宁河区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁河区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
2. 定义在(0,+∞)上的函数f (x )满足:
<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( ) A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
3. 设a ,b ∈R 且a+b=3,b >0
,则当
+
取得最小值时,实数a 的值是( )
A
.
B
.
C
.
或 D .3
4.
直线的倾斜角是( )
A
.
B
.
C
.
D
.
5. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1 D .﹣1
6.
某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π
7. 圆心为(1,1)且过原点的圆的方程是( )
A .2=1
B .2=1
C .2=2
D .2=2
8. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .98
9. 已知f (x )
=,则f (2016)等于( )
A .﹣1
B .0
C .1
D .2
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.若命题“p∧q”为假,且“¬q”为假,则()
A.“p∨q”为假B.p假
C.p真D.不能判断q的真假
11.关于x的方程ax2+2x﹣1=0至少有一个正的实根,则a的取值范围是()
A.a≥0 B.﹣1≤a<0 C.a>0或﹣1<a<0 D.a≥﹣1
12.对于区间[a,b]上有意义的两个函数f(x)与g(x),如果对于区间[a,b]中的任意数x均有|f(x)﹣g (x)|≤1,则称函数f(x)与g(x)在区间[a,b]上是密切函数,[a,b]称为密切区间.若m(x)=x2﹣3x+4与n(x)=2x﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是()
A.[3,4] B.[2,4] C.[1,4] D.[2,3]
二、填空题
13.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.
14.已知角α终边上一点为P(﹣1,2),则值等于.
15.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.
16.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点
②经过空间任意三点有且只有一个平面
③过两平行直线有且只有一个平面
④在空间两两相交的三条直线必共面
其中正确命题的序号是.
17.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例
如:1=++,1=+++,1=++++,…依此方法可得:
1=++++++++++++,其中m,n∈N*,则m+n=.
18.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.三、解答题
19.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.
(Ⅰ)求sin ∠BAD 的值;
(Ⅱ)求AC 边的长.
20.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;
(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.
21.(本小题满分12分)111]
在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .
22.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
23.(本小题满分16分)
在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;
(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
24.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0
(1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.
宁河区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】 C
【解析】
二项式定理.
【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k
当k﹣1时,C5k25﹣k=C5124=80,
当k=2时,C5k25﹣k=C5223=80,
当k=3时,C5k25﹣k=C5322=40,
当k=4时,C5k25﹣k=C54×2=10,
当k=5时,C5k25﹣k=C55=1,
故展开式中x k的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
2.【答案】B
【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.
∵f(2)=4,则2f(2)=8,
f(x)﹣>0化简得,
当x<2时,
⇒成立.
故得x<2,
∵定义在(0,+∞)上.
∴不等式f(x)﹣>0的解集为(0,2).
故选B.
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
3.【答案】C
【解析】解:∵a+b=3,b>0,
∴b=3﹣a>0,∴a<3,且a≠0.
①当0<a<3时,+==+=f(a),
f′(a)=+=,
当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=时,+取得最小值.
②当a<0时,+=﹣()=﹣(+)=f(a),
f′(a)=﹣=﹣,
当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=﹣时,+取得最小值.
综上可得:当a=或时,+取得最小值.
故选:C.
【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.
4.【答案】A
【解析】解:设倾斜角为α,
∵直线的斜率为,
∴tanα=,
∵0°<α<180°,
∴α=30°
故选A.
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
5.【答案】D
【解析】解:由zi=1+i,得,
∴z的虚部为﹣1.
故选:D.
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
6.【答案】
【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.
依题意得(2r×2r+1
2)×2+5×2r×2+5×2r+πr×5=92+14π,
2πr
即(8+π)r2+(30+5π)r-(92+14π)=0,
即(r-2)[(8+π)r+46+7π]=0,
∴r=2,
∴该几何体的体积为(4×4+1
2)×5=80+10π.
2π×2
7.【答案】D
【解析】解:由题意知圆半径r=,
∴圆的方程为2=2.
故选:D.
【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.8.【答案】A
【解析】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
9.【答案】D
【解析】解:∵f(x)=,
∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,
故选:D.
【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.10.【答案】B
【解析】解:∵命题“p∧q”为假,且“¬q”为假,
∴q为真,p为假;
则p∨q为真,
故选B.
【点评】本题考查了复合命题的真假性的判断,属于基础题.
11.【答案】D
【解析】解:(1)当a=0时,方程是2x﹣1=0,可知有一个正实根.
(2)当a≠0,当关于x的方程ax2+2x﹣1=0有实根,△≥0,解可得a≥﹣1;
①当关于x的方程ax2+2x﹣1=0有一个正实根,有﹣<0,解可得a>0;
②当关于x的方程ax2+2x﹣1=0有二个正实根,有,解可得a<0;,
综上可得,a≥﹣1;
故选D.
