion Efficiency ,PCE )达3.8%。

2011年,Park 等用原位生长法制备出几个纳米级的CH 3NH 3PbI 3钙钛矿,PCE 达6.5%。

2012年,Gratzel 采用了固态染料敏化太阳能电池结构,将吸光材料CH 3NH 3PbI 3填充在0.6 μm 的多孔TiO 2中,并将固态空穴传输材料沉积在钙钛矿上,以此代替液态电解质,PCE 达到9.7%。

随后,Snaith 等发现可以用Al 2O 3替换TiO 2,替换后仍可以制出太阳能电池,也就是说,CH 3NH 3PbI 3钙钛矿既可以作为吸光材料,也可以作为一种N 型材料来传输电子,在进一步的研究中又发现,CH 3NH 3PbI 3还可以传输空穴[3],于是提出一种平面异质结结构的PVSCs ,通过将钙钛矿沉积在平面TiO 2上,使钙钛矿和电子传输层、空穴传输层的接触界面构成平面结构,可以使PCE 达15%。

后来,Gratzel 等利用含覆盖层介孔结构的PVSCs ,获得15%的转换效率。

2013年,距第一次将钙钛矿作为吸光材料的4年时间,PCE 达15.9%,超过晶体硅太阳能电池。

至今,PVSCs 光电转换已达 23.6%[4]。

目前,对于PVSCs 的研究主要针对组成部分展开,包括钙钛矿材料、钙钛矿多晶薄膜和空穴传输材料;另外,推动钙钛矿太阳能电池的关键因素之一是其大面积制备工艺的发展,众多学者也进行了相关研究。

近年来,研究过程中也发现了PVSCs 具有迟滞效应的特性,当前这方面的研究还停留在形成机理的探讨,也有少数研究工作在探索减小迟滞效应的方法[5-6]。

2 PVSCs 研究新进展 2.1 钙钛矿薄膜的制备2.1.1 PVSCs 结构介孔结构、含覆盖层介孔结构、p-i-n 平面结构和n-i-p 反型平面结构是当前主要的PVSCs 结构。

平面结构比介孔结构更薄,有更高的开路电压和短路电流[7],但迟滞效应更严重。

多数研究中采用平面结构,其优势之一就是无需高温退火,可在低温制备,这有利于PVSCs 的大面积生产。

为了构建平面结构,一个重要的手段是在没有合适的钙钛矿制备工艺的支撑下制备出高质量的钙钛矿薄膜[8],因此,许多学者对钙钛矿薄膜的制备进行了大量研究。

2.1.2 钙钛矿薄膜制备研究2013年,Grizel 等用序列沉积法制备钙钛矿薄膜,PCE 达15%;Snaith 等用气相蒸发法制备了全新平面异质结PVSC ,PCE 为15.4%;Yang 等将溶液法和气相法结合制备了效率为12.1%的PVSCs ;2014年,Yang 等用掺杂Y 的方法修饰TiO 2层,将转换效率提高到19.3%;2015年,Yang 和Seok 的作者简介:李雨芹(1998— ),女,四川南充人,本科生;研究方向:化学电池。

摘 要:光伏发电是新能源领域中的一个重要方向,传统硅基太阳能电池虽已进行商业化,但相较传统能源,竞争力仍显不足。

PVSCs 于2009年首次提出,4年来,PCE 超过硅基太阳能电池,已达到23.6%,这也使得PVSCs 成为下一代光伏技术的潜力研究方向之一。

主要介绍了PVSCs 的结构原理和发展历程,阐述了当前PVSCs 存在的主要问题,包括高质量薄膜制备方法、低成本空穴传输材料、大面积制备等方面,并针对问题简述了PVSCs 的相关研究进展,最后对其未来发展做出了展望。

关键词:钙钛矿太阳能电池;结构原理;薄膜制备;空穴传输材料;研究进展钙钛矿太阳能电池及其研究进展李雨芹(重庆交通大学,重庆 400074)现代盐化工Modern Salt and Chemical Industry第3期2019年6月No.3June,2019团队采用二甲基亚砜直接在分子内交换的方法,制备出高质量的钙钛矿FAPbI3薄膜,PCE超过20%。

2018年,严锋等首次在钙钛矿前驱体溶液的添加剂中使用醋酸铅,达到调控钙钛矿薄膜制备过程的目的,将转换效率从17.25%提高到了19.07%,并且明显改善了PVSCs的稳定性。

影响电池性能的一个重要因素是钙钛矿活性层的结晶质量,高性能PVSCs应具有晶粒尺寸大、生长取向相同、缺陷少的特点。

常用溶液法来制备钙钛矿薄膜,但如何在过程中有效地控制结晶的形成是得到高质量多晶薄膜的关键。

2018年,香港理工大学的严锋教授课题组在钙钛矿薄膜的制备过程中,第一次采用醋酸铅作为钙钛矿前驱体溶液的添加剂,调控生长过程,获得了高性能钙钛矿太阳能电池。

2.1.3 钙钛矿薄膜晶界的缺陷和表面钝化PVSCs的核心部分是金属卤化物钙钛矿多晶薄膜,薄膜上常存在大量晶界,相关研究发现,众多晶界是电池能量损失的主要原因,这是由于各种各样的缺陷(如空位、间隙离子、反位取代等)容易在晶界上形成,这些缺陷往往作为非辐射复合中心,降低薄膜的光致发光量子效率,从而电池性能下降。

