四川成都市第七中学高新校区平面向量及其应用经典试题(含答案)doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、多选题1.题目文件丢失!
2.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是
( )
A .()
0a b c -⋅=
B .()
0a b c a +-⋅= C .()0a c b a --⋅=
D .2a b c ++=
3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,
2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ B .2133
BP BA BC =
+ C .0PA PC ⋅<
D .2S =
4.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3
π
,a =7,则以下判断正确的是( )
A .△ABC 的外接圆面积是493
π
; B .b cos C +c cos B =7;
C .b +c 可能等于16;
D .作A 关于BC 的对称点A ′,则|AA ′|的最大
值是
5.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=
D .()
4BC a b ⊥+
6.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.
B .若4A
C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =
D .若满足条件的ABC 有两个,则24AC <<
7.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )
A .10,45,70b A C ==︒=︒
B .45,48,60b c B ===︒
C .14,16,45a b A ===︒
D .7,5,80a b A ===︒
8.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11
22
AD AB AC =
+ B .0MA MB MC ++=
C .2133
BM BA BD =
+ D .12
33
CM CA CD =
+ 9.在下列结论中,正确的有( )
A .若两个向量相等,则它们的起点和终点分别重合
B .平行向量又称为共线向量
C .两个相等向量的模相等
D .两个相反向量的模相等
10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立
C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形
D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 11.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±
12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =
B .AB B
C =
C .AB C
D AD BC -=+ D .AD CD CD CB +=-
13.下列命题中正确的是( ) A .单位向量的模都相等
B .长度不等且方向相反的两个向量不一定是共线向量
C .若a 与b 满足a b >,且a 与b 同向,则a b >
D .两个有共同起点而且相等的向量,其终点必相同 14.下列说法中错误的是( )
A .向量A
B 与CD 是共线向量,则A ,B ,
C ,
D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =
D .温度含零上温度和零下温度,所以温度是向量 15.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同
二、平面向量及其应用选择题
16.在矩形ABCD
中,3,2AB BC BE EC ===,点F 在边CD 上,若
AB AF 3→→=,则AE BF
→→的值为( ) A .0
B
C .-4
D .4
17.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知
0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=
,若a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .
23
π B .
43
π C .
6
π D .
3
π 18.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为
S ,且222()S a b c =+-,则tan C =( )
A .43
-
B .34
-
C .
34
D .
43
19.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为
1S ,ABC 的面积为2S ,则
1
2
S S = A .310 B .38
C .
25
D .
421
20.在ABC ∆中,D 为BC 中点,且1
2
AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1
B .23
-
C .13
- D .34
-
21.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .2
3BG BE = B .2CG GF = C .1
2
DG AG =
D .0GA GB GC ++=
22.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A
.B

C .12
D
.23.在ABC ∆
中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b c
A B C
-+-+的值等于
( ) A .
239
3
B .
26
33
C .
833
D .23
24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则
()AG AW BC +⋅=( )
A .4
B .6
C .10
D .14
25.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若
()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为
A .33(
,)2
B .3
(
,3) C .3(,3]2
D .3
(,3)2
26.题目文件丢失!
27.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .
3
π B .
23
π C .
56
π D .
6
π 28.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,
则①AD =-b -
12a ;②BE =a +12b ;③CF =-12a +1
2
b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .4 29.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若
(),DE AB AD R λμλμ=+∈,则λμ⋅等于( )
A .316
- B .
316 C .
12
D .12
-
30.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )
A.1-B.
1
2
-C.2-D.
3
2
-
31.已知点O是ABC
∆内一点,满足2
OA OB mOC
+=,
4
7
AOB
ABC
S
S


=,则实数m为()
A.2 B.-2 C.4 D.-4
32.在ABC中,角A,B,C所对的边分别为a,b,c,若cos cos2
c A a C c
+=且
a b
=,则cos B等于()
A.
15
4
B.
1
4
C.
3
4
D.
3
2
33.在△ABC中,点D在线段BC的延长线上,且3
BC CD
=,点O在线段CD上(与点C,D不重合),若()
1
AO xAB x AC
=+-,则x的取值范围是()
A.
1
0,
2
⎛⎫