【点评】本题主要考查一个一元二次根的分布问题,属于中档题.在二次项系数不确定的情况下,注意一定要分二次项系数分为0和不为0两种情况讨论.
12.【答案】D
【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,
∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.
令﹣1≤x2﹣5x+7≤1,
则有,
∴2≤x≤3.
故答案为D.
【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.
二、填空题
13.【答案】3+.
【解析】解:本小题考查归纳推理和等差数列求和公式.
前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+.
14.【答案】.
【解析】解:角α终边上一点为P(﹣1,2),
所以tanα=﹣2.
===﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.
15.【答案】(﹣3,﹣2)∪(﹣1,0).
【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),
令y′=0,则x=0或﹣2,
﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,
∴0或﹣2是函数的极值点,
∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,
∴a<﹣2<a+1或a<0<a+1,
∴﹣3<a<﹣2或﹣1<a<0.
故答案为:(﹣3,﹣2)∪(﹣1,0).
16.【答案】③.
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,
故答案为:③
17.【答案】33.
【解析】解:∵1=++++++++++++,
∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
∴1=++++++++++++=(1﹣)+++(﹣)+,
+==﹣+﹣=,
∴m=20,n=13,
∴m+n=33,
故答案为:33
【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.
18.【答案】
【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①
又a2,a3,a4-2成等差数列.
∴2a3=a2+a4-2,
即8k2=2k2+8k2-2.②
由①②联立得k1=-1,k2=1,
∴a n=2n-1.
答案:2n-1
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意,因为sinB=,所以cosB=…
又cos∠ADC=﹣,所以sin∠ADC=…
所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…
(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…
故BC=15,
从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3×15×(﹣)=,所以AC=…
【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.
20.【答案】(1)a=1
2
(2)(-∞,-1-1
e
].(3)
8
27
【解析】
(2)
f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥2
2ln x
x . 令g (x )=
22ln x
x ,x >0,则g '(x )=()3212ln x x
-.
令g '(x )=0,解得x
当x ∈(0g '(x )>0,所以g (x )在(0
当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.
所以g (x )max =g 1e
, 所以-(a +1)≥1e ,即a ≤-1-1
e
,
所以a 的取值范围为(-∞,-1-1
e
].
(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,
所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.
②当5
3
<a<2时,
当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;
当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.
又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.
因为h'(a)=3a2-6a+3=3(a-1)2≥0.
所以h(a)在(5
3
,2)上单调递增,
所以当a∈(5
3,2)时,h(a)>h(5
3
)=8
27
.
③当a≥2时,
当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,
所以M(a)=f(1)=3a-1,m(a)=f(2)=4,
所以h(a)=M(a)-m(a)=3a-1-4=3a-5,
所以h(a)在[2,+∞)上的最小值为h(2)=1.
综上,h(a)的最小值为8
27
.
点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.
21.【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.
试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .
如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .
考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.
【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行. 22.【答案】 【解析】解:(1),
令f'(x )>0,则
;令f'(x )<0,则
. ∴f (x )在x=a 时取得最大值,即
①当,即0<a <1时,考虑到当x 无限趋近于0(从0的右边)时,f (x )→﹣∞;当x →+∞时,f
(x )→﹣∞
∴f (x )的图象与x 轴有2个交点,分别位于(0,)及()
即f (x )有2个零点; ②当,即a=1时,f (x )有1个零点; ③当,即a >1时f (x )没有零点;
(2)由
得
(0<x 1<x 2),
=,令
,设
,t ∈(0,1)且h (1)=0
则
,又t ∈(0,1),∴h ′(t )<0,∴h (t )>h (1)=0
即,又,
∴f'(x 0)=
<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a <1进行研究时,一定要注意到f (x )的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.
23.【答案】(1) ()()2
10473h x x x =
+-- (37x <<)(2) 13 4.33
x =≈
试
题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13
k f x x =-,()()2
27g x k x =-,12.00k k ≠≠,,
则()()()()2
1273
k h x f x g x k x x =+=
+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套 所以,()()521, 3.569h h ==,即1
2124212
49269
4
k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分
所以,()()2
10473
h x x x =
+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()2
10473
h x x x =
+--,
答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分
考点:利用导数求函数最值
24.【答案】
【解析】解:p:,q:a≤x≤a+1;
∴(1)若a=,则q:;
∵p∧q为真,∴p,q都为真;
∴,∴;
∴实数x的取值范围为;
(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;
∴,∴;
∴实数a的取值范围为.
【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.。