根据相关材料理论基础,溶液的状态和加工过程的条件都会造成晶界上缺陷的形成,所以很多研究围绕改变溶液状态、控制薄膜加工条件等展开,从源头上控制缺陷的形成,减低多晶薄膜中的缺陷密度。

另一种研究思路是表面钝化。

基本方法是利用分子、离子和表面缺陷发生作用,从而钝化材料表面的电子缺陷,但还没有研究深入揭示各种分子、离子与表面缺陷的钝化作用机制。

近日,黄劲松等提出了一种简单、普适的钙钛矿晶界电子缺陷钝化方法,这种方法是用具有选择性的有机基团与缺陷作用,钝化晶界处的带电和中性缺陷结构。

文献中表明该方法将PVSCs的电势损失降低至 0.34 V,开路电压达到1.23 V(钙钛矿禁带宽度为1.57 eV),PCE可达到21.4 %。

这为钙钛矿薄膜表面缺陷的处理研究提供了一种新思路,也可以进一步用在调控结构生长过程中。

2.2 空穴传输材料PVSCs中空穴的产生与收集效率是决定电池效率的重要因素,空穴传输材料(HTM)分为有机和无机两类。

大多数研究中采用spiro-OMeTAD作为空穴传输材料,这是一种有机空穴传输材料,传输效率很高,但困难的制备过程和昂贵的价格使得研究人员开始寻求替代方案。

目前这方面的研究方向主要有两个,一是采用不含HTM的电池结构,因为某些钙钛矿本身就有光吸收和空穴传输双重作用,而且可以与TiO2形成异质结。

二是使用其他便宜的HTM,如无机HTM、导电聚合物和有机小分子。

2.3 大面积制备许多研究中提到的PCE提高方法通常仅适用于小面积制备的PVSCs,而大面积制备的PVSCs效率较低,低于16%,研究发现电池效率与其有效面积呈反相关的关系,这就使得PVSCs难以大规模生产,从而难以普及应用。

大面积PVSCs的发展主要可以从钙钛矿材料、HTM、电子传输材料等方面入手—钙钛矿材料中钙钛矿薄膜的晶粒尺寸和晶体质量的扩大、提高是必要的。

对于大面积PVSCs的生产,空穴传输材料应具有与钙钛矿相同的能级,同时,有高孔隙迁移率、良好的溶解性、热稳定性、光化学稳定性以及低成本。

用于大面积制备PVSCs的电子传输材料应具有与钙钛矿相容的导电带和价带、高电子迁移率、宽带隙、可低温加工等特性。

2.4 迟滞效应迟滞效应是PVSCs的一个重要特征,指电池在测试时,正向和反向扫描的电流密度—电压曲线出现不完全重合的现象,一方面使测试的准确程度降低,测试结果的可靠性降低,另一方面也影响了电池的使用性能。

研究表明,迟滞效应与钙钛矿层和两端界面有关,另外,电池在紫外光照下不稳定也被认为与界面有关,因此,有大量对钙钛矿—TiO2界面进行修饰的研究。

2017年,鄢炎发等提出电荷传输层的导电性和电池中电荷运输的平衡性也是制备无迟滞效应平面PVSCs的重要因素。

3 结语PVSCs从首次提出以来发展迅猛,PCE从3%提高到了目前的23.6%,掀起了新能源领域中的又一研究热潮,可见将来PVSCs在新能源光伏发电领域具有广阔的发展前景。

但,研究中也发现了大面积制备困难、高效率PVSCs成本高等问题,使得PVSCs的推广应用尚未实现。

总结起来,实现PVSCs普及应用的关键是达到高效率、低成本,实现高效率主要是制备出高质量的钙钛矿薄膜,实现低成本主要是找到便宜且高效的HTM,此外,探索大面积制备PVSCs的工艺方法也是一个重要途径。

[参考文献][1] 黄楚涵.碳基钙钛矿太阳能电池光吸收层的研究现状[J].当代化工研究,2018(12):33-34.[2] 张婧,何有军,闵杰.钙钛矿太阳能电池中小分子空穴传输材料的研究进展[J].物理化学学报,2018(11):39-56.[3] 张佳维.新型太阳能电池的研究综述[J].山东化工,2018(21):66,68.[4] 舒丽琴.钙钛矿太阳能电池稳定性的影响因素[J].农家参谋,2018(19):257-258.[5] 李春静,杨瑞霞,田汉民.钙钛矿/晶硅叠层太阳能电池的研究进展[J].物理,2018(6):367-375.[6] 邹龙花,朱英明,唐思扬.钙钛矿太阳能电池稳定性研究进展[J].化学试剂,2017(12):1 253-1 258.[7] 黄飞洪,宋金魁,廖沛哲,等.钙钛矿太阳能电池的稳定性[J].科学通报,2017(36):4 256-4 269.[8] 王晓琳,冯祖勇,吴楠,等.新型钙钛矿太阳能电池的研究进展[J].中国材料进展,2016(12):960-965.现代盐化工·研究与开发。

相关文档
最新文档