2023年人教版数学五年级上册实际问题与方程教案(推荐3篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学五年级上册实际问题与方程教案(推荐3篇)
〖人教版数学五年级上册实际问题与方程教案第【1】篇〗
第5单元简易方程
第15课时实际问题与方程(3)
【教学内容】:教材P77~78例3、例4及练习十七第1、4、8、9题。

【教学目标】:
知识与技能:学习解答形如a(x ±b)=c的方程。

过程与方法:学生在利用迁移类推的方法解决问题的过程中,体
会数学与现实生活的密切联系。

结合具体的情景,使学生掌握根据两
积之和的数量关系列方程以及把小括号内的式子看作一个整体进行
求解的思路和方法。

情感、态度与价值观:通过学习两积之和的数量关系来理解两积
之差、两商之和、两商之差的数量关系,培养学生举一反三的能力。

【教学重、难点】
重点:分析数量关系,列出含有小括号的方程并解答。

难点:用方程解答类似两积之和或差的逆向思考问题。

【教学方法】:多媒体。

【教学准备】:创设情境,自主探索,合作交流。

【教学过程】
一、复习导入
出示习题。

(1)舞蹈组有男生x 人,女生人数是男生的2倍,女生有( )人,男、女生共有( )人。

(2)城郊中学图书馆有科技书m本,故事书的本数是科技书的1.8倍,那么,m+1.8m表示( ),1.8m-m表示( )。

2.教师:像上题中m+1.8m,1.8m-m如果在方程中出现,该怎样解这样的方程呢?今天我们就来学习用这样的方程解决问题。

(板书课题:列方程解决稍复杂的问题)
二、互动新授
1.出示:妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少元?
学生思考,说出数量关系,并列式。

得出:苹果的总价+梨的总价=总钱数
2.4×2+2.8×3=1
3.2(元)
2.把这一题改一改,出示教材第77页例3:让学生观察与上一题有什么区别。

小组内交流,汇报:梨和苹果都是2kg,梨每千克2.80元总钱数是已知的,求苹果的单价。

小结:两题的数量关系没变,只是已知数和未各数交换了位置。

思考:你能列方程来解答吗?学生尝试用方程解答,汇报。

并根据学生汇报板书解题步骤:
解:设苹果每千克x 元。

2x +2.8×2=10.4
x =2.4
答:苹果每千克2.4元。

3.问:除了这样列方程之外,还可以怎么列?
学生交流,教师引导学生发现数量关系:(苹果的单价+梨的单价)×2=总钱数
并让学生根据这个等量关系列出方程:
(2.8+x )×2=10.4
(2.8+x )×2÷2=10.4÷2
2.8+x =5.2
2.8+x -2.8=5.2-2.8
x =2.4
解题时引导学生说出把小括号内的“2.8+x ”看作一个整体。

4.出示教材第78页例4。

让学生观察信息,信息提供了哪些已知条件?要求什么问题?
学生自主回答:已知条件:地球的表面积为5.1亿平方千米,海洋面积约为陆地面积的2.4倍。

问题:地球上的海洋面积和陆地面积分别是多少亿平方千米?
尝试写出等量关系式:海洋面积+陆地面积=地球表面积
思考:这里有两个未知数,该怎样设未知数呢?
小组内交流,汇报时,学生可能会说设海洋面积为x,也有可能会设陆地面积为x 。

根据“海洋面积约为陆地面积的2.4倍”,是把陆地面积作为标准量,设为x比较方便,因此海洋面积就是2.4x 。

5.让学生自主列方程解决,教师根据回答板书过程:
解:设陆地面积为x 亿平方千米。

那么海洋面积可以表示为2.4x 亿平方千米。

x +2.4x =5.1
(1+2.4)x =5.1
3.4x =5.1
3.4x ÷3.4=5.1÷3.4
x =l.5
解方程过程中,提问学生:(1+2.4)x =5.1是运用了什么运算定律?
(乘法分配律)
6.求出陆地面积,海洋面积可以怎么求?
学生思考,回答:
可能会用“总面积-陆地面积”来计算,即5.1-1.5=3.6(亿平方千米)也可能会用“陆地面积×3”来计算,即2. 4x -2.4×1.5=3.6,这两种方法都要予以肯定。

