北京市通州区宋庄中学人教版(七年级)初一下册数学期末压轴难题测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市通州区宋庄中学人教版(七年级)初一下册数学期末压轴难题测试题及答
案
一、选择题
1.下列事件中,不是必然事件的是( )
A .同旁内角互补
B .对顶角相等
C .等腰三角形是轴对称图形
D .垂线段最短
2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()
A .
B .
C .
D . 3.在平面直角坐标系中,点A (1,﹣2021)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.下列四个命题:①5是25的算术平方根;②()24-的平方根是-4;③经过直线外一
点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A .0个 B .1个 C .2个 D .3个
5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )
A .15°
B .25°
C .35
D .20°
6.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )
A .3
B .33
C .3
D .32
7.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )
A .60°
B .80°
C .75°
D .72°
8.如图,在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点
A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(-1,3),第四次从点A 3跳动到点A 4(-1,4),……,按此规律下去,则点A 2021的坐标是( ).
A .(673,2021)
B .(674,2021)
C .(-673,2021)
D .(-674,2021)
二、填空题
9.125
的算术平方根是___. 10.点A (2,4)关于x 轴对称的点的坐标是_____.
11.已知100AOB ∠=︒,射线OC 在同一平面内绕点O 旋转,射线,OE OF 分别是AOC ∠和COB ∠的角平分线.则EOF ∠的度数为______________.
12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.
13.将一张长方形纸条ABCD 沿EF 折叠后,EC ′交AD 于点G ,若∠FGE =62°,则∠GFE 的度数是___.
14.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.
16.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0),沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.
三、解答题
17.计算:
(1)3116+84-;
(2)32|32|--.
18.求下列各式中的x 值
(1)x 2﹣61
4=
(2)1
2(2x ﹣1)3=﹣4
19.如图,已知://AB CD ,180B D ∠+∠=︒.
求证://BC DE .
证明:∵//AB CD (已知),
∴∠______=∠______(______).
∵180B D ∠+∠=︒(______),
∴∠______180D +∠=︒(等量代换).
∴//BC DE (______).
20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,
(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;
(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.
21.数学活动课上,张老师说:22”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用)
21表示它的小数部分”张老师说:“晶晶同学的说法21,将这个数减去其整数部分,差就是小数部分,”请你解答:已知83x y +=+,其中x 是一个整数,且01y <<,请你求出20193(3)x y +的值.
二十二、解答题
22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.
(1)求原来正方形场地的周长;
(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.
二十三、解答题
23.已知,//AB CD .点M 在AB 上,点N 在CD 上.
(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)
(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;
(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数. 24.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)
(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.
25.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.
(1)当∠A 为70°时,
∵∠ACD -∠ABD =∠______
∴∠ACD -∠ABD =______°
∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线
∴∠A 1CD -∠A 1BD =12
(∠ACD -∠ABD ) ∴∠A 1=______°;
(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,
如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;
(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.
(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
26.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.
(1)AOB ∠= ︒;
(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;
(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.
【参考答案】
一、选择题
1.A
解析:A
【分析】
必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答.
【详解】
解:A 、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;
B 、为必然事件,不合题意;
C 、为必然事件,不合题意;
D 、为必然事件,不合题意.
故选A .
【点睛】
本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质.必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件.
2.D
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
解析:D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
D、是由基本图形平移得到的,故选此选项.
综上,本题选择D.
【点睛】
本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:∵点A(1,-2021),
∴A点横坐标是正数,纵坐标是负数,
∴A点在第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据相关概念逐项分析即可.
【详解】
①5是25的算术平方根,故原命题是真命题;
②()24-的平方根是4±,故原命题是假命题;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;
④两直线平行,同旁内角互补,故原命题是假命题;
故选:C.
本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.
5.A
【分析】
分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.
【详解】
分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC
∵
l∥2l
1
∴
l∥BC
2
∴∠CBF=∠2
∵
l∥AD
1
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
6.B
【分析】
利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次33y值.
【详解】
根据题意,x=27,取立方根得3,3为有理数,再次取333.符合题意,即输出的y33
故答案选:B.
【点睛】
此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.
7.D
【分析】
先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得
∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.
【详解】
解:∵AB∥CD,
∴∠CFE=∠AEF,
又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,
∴∠DFE=∠EFD′=3∠CFD′,
∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,
∴∠CFD′=36°,
∴∠AEF=∠CFE=2∠CFD′=72°.
故选:D.
【点睛】
本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.
8.B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A
解析:B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),
∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),
∵3×674-1=2021,
∴n=674,所以A 2021(674,2021).
故选B.
【点睛】
本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.
二、填空题
9.【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:的算术平方根是:.
故答案为:.
【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15
【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:12515 . 故答案为:15
. 【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键.
10.(2,﹣4)
【分析】
根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛
解析:(2,﹣4)
【分析】
根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛】
此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律. 11.50°
【分析】
分射线OC 在∠AOB 的内部和射线OC 在∠AOB 的外部,分别画出图形,结合根据角平分线定义求解.