⎝⎭
B.
1
0,
3
⎛⎫

⎝⎭
C.
1
,0
2
⎛⎫
-

⎝⎭
D.
1
,0
3
⎛⎫
-

⎝⎭
34.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进50m到达B处,又测得C对于山坡的斜度为45°,若CD=50m,山坡对于地平面的坡度为θ,则cosθ等于()
A.
3
2
B.
2
2
C.
31
2
D.
2
1
2
-
35.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得45
BDC
∠=︒,则塔AB的高是(单位:m)()
A .102
B .106
C .103
D .10
【参考答案】***试卷处理标记,请不要删除
一、多选题 1.无 2.ABC 【分析】
作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】
作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:
对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,
a b AB BC AB AD DB -=-=-=,()
0a b c DB AC ∴-⋅=⋅=,A 选项正确;
对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()
00a b c a a +-⋅=⋅=,B
对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-
=,则
()0a c b a --⋅=,C 选项正确;
对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】
本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.
3.BCD 【分析】
本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,
所以B 是的中点,P 是的
解析:BCD 【分析】
本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】
解:因为20PA PC +=,2QA QB =,
所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;
因为()
121
333
BP BA AP BA BC BA BA BC =+=+
-=+,故选项B 正确; 因为
11
2223132
APQ ABC
AB h
S S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD
本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.
4.ABD 【分析】
根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】
对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;
对于B ,根据正弦定
解析:ABD 【分析】
根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】
对于A ,设ABC 的外接圆半径为R ,根据正弦定理
2sin a R A =,可得3
R =,所以ABC 的外接圆面积是2
49
3
S R ππ==
,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为
2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.
对于C ,22(sin sin )2[sin sin(
)]3
b c R B C R B B π
+=+=+-
114(cos )14sin()23
B B B π=+=+
14b c ∴+≤,故C 错误.
对于D ,设A 到直线BC 的距离为d ,根据面积公式可得
11
sin 22
ad bc A =,即sin bc A
d a
=
,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.
5.ABD 【分析】
A. 根据是边长为2的等边三角形和判断;
B.根据,,利用平面向量的减法运算得到判断;
C. 根据,利用数量积运算判断;
D. 根据, ,利用数量积运算判断.
A. 因为是边长
解析:ABD 【分析】
A. 根据ABC 是边长为2的等边三角形和2AB a =判断;
B.根据2AB a =,
2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1
,2
a AB
b BC =
=,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】
A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;
B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;
C. 因为1,2a AB b BC =
=,所以11
22cos120122
a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()
2
444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()
4BC a b ⊥+,故正确. 故选:ABD 【点睛】
本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.
6.ABD 【分析】
根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】
解:由正弦定理得,故正确; 对于,,选项:如图
解析:ABD 【分析】
根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】
解:由正弦定理得2
24sin sin30AB R ACB =
==∠︒
,故A 正确;
对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数.
易知当
1
22
x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;
当AD AB AC <<,即1
22
x x <<,24x ∴<<时,满足条件的三角形有两个.
故B ,D 正确,C 错误. 故选:ABD .
【点睛】
本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.
7.BC 【分析】
根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】
对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两
解析:BC 【分析】
根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】
对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为csin 83
sin 1B C b =
=<,且c b >,所以角C 有两解; 对于选项C 中:因为sin 2
sin 17
b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A
B a
=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】
本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.ABD
【分析】
根据向量的加减法运算法则依次讨论即可的答案. 【详解】
解:如图,根据题意得为三等分点靠近点的点.
对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三
解析:ABD 【分析】
根据向量的加减法运算法则依次讨论即可的答案. 【详解】
解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得11
22
AD AB AC =
+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,
2MA MD =-,所以0MA MB MC ++=,故正确;
对于C 选项,()
2212
=3333
BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()
2212
3333
CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD
【点睛】
本题考查向量加法与减法的运算法则,是基础题.
9.BCD 【分析】
根据向量的定义和性质依次判断每个选项得到答案. 【详解】
A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;
B. 平行向量又称为共线向量,根据平行向量定义知正确
解析:BCD
【分析】
根据向量的定义和性质依次判断每个选项得到答案. 【详解】
A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;
B. 平行向量又称为共线向量,根据平行向量定义知正确;
C. 相等向量方向相同,模相等,正确;
D. 相反向量方向相反,模相等,故正确; 故选:BCD 【点睛】
本题考查了向量的定义和性质,属于简单题.
10.ABD 【分析】
对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得
解析:ABD 【分析】
对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由
02
2
A B π
π
>>
->,可得
sin sin()cos 2
A B B π
>-=,即可判断出正误;对于选项C 在ABC ∆中,由
cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:
2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即
可判断出正误. 【详解】
对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,
)2
B π
∈,
2
A B π
+>
,∴
02
2
A B π
π
>>
->,
sin sin()cos 2
A B B π
∴>-=,因此不等式sin cos A B >恒成立,正确;
对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:
sin cos sin cos A A B B =, sin 2sin 2A B ∴=, A ,(0,)B π∈,
22A B ∴=或222A B π=-,
A B ∴=或2
A B π
+=,
ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.
对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,
可得2
()0a c -=,解得a c =,可得60A C B ===︒,故正确.
故选:ABD . 【点睛】
本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.
11.ACD 【分析】
利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】
由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反
解析:ACD 【分析】
利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】
由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;
因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,
当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】
本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.
12.BCD 【分析】
由向量的加法减法法则及菱形的几何性质即可求解. 【详解】
菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为,,且, 所以,即C 结论正确; 因为,
解析:BCD 【分析】
由向量的加法减法法则及菱形的几何性质即可求解. 【详解】
菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;
因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,
||||CD CB CD BC BD -=+=,所以D 结论正确.
故选:BCD 【点睛】
本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.
13.AD 【分析】
利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】
单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据
解析:AD 【分析】
利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】
单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】
本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.
14.AD 【分析】
利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】
向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B
解析:AD 【分析】
利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】
向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】
本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.
15.ABD 【分析】
根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】
如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有. 当同向时
解析:ABD 【分析】
根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】
如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+. 当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-. 当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-
故选:ABD 【点睛】
本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.
二、平面向量及其应用选择题
16.C 【分析】
先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,
AB AF
2232,3cos 1133BE EC BE BC AF DF α=⇒=
=→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则()(
)
230,3,3,1,,33B F
E ⎛⎫
⎪ ⎪⎝⎭

