重庆市荣昌中学校2018-2019学年高三上学期第三次月考试卷数学含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市荣昌中学校2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知不等式组⎪⎩
⎪
⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值
范围为( )
A .(,2)-∞
B .(,1)-∞
C .(2,)+∞
D .(1,)+∞
2. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )
A.4π
B.25π
C. 5π
D. 225π+π
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算
能力.
3. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22
=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长
||PQ 等于( )
A .2
B .3
C .4
D .与点位置有关的值
【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.
4. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 5. 已知集合{
}
{
}
2
|5,x |y x 3,A y y x B A B ==-+==-=( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 6. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( ) A .
1324+ B .13
24
- C. 34 D .0
7. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 8. 已知命题1
:0,2p x x x
∀>+≥,则p ⌝为( ) A .10,2x x x ∀>+
< B .10,2x x x ∀≤+< C .10,2x x x ∃≤+< D .1
0,2x x x
∃>+<
9. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.
10.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'
(1)()0x f x -<,
设(0)a f =
,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b <<
11.棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10
12.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线
EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B C
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .
14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩
,则22
(1)3(1)z a x a y =+-+的最小值是20-,则实数
a =______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD
的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
16.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;
(Ⅱ) 若2a =,ABC ∆c b ,.
18.(本小题满分12分)
如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使
PAD θ∠=,构成四棱锥P ABCD -,且
2PC CD
PF CE
==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为
3
π
时,求折起的角度.
19.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12
(1)求a,b的值.
(2)当x∈[1,2]时,求f(x)的最大值.
(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.20.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.
21.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从
某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试
成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
22.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望。
重庆市荣昌中学校2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A
【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12
a ≤时,12a -≥
-
,z ax y =+在点1,0A ()
取得最小值a ;当12a >时,12a -<-,z ax y =+在点11
,33
B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121
a a ⎧≤⎪
⎨⎪<⎩或
12
1113
3a a ⎧
>⎪⎪⎨
⎪+<⎪⎩,∴2a <,选A . 2. 【答案】B
3. 【答案】A
【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此
22222222
00000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+
又点M 在抛物线上,∴02
02y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .
O
x
y
(1,0)
A 11
(,)33B
4. 【答案】B 【
解
析
】
5. 【答案】D
【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.
6. 【答案】B
【解析】
考
点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 7. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 8. 【答案】D 【解析】
考
点:全称命题的否定. 9. 【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.
10.【答案】C 【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不
可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:
()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,
则其图象关于点(,)m n 对称. 11.【答案】B 【解析】
考
点:球与几何体 12.【答案】D 【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线
EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】2016.
【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,
∴数列{a n}是以e为公差的等差数列,
则a1=a3﹣2e=4e﹣2e=2e,
∴a2015=a1+2014e=2e+2014e=2016e.
故答案为:2016e.
【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.
14.【答案】2
【解析】
15.【答案】
5 12
【解析】
16.【答案】2e
【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=
-, 即bc a c b 3222=-+. 3分
由余弦定理得:2
3
2cos 222=
-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分
(Ⅱ) ABC ∆3sin 2
1
=∴A bc ,34=∴bc ①, 8分
又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分 由 ①②解得32,2==c b 或2,32==c b . 12分
18.【答案】(1)证明见解析;(2)23
π
θ=.
【解析】
试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥
平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:
(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,1
2
FG CD =
,又//AB CD ,1
2
AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,
因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23
πθ=
.
考点:点、线、面之间的位置关系的判定与性质. 19.【答案】
【解析】解:(1)∵f (x )=lg (a x
﹣b x
),且f (1)=lg2,f (2)=lg12,
∴a ﹣b=2,a 2﹣b 2
=12,
解得:a=4,b=2;
(2)由(1)得:函数f (x )=lg (4x ﹣2x
),
当x ∈[1,2]时,4x
﹣2x
∈[2,12], 故当x=2时,函数f (x )取最大值lg12,
(3)若函数g (x )=a x 的图象与h (x )=b x
﹣m 的图象恒有两个交点.
则4x ﹣2x =m 有两个解,令t=2x
,则t >0,
则t 2
﹣t=m 有两个正解;
则,
解得:m ∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
20.【答案】
【解析】解:由已知可得方程组
,
第二式除以第一式得=,
整理可得q2+4q+4=0,解得q=﹣2.
21.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
22.【答案】
【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得
P(A1)=0。
1+0。
2+0。
3=0。
6,P(A2)=0。
1+0。
4=0。
5,
P(B1)=0。
1+0。
2+0。
3+0。
2=0。
8,P(B2)=0。
1+0。
4+0。
4=0。
9,
(2)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知
,又由题意知,A,B独立,。