备战中考数学易错题专题复习-平行四边形练习题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)
1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.
【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23
.
【解析】
【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;
(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;
(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.
【详解】(1)如图1中,延长EO交CF于K,
∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,
∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,
∵△EFK是直角三角形,∴OF=1
2
EK=OE;
(2)如图2中,延长EO交CF于K,
∵∠ABC=∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,
∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,
∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,
∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;
(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,
∵|CF﹣AE|=2,3AE=CK,∴FK=2,
在Rt△EFK中,tan∠3
∴∠FEK=30°,∠EKF=60°,
∴EK=2FK=4,OF=1
2
EK=2,
∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,
在Rt△PHF中,PH=1
2
PF=1,3OH=23
∴()2
2
12362
+-=
如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,
∴∠BOP=90°,
∴OP=33OE=233
, 综上所述:OP 的长为62-或
233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.
2.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .
()1请直接写出线段AF ,AE 的数量关系;
()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;
②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.
【答案】(1)证明见解析;(2)①AF 2AE =
②4222
【解析】
【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可;
()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;
②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.
【详解】
()1如图①中,结论:AF 2AE =.
理由:四边形ABFD 是平行四边形,
AB DF ∴=,
AB AC =,
AC DF ∴=,
DE EC =,
AE EF ∴=,
DEC AEF 90∠∠==,
AEF ∴是等腰直角三角形,
AF 2AE ∴=.
故答案为AF 2AE =.
()2①如图②中,结论:AF 2AE =

理由:连接EF ,DF 交BC 于K .
四边形ABFD 是平行四边形,
AB//DF ∴,
DKE ABC 45∠∠∴==,
EKF 180DKE 135∠∠∴=-=,EK ED =,
ADE 180EDC 18045135∠∠=-=-=,
EKF ADE ∠∠∴=,
DKC C ∠∠=,
DK DC ∴=,
DF AB AC ==,
KF AD ∴=,
在EKF 和EDA 中,
EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩

EKF ∴≌EDA ,
EF EA ∴=,KEF AED ∠∠=,
FEA BED 90∠∠∴==, AEF ∴是等腰直角三角形,
AF 2AE ∴=.
②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,
如图④中当AD AC =时,四边形ABFD 是菱形,易知
AE AH EH 32222=-==,
综上所述,满足条件的AE的长为42或22.
【点睛】
本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.
3.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.
求证:四边形AECF是菱形.
【答案】见解析
【解析】
【分析】
由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.
【详解】
证明:∵四边形ABCD是菱形
∴AB∥CD,AB=CD,∠ADF=∠CDF,
∵AB=CD,∠ADF=∠CDF,DF=DF
∴△ADF≌△CDF(SAS)
∴AF=CF,
∵AB∥CD,AE∥CF
∴∠ABE=∠CDF,∠AEF=∠CFE
∴∠AEB =∠CFD ,∠ABE =∠CDF ,AB =CD
∴△ABE ≌△CDF (AAS )
∴AE =CF ,且AE ∥CF
∴四边形AECF 是平行四边形
又∵AF =CF ,
∴四边形AECF 是菱形
【点睛】
本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.
4.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

(I )若点P 落在矩形OBCD 的边OB 上,
①如图①,当点E 与点O 重合时,求点F 的坐标;
②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:
(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。