因此(
)
BF
AE
BF
23
3,2,323264→=
-→→=
⨯-⨯=-=-,故选C.
【点睛】
平面向量数量积的类型及求法
(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式
1212a b x x y y ⋅=+;三是利用数量积的几何意义.
(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 17.A 【分析】 根据题意得出
tan tan tan A B C
a b c
==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧
长. 【详解】
0a OA b OB c OC ⋅+⋅+⋅=,a b
OC OA OB c c
∴=-
-, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C
b B
c C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,
tan tan tan A B C
a b c

==, 由正弦定理得
tan tan tan sin sin sin A B C A B C ==,所以,111
cos cos cos A B C
==, cos cos cos A B C ∴==,
由于余弦函数cos y x =在区间()0,π上单调递减,所以,3
A B C π
===
, 设ABC ∆的外接圆半径为R
,则22
sin a
R A
=
==,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133
R A ππ⨯=⨯=. 故选:A. 【点睛】
本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.A 【分析】
由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan
2
C
,从而求得tan C . 【详解】
∵222222()2S a b c a b ab c =+-=++-,即2221
2sin 22
ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,
又222sin 2sin cos 1222
a b c ab C ab C
C ab ab +-⋅-===-,∴sin cos 12C C +=
, 即22cos sin cos 222C C C =,则tan 22C =,∴2
22tan
2242tan 1231tan 2
C
C C ⨯===---, 故选:A . 【点睛】
本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 19.A 【解析】
∵2350OA OB OC ++=,∴()()
23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且
32
OM ON
=
, ∴3
613
225
54
10OAC
OMC
CMN
ABC ABC S
S
S
S S ⎛⎫==⨯=⨯= ⎪⎝⎭
,即
12310
S S =.选A . 20.B 【分析】
选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】
13BE AE AB AD AB =-=
-,1
()2
AD AB AC =+ , 51
66
BE AB AC AB AC λμ∴=-+=+,
56λ∴=-,1
6μ=,23
λμ∴+=-.
故选:B. 【点睛】
本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 21.C 【分析】
由三角形的重心定理和平面向量的共线定理可得答案. 【详解】
ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G
为重心,则23BG BE =,2CG GF =,1
2
DG GA =且0GA GB GC ++=
故选:C 【点睛】
本题考查了三角形的重心定理和向量共线定理,属于中档题. 22.A 【分析】
由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值 【详解】
由题意,可得如下示意图
令||AC a =,||BC b =,又2BM MC =,即有1||||33
b CM CB =
= ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠
2221216()332333
a a
b ab ab ab
b =+-⨯≥-=,当且仅当3a b =时等号成立
∴有48ab ≤
∴113sin 48123222
ABC S ab C ∆=≤⨯⨯=故选:A 【点睛】
本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值 23.A 【解析】
分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.
详解:由题意,在ABC ∆中,
利用三角形的面积公式可得011
sin 1sin 6022
ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,
又由余弦定理得222
1
2cos 116214132
a b c bc A =+-=+-⨯⨯⨯
=
,解得a =,
由正弦定理得2sin 2sin sin sin a b c a A B C A -+===
-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 24.C 【解析】 【分析】
取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得. 【详解】
解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心 0DW BC ∴⋅=
()()
22113323
AG AD AB AC AB AC ∴=
=⨯+=+ ()
1
2
AW AD DW AB AC DW =+=++ ()()()
115326
AW AG AB AC AB AC DW AB AC DW +=
++++=++ ()()()
5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤
∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦
()
5
6
AB A BC C =⋅+ ()()
5
6
C AC AB AB A =⋅+- ()
()2222421055
66
AC AB =
-=-= 故选:C
【点睛】
本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.
25.A
【分析】
先化简已知()()(23a b c a c b ac +++-=+得6B π
=,再化简
cos sin A C +3sin()3
A π+,利用三角函数的图像和性质求其范围. 【详解】 由()()(23)a b c a c b ac +++-=+可得22()(23)a c b ac +-=+,即
222
3a c b ac +-=,所以2223cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6