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的
解析:50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=1
2∠AOC,∠FOC=1
2
∠BOC,
∴∠EOF=∠EOC+∠FOC=1
2∠AOC+1
2
∠BOC=50°;
若射线OC在∠AOB的外部,
①射线OE,OF只有1个在∠AOB外面,如图,
∠EOF=∠FOC-∠COE=1
2∠BOC-1
2
∠AOC=1
2
(∠BOC-∠AOC)=1
2
∠AOB=50°;
②射线OE,OF都在∠AOB外面,如图,
∠EOF=∠EOC+∠COF=1
2∠AOC+1
2
∠BOC=1
2
(∠AOC+∠BOC)=1
2
(360°-∠AOB)=130°;
综上:∠EOF的度数为50°或130°,故答案为:50°或130°.
本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.12.10°
【分析】
过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得
AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,
∠DCG=∠CDH,即可求解.
【详解】
解析:10°
【分析】
过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.
【详解】
解:如图,过点C作CG∥AB,过点D作DH∥EF,
∵AB//EF,
∴AB∥CG∥DH∥EF,
∵∠B=40°,∠E=30°,
∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,
∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.
故答案为:10°.
【点睛】
本题主要考查了平行线的性质,准确作出辅助线是解题的关键.
13.59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿
解析:59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
解:如图,∵长方形ABCD 沿EF 折叠,
∴∠1=∠2,AD ∥BC ,
∴∠FGE +∠GEC =180°,
∵∠FGE =62°,
∴∠GEC =180°-62°=118°,
∴∠1=∠2=1
2∠GEC =59°,
∵AD ∥BC ,
∴∠GFE =∠2,
∴∠GFE =59°.
故答案为59°.
【点睛】
本题主要考查翻折问题,平行线的性质,求解∠GEC 的度数是解题的关键. 14.【分析】
根据新定义,将3与-2代入原式求解即可.
【详解】
.
故答案为:.
【点睛】
本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键. 解析:3-
【分析】
根据新定义,将3与-2代入原式求解即可.
【详解】
()()()2
3*223232-=-+⨯--+
461=-- 3=-.
故答案为:3-.
【点睛】
本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.
15.【分析】
首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.
【详解】
解:点C 的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正
解析:()1,3-
【分析】
首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.
【详解】
解:点C 的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正确建立坐标系.
16.【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为,
所以,第一次相遇的时间为秒,
此时,
解析:(2,2)--
【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为2(84)24⨯+=,
所以,第一次相遇的时间为24(24)4÷+=秒,
此时,甲走过的路程为428⨯=,
相遇坐标为(2,2)-,
第二次相遇又用时间为428⨯=(秒),
甲又走过的路程为8216⨯=,
相遇坐标为(2,2)--,
∵3824=÷,
∴第3次相遇时在点A 处,则
以后3的倍数次相遇都在点A 处,
∵202136732,
∴第2021次相遇地点与第2次相遇地点的相同,
∴第2021次相遇地点的坐标为(2,2)--.
故填:(2,2)--.
【点睛】
此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.
三、解答题
17.(1)5;(2)4﹣.
【分析】
(1)直接利用二次根式以及立方根的性质分别化简得出答案;
(2)直接去绝对值进而计算得出答案.
【详解】
(1)原式=4+2﹣
=5;
(2)原式=3﹣(﹣)
=3
解析:(1)51
2;(2)
【分析】
(1)直接利用二次根式以及立方根的性质分别化简得出答案;
(2)直接去绝对值进而计算得出答案.
【详解】
(1)原式=4+2﹣12
=512;
(2)原式=
=
=
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.18.(1);(2).
【分析】
(1)根据平方根的定义解答即可;
(2)根据立方根的定义解答即可.
【详解】
(1)x2﹣6,
移项得:,
开方得:x,
解得:;
(2)(2x﹣1)3=﹣4,
变形得:
解析:(1)
5
2
x=±;(2)1
2
x=-.
【分析】
(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】
(1)x2﹣6
1
4 =,
移项得:2125
6
44
x=+=,
开方得:x=
解得:
5
2
x=±;
(2)1
2
(2x﹣1)3=﹣4,
变形得:(2x﹣1)3=﹣8,
开立方得:212
x-=-,∴2x=﹣1,
解得:
1
2
x=-.
【点睛】
本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,
根据同旁内角互补,两直线平行可得C
解析:B;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:B;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;
(2)设P(0,m
解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;
(2)设P(0,m),构建方程解决问题即可.
【详解】
解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);
(2)设P(0,m),
由题意:1
2
×4×|m+2|=4×
1
2
×4×3,
解得m=10或-12,
∴P(0,10)或(0,-12).
【点睛】
本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.
21.26
【分析】
先估算出的范围,再求出x,y的值,即可解答.
【详解】
解:∵,
∴的整数部分是1,小数部分是
∴的整数部分是9,小数部分是,
∴x=9,y=,
∴=3×9+(-)2019=27+(
解析:26
【分析】
x,y的值,即可解答.