【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫
⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭
【解析】
【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐标;
②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;
(Ⅱ)当O,P ,F 点共线时OP 的长度最短.
【详解】
解:(I )①∵折痕为EF,点P 为点D 的对应点
DOF POF ∴∆≅∆
45DOF POF ∴∠=∠=
∵四边形OBCD 是矩形,
90ODF ︒∴∠=
45DFO DOF ︒∴∠=∠=
6DF DO ∴==
点F 的坐标为(6,6)
②∵折痕为EF ,点P 为点D 的对应点.
,DG PG EF PD ∴=⊥
∵四边形OBCD 是矩形,
//DC OB ∴,
FDG EPG ∴∠=∠;
DGF PGE ∠=∠
DGF PGE ∴∆≅∆
DF PE ∴=
//DF PE
∴四边形DEPF 是平行四边形.
EF PD ⊥,
DEPF ∴是菱形.
设菱形的边长为x ,则DE EP x ==
7OP =,
7OE x ∴=-,
在Rt ODE ∆中,由勾股定理得222OD QB DE +=
2226(7)x x ∴+-= 解得8514
x = 8514
DF ∴= ∴点F 的坐标为85,614⎛⎫
⎪⎝⎭ (Ⅱ)86,55P ⎛⎫ ⎪⎝⎭
【点睛】
此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.
5.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,
G为DF中点,连接EG,CG.
(1)请问EG与CG存在怎样的数量关系,并证明你的结论;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立
【解析】
【分析】
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明
△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.
【详解】
(1)CG=EG.理由如下:
∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=1
2
FD,
同理.在Rt△DEF中,EG=1
2
FD,∴CG=EG.
(2)(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,
∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE
∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.
∵MG=CG,∴EG=1
MC,∴EG=CG.
2
(3)(1)中的结论仍然成立.理由如下:
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证
∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG
【点睛】
本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.
6.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F
(1)求证:AF=DE;
(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;
(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.
【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.
【解析】
【分析】
(1)证明△BAF≌△ADE(ASA)即可解决问题.
(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.
(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.
【详解】
(1)证明:如图1中,
在正方形ABCD中,AB=AD,∠BAD=∠D=90o,
∴∠2+∠3=90°
又∵BF⊥AE,
∴∠AGB=90°
∴∠1+∠2=90°,
∴∠1=∠3
在△BAF与△ADE中,
∠1=∠3 BA=AD ∠BAF=∠D,
∴△BAF≌△ADE(ASA)
∴AF=DE.
(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.
由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD
∴△BAG≌△ADN(AAS)
∴AG=DN,
又DG平分∠EGF,DM⊥GF,DN⊥GE,
∴DM=DN,
∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF
∴△AFG≌△DFM(AAS),
∴AF=DF=DE=1
2AD=
1
2
CD,
即点E是CD的中点.
(3)延长AE,BC交于点P,由(2)知DE=CD,
∠ADE=∠ECP=90°,∠DEA=∠CEP,
∴△ADE≌△PCE(ASA)
∴AE=PE,
又CE∥AB,
∴BC=PC,
在Rt△BGP中,∵BC=PC,
∴CG=1
BP=BC,
2
∴CG=CD.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.
7.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.
(1)连结CG,请判断四边形DBCG的形状,并说明理由;
(2)若AE=BD,求∠EDF的度数.
【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.
【解析】
【分析】
(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;
(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.
【详解】
解:(1)四边形BCGD是矩形,理由如下,
∵四边形ABCD是平行四边形,
∴BC∥AD,即BC∥DG,
由折叠可知,BC=DG,
∴四边形BCGD是平行四边形,
∵AD⊥BD,
∴∠CBD=90°,
∴四边形BCGD是矩形;
(2)由折叠可知:EF垂直平分BD,
∴BD⊥EF,DP=BP,
∵AD⊥BD,
∴EF∥AD∥BC,
∴AE PD1
==
BE BP
∴AE=BE,
∴DE是Rt△ADB斜边上的中线,
∴DE=AE=BE,
∵AE=BD,
∴DE=BD=BE,
∴△DBE是等边三角形,
∴∠EDB=∠DBE=60°,
∵AB∥DC,
∴∠DBC=∠DBE=60°,
∴∠EDF=120°.
【点睛】
本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度
8.阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:
(1)下列哪个四边形一定是和谐四边形.
A.平行四边形B.矩形C.菱形D.等腰梯形
(2)命题:“和谐四边形一定是轴对称图形”是命题(填“真”或“假”).
(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请求出∠ABC的度数.
【答案】(1) C ;(2)∠ABC的度数为60°或90°或150°.
【解析】
试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.
(2)根据和谐四边形定义,分AD=CD,AD=AC,AC=DC讨论即可.
(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.
(2)∵等腰Rt△ABD中,∠BAD=90°,∴AB=AD.
∵AC为凸四边形ABCD的和谐线,且AB=BC,
∴分三种情况讨论:
若AD=CD,如图1,则凸四边形ABCD是正方形,∠ABC=90°;
若AD=AC,如图 2,则AB=AC=BC,△ABC是等边三角形,∠ABC=60°;
若AC=DC,如图 3,则可求∠ABC=150°.
考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.
9.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面
积等于△ABC面积的,请直接写出△ABC的面积.
【答案】(1)见解析;(2)12;探究:2或2.
【解析】
试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、
△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四边形ABFE是平行四边形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB与△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
探究:
解:分为两种情况:①如图1,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形,
∴BC=A′D=2,
过B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=AB=2=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=,
∴△ABC的面积是×BC×AC=×2×2=2;
②如图2,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形,
∴A′C=BD=2,
过C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;
即△ABC的面积是2或2.
考点:四边形综合题.
10.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),
∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
【答案】(1)见解析;
(2);
(3)x=﹣1;四边形PAFC是菱形.
【解析】
试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据
PB=PB,即可证出△PAB≌△PCB,
②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求
出;
(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.
试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.
∵PB=PB,∴△PAB≌△PCB (SAS).
②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,
又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.
(2)在点P的运动过程中,的值不改变.
由△PAB≌△PCB可知,PA=PC.
∵PE=PC,
∴PA=PE,
又∵∠APE=90°,
∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.
(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)
=67.5°.
在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.
∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,
∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,
∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.
考点:四边形综合题.。

相关文档
最新文档