A C A A π+=+-5533cos sin cos cos sin cos 3sin()6623
A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336
A πππ<+<,所以333sin()62
A π<+<,故cos sin A C +的取值范围为33()2.故选A . 【点睛】
(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A π
π
<<,不是
02A π
<<.
26.无
27.D
【分析】
根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可.
【详解】
∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得22a b a b +=-,即2222||2||2a b a b a b a b ++⋅=+-⋅ , 则0a b ⋅=,由2a b b +=, 平方得222||24||a b a b b ++⋅=,得2
23a b =,即3a b =则2a b b +=,22|3|a b a a a b b +⋅=+⋅=(),
则向量a b +与a 的夹角的余弦值23||3223a b a b cos a b a b b
θ+⋅===+⋅⋅(), ,0.6πθπθ≤≤∴=
, ,
故选D.
【点睛】
本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 28.D
【分析】
本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.
【详解】
①如图可知AD =AC +CD =AC +
12CB =-CA -12BC =-b -12
a ,故①正确. ②BE =BC +CE =BC +
12CA =a +12
b ,故②正确. ③CF =CA +AE =CA +
12AB =b +12(-a -b )
=-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF
=-(DC +CA )+BE +CF
=-(
12a +b )+a +12b -12a +12b =0,故④正确. 故选D.
【点睛】 本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.
29.A
【分析】
利用平面向量的线性运算,将DE 用AB 和AD 表示,可得出λ和μ的值,由此可计算出λμ⋅的值.
【详解】 E 为AO 的中点,且O 为AC 的中点,所以,()111244AE AO AC AB AD =
==+, ()113444DE AE AD AB AD AD AB AD ∴=-=
+-=-,14λ∴=,34μ=-. 因此,1334416
λμ⎛⎫⋅=
⨯-=- ⎪⎝⎭,故选:A. 【点睛】 本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题.
30.B
【分析】
由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果.
【详解】
如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()
BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以: ()()
()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-
+,12t μ=, 所以12
λμ+=-
. 故选:B.
【点睛】
(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
31.D
【分析】
将已知向量关系变为:12
333
m OA OB OC
+
=,可得到
3
m
OC OD
=且,,
A B D共线;由
AOB
ABC
O
S
S
D
CD


=和,
OC OD反向共线,可构造关于m的方程,求解得到结果.
【详解】
由2
OA OB mOC
+=得:
12
333
m
OA OB OC
+=

3
m
OC OD
=,则
12
33
OA OB OD
+=,,
A B D
∴三点共线
如下图所示:
OC与OD反向共线
3
OD m
m
CD
∴=
-
7
3
4
AOB
ABC
OD m
m
C
S
S D


∴==
-
=4
m
⇒=-
本题正确选项:D
【点睛】
本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.
32.B
【分析】
利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案;
【详解】
cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,
∴sin()2sin sin 2sin A C C B C +=⇒=,
∴2b c =,又a b =, ∴2222
2114cos 12422
b a
c b B ac b ⋅+-===⋅⋅, 故选:B.
【点睛】 本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 33.D
【分析】
设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x 的取值范围.
【详解】
设CO yBC =,
则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,
又因为()1AO xAB x AC =+-,
所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.
故选:D
【点睛】
本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.
34.C
【分析】
易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.
【详解】
45CBD ∠=︒,30ACB ∴∠=︒,
在ABC 中,由正弦定理,得
sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,
解得BC =-,
在BCD 中,由正弦定理,得
sin sin BC CD BDC CBD =∠∠50sin 45=︒,
sin BDC ∴∠=sin(90)θ+︒=
cos θ∴= 故选:C .
【点睛】
该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 35.B
【分析】
设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有
x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.
【详解】
设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,
从而有BC=3x ,AC=3
x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,
sin sin BC CD BDC CBD =
可得,BC=10sin 45sin 30x ==.
则;
所以塔AB 的高是米;
故选B .
【点睛】
本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.。

相关文档
最新文档