【详解】
解:∵,
∴1
∴89,
∴x=9,,
∴
2019
3(
x y
+=3×9+2019=27+(-1)2019=27-1=26.
【点睛】
二十二、解答题
22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为
解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.
【详解】
解:(1)400=20(m),4×20=80(m),
答:原来正方形场地的周长为80m;
(2)设这个长方形场地宽为3am,则长为5am.
由题意有:3a×5a=300,
解得:a=±20,
∵3a表示长度,
∴a>0,
∴a=20,
∴这个长方形场地的周长为 2(3a+5a)=16a=1620(m),
∵80=16×5=16×25>1620,
∴这些铁栅栏够用.
【点睛】
本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.
二十三、解答题
23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质
解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EH//AB,易得EH//AB//CD,根据平行线的性质可求解;过F作FH//AB,易得FH//AB//CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;
∠BME,进而可求解.
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=1
2
【详解】
解:(1)过E作EH//AB,如图1,
∴∠BME=∠MEH,
∵AB//CD,
∴HE//CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN−∠END.
如图2,过F作FH//AB,
∴∠BMF=∠MFK,
∵AB//CD,
∴FH//CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF−∠FND=180°,
∴2∠BME+2∠END+∠BMF−∠FND=180°,
即2∠BMF+∠FND+∠BMF−∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=1
2∠MEN=1
2
(∠BME+∠END),∠ENP=1
2
∠END,
∵EQ//NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN−∠NEQ=1
2(∠BME+∠END)−1
2
∠END=1
2
∠BME,
∵∠BME=60°,
∴∠FEQ=1
2
×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.
24.(1);(2),证明见解析;(3),证明见解析.
【分析】
(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.
【分析】
(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得
,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22
BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得
1()2
AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;
(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.
【详解】
解:(1)如图,过点E 作//EF AB ,
AEF BAE ∴∠=∠,
//AB CD ,
//EF CD ∴,
CEF DCE ∴∠=∠,
AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,
又//AB CD ,且点P 运动到线段AC 上,
180PAB PCD ∴∠+∠=︒,
AE ∵平分PAB ∠,CE 平分PCD ∠,
11,22
BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222
AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:
如图,过点E 作//EF AB ,过点P 作//PQ AB ,
由(1)已得:1()2
AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,
2APC AEC ∴∠=∠;
(3)2360APC AEC ∠+∠=︒,证明如下:
如图,过点E 作//EF AB ,过点P 作//PQ AB ,
由(1)已得:1()2
AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,
//PQ AB ,
180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,
//AB CD ,
//PQ CD ∴,
180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,
APC APQ CPQ ∴∠=∠+∠,
180180PAB PCD =︒-∠+︒-∠,
()360PAB PCD =︒-∠+∠,
3602AEC =︒-∠,
即2360APC AEC ∠+∠=︒.
【点睛】
本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
25.(1)∠A ;70°;35°;
(2)∠A=2n ∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC ,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠A n
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】
(1)根据角平分线的定义可得∠A1BC=1
2∠ABC,∠A1CD=1
2
∠ACD,再根据三角形的一个
外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即
∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-
2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=1
2
(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠A n,
故答案为:∠A=2∠A n.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-
∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=12(∠A+∠D )-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A 1的值为定值正确.
∵∠ACD-∠ABD=∠BAC ,BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1=∠A 1CD-∠A 1BD=
1
2∠BAC ,
∵∠AEC+∠ACE=∠BAC ,EQ 、CQ 是∠AEC 、∠ACE 的角平分线, ∴∠QEC+∠QCE=12(∠AEC+∠ACE )=12∠BAC ,
∴∠Q=180°-(∠QEC+∠QCE )=180°-1
2∠BAC ,
∴∠Q+∠A 1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要. 26.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n =3.
【分析】
(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,
∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;
(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;
(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =
641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =
1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得
144606411
n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】
解:(1)如图:过O 作OP //MN ,
∵MN //GHl
∴MN //OP //GH
∴∠NAO +∠POA =180°,∠POB +∠OBH =180°
∴∠NAO +∠AOB +∠OBH =360°
∵∠NAO =116°,∠OBH =144°
∴∠AOB =360°-116°-144°=100°;
(2)分别延长AC 、CD 交GH 于点E 、F ,
∵AC 平分NAO ∠且116NAO ∠=︒,
∴58NAC ∠=︒,
又∵MN //GH ,
∴58CEF ∠=︒;
∵144OBH ∠=︒,36OBG ∠=︒
∵BD 平分OBG ∠,
∴18DBF ∠=︒,
又∵,CDB ∠=︒35
∴351817DFB CDB DBF ∠=∠-∠=-=︒;
∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;
(3)设FB 交MN 于K ,
∵116NAO ∠=︒,则MAO ∠=︒64; ∴641
n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=
⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601
n BKA FKA F n ∠=∠+∠=
⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.
n 是原方程的根,且符合题意.
经检验:3
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。