西贾乡初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西贾乡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)用适当的符号表示a的2倍与4的差比a的3倍小的关系式()
A.2a+4<3a
B.2a-4<3a
C.2a-4≥3a
D.2a+4≤3a
【答案】B
【考点】不等式及其性质
【解析】【解答】解:根据题意,可由“a的2倍与4的差”得到2a-4,由“a的3倍”得到3a,然后根据题意可得:2a-4<3a
故答案为:B.
【分析】先表示出“a的2倍与4的差”,再表示出“a的3倍”,然后根据关键字"小"(差比a的3倍小)列出不等式即可。
2.(2分)已知关于x,y的方程组,当x+y=3时,求a的值()
A. -4
B. 4
C. 2
D.
【答案】B
【考点】解一元一次方程,解二元一次方程组
【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;
故答案为:B。
【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a 的方程,求解即可得出a的值。
3.(2分)若方程的解是负数,则的取值范围是()
A.
B.
C.
D.
【答案】A
【考点】解一元一次不等式,解含括号的一元一次方程
【解析】【解答】解:解含有系数m的方程,可得x=- ,然后根据方程的解为负数,可知4m-5>0,
解得m>- .
故答案为:A.
【分析】先把m看作已知数,解关于x的一元一次方程,求出x的值(用含m的代数式表示),由方程的解是负数可知x<0即4m-5>0,然后解不等式即可求出m的取值范围。
4.(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()
A. 45°
B. 60°
C. 54°
D. 30°
【答案】C
【考点】扇形统计图
【解析】【解答】解:15÷(30+23+15+32)×360°=54°.
故答案为:C
【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.
5.(2分)如果方程组的解与方程组的解相同,则a、b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由题意得:是的解,
故可得:,解得:.
故答案为:A.
【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。
6.(2分)已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()
A. 2或12
B. 2或﹣12
C. ﹣2或12
D. ﹣2或﹣12
【答案】D
【考点】平方根
【解析】【解答】∵a2=25, =7,
∴a=±5,b=±7.
又∵|a+b|=a+b,
∴a=±5,b=7.
∴当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣5﹣7=﹣12.
故答案为:D.
【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
根据平方根的意义可得a=5,b=7,再根据已知条件|a+b|=a+b,可得a=±5,b=7,再求出a-b的值即可。
7.(2分)下列方程组是二元一次方程组的是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:A、是二元二次方程组,故A不符合题意;
B、是分式方程组,故B不符合题意;
C、是二元二次方程组,故C不符合题意;
D、是二元一次方程组,故D符合题意;
故答案为:D.
【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
8.(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。
9.(2分)x的5倍与它的一半之差不超过7,列出的关系式为()
A.5x-x≥7
B.5x-x≤7
C.5x-x>7
D.5x-x<7
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,
故答案为:B.
【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.
10.(2分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定()
A. 等于2 cm
B. 小于2 cm
C. 大于2 cm
D. 大于或等于2 cm
【答案】D
【考点】垂线段最短
【解析】【解答】解:根据“在连接直线外一点与直线上各点的线段中,垂线段最短”,
可知2 cm是连接点A与直线MN上各点的线段中最短线段的长度
故答案为:D
【分析】根据垂线段最短,可得出答案。
11.(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
12.(2分)若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3
B.1
C.-3或1
D.-1
【答案】C
【考点】平方根
【解析】【解答】解:当2m-4=3m-1时,则m=-3;
当2m-4≠3m-1时,则2m-4+3m-1=0,
∴m=1。
故答案为:C.
【分析】分2m-4与3m-1相等、不相等两种情况,根据平方根的性质即可解答。
二、填空题
13.(1分)的立方根是________.
【答案】4
【考点】立方根及开立方
【解析】【解答】解:=64
∴的立方根为=4.
故答案为:4
【分析】先求出的值,再求出64的立方根。
14.(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
15.(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.
【答案】95°
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:如图,
∵直线l1∥l2,且∠1=45°,
∴∠3=∠1=45°,
∵在△AEF中,∠A=40°,
∴∠4=180°﹣∠3﹣∠A=95°,
∴∠2=∠4=95°,
故答案为:95°.
【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。
16.(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
17.(1分)方程2x-y= 1和2x+y=7的公共解是________;
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:联立方程组得:
解得:
【分析】解联立两方程组成的方程组,即可求出其公共解。
18.(2分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是________,点P2表示的数是________.
【答案】﹣1﹣;﹣1+
【考点】实数在数轴上的表示
【解析】【解答】解:∵点A表示的数是﹣1,O是原点,
∴AO=1,BO=1,
∴AB= = ,
∵以A为圆心、AB长为半径画弧,
∴AP1=AB=AP2= ,
∴点P1表示的数是﹣1﹣,
点P2表示的数是﹣1+ ,
故答案为:﹣1﹣;﹣1+
【分析】根据在数轴上表示无理数的方法,我们可知与AB大小相等,都是,因在-1左侧,所以表示-1-,而在-1右侧,所以表示-1+
三、解答题
19.(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
20.(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。
21.(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
22.(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
23.(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
24.(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
25.(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
26.(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
27.(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.。