三、巩固拓展
1.完成教材第77页“做一做”。

让学生先说说题中的已知条件和未知条件分别是什么,再列等量关系式,最后列方程解答问题。

2.完成教材第78页“做一做”。

根据信息先思考谁是标准量,要把谁设为x ,另一个量如何表示,再列方程解答。

四、课堂小结
师:这节课你学会了什么知识?有哪些收获?
引导总结:在含有两个未知数的方程中,先找到比较标准的量并设标准量为x ,再列出等量关系式,并根据等量关系列出方程。

五、作业:教材第80、81页练习十七第1、4、8、9题。

【板书设计】:
实际问题与方程(3)
解:设苹果每千克x 元。

解:设陆地面积为x 亿平方千米。

那么
2x +2.8×2=10.4 海洋面积可以表示为2.4x 亿平方千米。

2x +5.6=10.4 x +2.4x =5.1
2x +5.6-5.6 =10.4-5.6 (1+2.4)x =5.1
2x =4.8 3.4x =5.1
答:苹果每千克2.4元。

3.4x ÷3.4=5.1÷3.4
x =1.5
海洋面积:5.1-1.5=3.6(亿平方千米)
或2.4x =2.4×1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

〖人教版数学五年级上册实际问题与方程教案第【2】篇〗
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。

过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。

情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。

重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。

难点:把数学问题转化为数学问题。

关键:从积分表中找出等量关系。

教具:投影仪。

教法:探究、讨论、启发式教学。

教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:①用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么
学生充分思考、合作交流,然后教师引导学生分析。

师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么你选择哪一行最能说明负一场积几分
生:从最下面一行可以发现,负一场积1分。

师:胜一场呢
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决
学生通过计算各队胜、负总分得出结论:不等。

师:你能用方程说明上述结论么
生:老师,没有等量关系。

师:欸,就是,已知里没说,是不是不能用方程解决了谁又没有大胆设想
生:老师,能不能试着让它们相等
师:伟大的发明都是在尝试中进行的,试试
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么可以是分数么由此你的出什么结论
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。

师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。

拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。

教师引导学生设未知数,列方程。

学生试说。

生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。

解得x=2,当x=2时,(24-10x)/4=1。

仍然可得负一场积1分,胜一场积2分。

三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。

四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。

五、布置作业:
课本108页8、9题。

六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。

在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。

要探究的问题比前几节的问题复杂些,问题情境与实际情况更
接近。

本节的重点是建立实际问题的方程模型。

通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。

由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。

〖人教版数学五年级上册实际问题与方程教案第【3】篇〗
第5单元简易方程
第12课时实际问题与方程(1)
【学习目标】
1. 知识与技能:
初步学会如何利用方程来解应用题
2. 过程与方法:
让学生自主探究,正确地列出方程解应用题。

3. 情感、态度与价值观:
培养学生独立探究的好习惯,并渗透环保教育。

【学习重、难点】
重点:学会如何利用方程来解应用题
难点:找题中的等量关系,并根据等量关系列出方程。

【学习准备】课件
【学习过程】
1、复习导入
解下列方程:
x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7
学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。

板书:解决问题。

二、自主探究
学生自学并完成相关练习。

三、例题精讲
教学P73例1。

出示题目。

(课件)
出示跳远的,从上你能获得什么信息?
我们结合这幅来了解一下,课件演示。

同学们想想,“学校原跳远纪录是多少米?”
分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?原纪录、小明的成绩、超出部分。

它们之间有哪些数量关系呢?(板书)
原纪录+超出部分=小明的成绩①
小明的成绩—原纪录=超出部分②
小明的成绩—超出部分=原纪录③
同学们能解决这个问题吗?
学生独立解决问题。

评讲、交流。

(侧重如何用方程来解决本题。


学生展示,可能会是算术方法,也可能列方程。

对于算术方法,给予肯定即可。

学生列出的方程可能有:
① x+0.06=4.21 ②4.21﹣x= 0.06 ③4.21﹣0.06= x
每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“原纪录+超出部分=小明的成绩”这一数量关系(由于左右相等,也称等量关系)所得到的。

解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

小结
在解决问题中,我们是怎样来列方程的?
将未知数设为x,再根据题中的等量关系列出方程。

四、练习设计
1、解决P73“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?
用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了
检验。

2、独立完成P75练习十六中的第3题。

3、列方程解答下列各题。

(1)生物小组养黑兔48只,比白兔少8只,白兔有多少只?
(2)一个正方形的周长是36cm,它的边长是多少?
(3)体育用品商店运来120个篮球,是运来足球个数的3倍,运来足球多少个?。

相关文档
最新文档